Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau

George H. Davis, Lauren J. Reeher, Gilby Jepson, Barbara Carrapa, Peter G. Decelles and Kayla M. Chaudoir
American Journal of Science November 2022, 322 (9) 1047-1087; DOI: https://doi.org/10.2475/09.2022.02
George H. Davis
*Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gdavis@arizona.edu
Lauren J. Reeher
*Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gilby Jepson
*Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barbara Carrapa
*Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter G. Decelles
*Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kayla M. Chaudoir
**Department of Geosciences, Utah State University, Logan, Utah, 84322, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Armstrong R. L.
    , 1974, Magmatism, orogenic timing, and orogenic diachronism in the Cordillera from Mexico to Canada: Nature, v. 247, p. 348–351, doi:https://doi.org/10.1038/247348a0
    OpenUrlCrossRefGeoRef
  2. ↵
    1. Ault A. K.
    , 2020, Hematite fault rock thermochronometry and textures inform fault zone processes: Journal of Structural Geology, v. 133, p. 104002, doi:https://doi.org/10.1016/j.jsg.2020.104002
    OpenUrlCrossRef
  3. ↵
    1. Axen G. J.,
    2. van Wijk J. W.,
    3. Currie C. A.
    , 2018, Basal continental mantle lithosphere displaced by flat-slab subduction: Nature Geoscience, v. 11, p. 961–964, doi:https://doi.org/10.1038/s41561-018-0263-9
    OpenUrlCrossRef
  4. ↵
    1. Barbarand J.,
    2. Hurford T.,
    3. Carter A.
    , 2003, Variation in apatite fission-track length measurement: implications for thermal history modelling: Chemical Geology, v. 198, n. 1–2, p. 77–106, doi:https://doi.org/10.1016/S0009-2541(02)00423-0
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Bird P.
    , 1984, Laramide crustal thickening event in the Rocky Mountain Foreland and Great Plains: Tectonics, v. 3, n. 7, p. 741–758, doi:https://doi.org/10.1029/TC003i007p00741
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Bird P.
    , 1998, Kinematic history of the Laramide orogeny in latitudes 35°–49°N, western United States: Tectonics, v. 17, n. 5, p. 780–801, doi:https://doi.org/10.1029/98TC02698
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Bird P.
    , 2002, Stress direction history of the western United States and Mexico since 85 Ma: Tectonics, v. 21, n. 3, p. 5–1–5–12, doi:https://doi.org/10.1029/2001TC001319
    OpenUrlCrossRef
  8. ↵
    1. Wong T. E.
    1. Blakey R. C.
    , 2003, Carboniferous–Permian paleogeography of the assembly of Pangaea, in Wong T. E., editor, Proceedings of the XVth International Congress on Carboniferous and Permian stratigraphy: Royal Netherlands Academy of Arts and Sciences: Utrect, the Netherlands, p. 443–456.
  9. ↵
    1. Blakey R. C.
    , 2009, Paleogeography and Geologic History of the Western Ancestral Rocky Mountains, Pennsylvanian-Permian, Southern Rocky Mountains and Colorado Plateau: Rocky Mountain Assosication of Geologists: The Paradox Basin Revisited – New Developments in Petroleum Systems and Basin Analysis, p. 222–264.
  10. ↵
    1. Braun J.,
    2. Van der Beek P.,
    3. Batt G.
    , 2006, Quantitative thermochronology: numerical methods for the interpretation of thermochronological data: Cambridge University Press. doi:https://doi.org/10.1017/CBO9780511616433
    OpenUrlCrossRef
  11. ↵
    1. Bright R. M.,
    2. Amato J. M.,
    3. Denyszyn S. W.,
    4. Ernst R. E.
    , 2014, U-Pb geochronology of 1.1 Ga diabase in the southwestern United States: Testing models for the origin of a post-Grenville large igneous province: Lithosphere, v. 6, n. 3, p. 135–156, doi:https://doi.org/10.1130/L335.1
