PT - JOURNAL ARTICLE AU - Donald E. Canfield AU - Andrew H. Knoll AU - Simon W. Poulton AU - Guy M. Narbonne AU - Gregory R. Dunning TI - Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle AID - 10.2475/02.2020.01 DP - 2020 Feb 01 TA - American Journal of Science PG - 97--124 VI - 320 IP - 2 4099 - http://www.ajsonline.org/content/320/2/97.short 4100 - http://www.ajsonline.org/content/320/2/97.full SO - Am J Sci2020 Feb 01; 320 AB - It has been proposed that isotopically light inorganic carbon precipitated diagenetically in clastic sediments can explain the large carbon isotopic excursions recorded in Neoproterozoic carbonates. To date, however, the data needed to test this hypothesis have been limited. Here we report the analysis of ca. 540 clastic sedimentary rocks, including shales, siltstones, sandstones and tillites, that span the second half of the Neoproterozoic Era. A diagenetic carbon isotopic overprint does indeed occur in many of the samples; however, when we include our analyses in a carbon isotope mass balance model, they produce only a small effect on mass balance model results. Thus, clastic sedimentary rocks were not a major sink for 13C-depleted carbonate during the Neoproterozoic Era. These results do, however, produce a more accurate carbon mass balance, pointing to a high proportion of total organic carbon burial, compared to total carbon burial, during the late Tonian, Cryogenian, and late Ediacaran Periods. This result suggests a vigorous release of oxygen to the atmosphere. The clastic carbonate record also offers a chemostratigraphic tool. For example, we observe an isotope trend in clastic-hosted carbonates of the Isaac Formation, Windermere Supergroup, that strongly resembles the Shuram-Wonoka isotope anomaly, allowing us to place this previously undated section in a temporal context. We also find isotope trends in the fossiliferous and radiometrically well-dated sedimentary rocks of the Avalon Peninsula, Newfoundland, that may also reflect the Shuram-Wonoka anomaly. If correct, this constrains the timing of the Shuram event, suggesting that it began after 571 Ma and ended before 562 Ma, with the most extreme isotopic values lying well within those bounds.