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Schmidt C. J.,
    2. Perry W. J.
    1. Brown W. G.
    , 1988, Deformational style of Laramide uplifts in the Wyoming foreland, in Schmidt C. J., Perry W. J., editors, Interaction of the Rocky Mountain foreland and the Cordilleran thrust belt: Geological Society of America Memoir, v. 171, p. 1–25, doi:https://doi.org/10.1130/MEM171-p1
    OpenUrlCrossRef
  13. ↵
    1. Bump A. P.,
    2. Davis G. H.
    , 2003, Late Cretaceous–early Tertiary Laramide deformation of the northern Colorado Plateau, Utah and Colorado: Journal of Structural Geology, v. 25, n. 3, p. 421–440, doi:https://doi.org/10.1016/S0191-8141(02)00033-0
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Burchfiel B. C.,
    2. Lipman P. W.,
    3. Zoback M. L.
    1. Burchfiel B. C.,
    2. Cowan D. S.,
    3. Davis G. A.
    , 1992, Tectonic overview of the Cordilleran orogen in the western United States, in Burchfiel B. C., Lipman P. W., Zoback M. L., editors, The Cordilleran Orogen: Geological Society of America, p. 407–480, doi:https://doi.org/10.1130/DNAG-GNA-G3.407
    OpenUrlCrossRef
  15. ↵
    1. Carrapa B.,
    2. DeCelles P. G.,
    3. Romero M.
    , 2019, Early inception of the Laramide orogeny in southwestern Montana and northern Wyoming: Implications for models of flat-slab subduction: Journal of Geophysical Research: Solid Earth, v. 124, n. 2, p. 2102–2123, doi:https://doi.org/10.1029/2018JB016888
    OpenUrlCrossRef
  16. ↵
    1. Mack G. H.,
    2. Giles K. A.
    1. Cather S. M.
    , 2004, Laramide orogeny in central and northern New Mexico and southern Colorado, in Mack G. H., Giles K. A., editors, The Geology of New Mexico, A Geologic History: New Mexico Geological Society Special Publication, p. 203–248.
  17. ↵
    1. Cather S. M.,
    2. Connell S. D.,
    3. Chamberlin R. M.,
    4. McIntosh W. C.,
    5. Jones G. E.,
    6. Potochnik A. R.,
    7. Lucas S. G.,
    8. Johnson P. S.
    , 2008, The Chuska erg: Paleogeomorphic and paleoclimatic implications of an Oligocene sand sea on the Colorado Plateau: Geological Society of America Bulletin, v. 120, n. 1–2, p. 13–33, doi:https://doi.org/10.1130/B26081.1
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Caylor E. A.,
    2. Carrapa B.,
    3. Sundell K.,
    4. DeCelles P. G.,
    5. Smith J. M.
    , 2021, Age and deposition of the Fort Crittenden Formation: A window into Late Cretaceous Laramide and Cenozoic tectonics in southeastern Arizona: Geological Society of America Bulletin, v. 133, n. 9–10, p. 1996–2016, doi:https://doi.org/10.1130/B35808.1
    OpenUrlCrossRef
  19. ↵
    1. Cerveny P. F.,
    2. Steidtmann J. R.
    , 1993, Fission track thermochronology of the Wind River Range, Wyoming: Evidence for timing and magnitude of Laramide exhumation: Tectonics, v. 12, n. 1, p. 77–91, doi:https://doi.org/10.1029/92TC01567
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Chapman J. B.,
    2. Greig R.,
    3. Haxel G. B.
    , 2020, Geochemical evidence for an orogenic plateau in the southern U.S. and northern Mexican Cordillera during the Laramide orogeny: Geology, v. 48, n. 2, p. 164–168, doi:https://doi.org/10.1130/G47117.1
    OpenUrlCrossRef
  21. ↵
    1. Chaudoir K. M.
    , ms, 2021, (U-Th)/He thermochronological analysis of apatite, zircon and hematite to model the exhumation history of Precambrian granite near Hunters Point, Defiance uplift, Arizona: Honors Thesis, University of Arizona, Tucson, Arizona.
  22. ↵
    1. Clinkscales C. A.,
    2. Lawton T. F.
    , 2015, Timing of Late Cretaceous shortening and basin development, Little Hatchet Mountains, southwestern New Mexico, USA – implications for regional Laramide tectonics: Basin Research, v. 27, n. 4, p. 453–472, doi:https://doi.org/10.1111/bre.12083
    OpenUrlCrossRef
  23. ↵
    1. Condie K. C.
    , 1982, Plate-tectonics model for Proterozoic continental accretion in the southwestern United States: Geology, v. 10, n. 1, p. 37–42, doi:https://doi.org/10.1130/0091-7613(1982)10<37:PMFPCA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Condon S. M.
    , 1986, Geologic map of the Hunters Point quadrangle, Apache County, Arizona, and McKinley County, New Mexico: United States Geological Survey Quadrangle Map.
  25. ↵
    1. Coney P. J.,
    2. Reynolds S. J.
    , 1977, Cordilleran Benioff zones: Nature, v. 270, p. 403–406, doi:https://doi.org/10.1038/270403a0
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Constenius K. N.
    , 1996, Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt: Geological Society of America Bulletin, v. 108, n. 1, p. 20–39, doi:https://doi.org/10.1130/0016-7606(1996)108<0020:LPECOT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Copeland P.,
    2. Currie C. A.,
    3. Lawton T. F.,
    4. Murphy M. A.
    , 2017, Location, location, location: The variable lifespan of the Laramide orogeny: Geology, v. 45, n. 3, p. 223–226, doi:https://doi.org/10.1130/G38810.1
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Crews S. G.,
    2. Ethridge F. G.
    , 1993, Laramide tectonics and humid alluvial fan sedimentation, NE Uinta Uplift, Utah and Wyoming: Journal of Sedimentary Research, v. 63, n. 3, p. 420–436, doi:https://doi.org/10.1306/D4267B18-2B26-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Allen P. A.,
    2. Homewood P.
    1. Cross T. A.
    , 1986, Tectonic controls of foreland basin subsidence and Laramide style deformation, western United States, in Allen P. A., Homewood P., editors, Foreland Basins: Special Publication of the International Association of Sedimentologists, p. 13–39, doi:https://doi.org/10.1002/9781444303810.ch1
    OpenUrlCrossRef
  30. ↵
    1. Cross T. A.,
    2. Pilger R. H.
    , 1978, Tectonic controls of late Cretaceous sedimentation, western interior, USA: Nature, v. 274, p. 653–657, doi:https://doi.org/10.1038/274653a0
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Crowley P. D.,
    2. Reiners P. W.,
    3. Reuter J. M.,
    4. Kaye G. D.
    , 2002, Laramide exhumation of the Bighorn Mountains, Wyoming: An apatite (U-Th)/He thermochronology study: Geology, v. 30, n. 1, p. 27–30, doi:https://doi.org/10.1130/0091-7613(2002)030<0027:LEOTBM>2.0.CO;2
    OpenUrlCrossRef
  32. ↵
    1. Darton N. H.
    , 1925, A resume of Arizona geology: University of Arizona Bulletin, n. 119, Geological Series n. 3, 298 p.
  33. ↵
    1. Matthews V.
    1. Davis G. H.
    , 1978, Monocline fold pattern of the Colorado Plateau, in Matthews V., editor, Laramide folding associated with basement block faulting in the western United States: Geological Society of America Memoir, v. 151, p. 215–233, doi:https://doi.org/10.1130/MEM151-p215
    OpenUrlCrossRef
  34. ↵
    1. Davis G. H.
    , 1999, Structural geology of the Colorado Plateau region of southern Utah, with special emphasis on deformation bands: Geological Society of America Special Paper 342, 157 p., doi:https://doi.org/10.1130/0-8137-2342-6.1
    OpenUrlCrossRef
  35. ↵
    1. Davis G. H.,
    2. Kiven C. W.
    , 1975, Structure map of folds in Phanerozoic rocks, Colorado Plateau tectonic province of Arizona: Arizona Oil and Gas Conservation Commission, Phoenix, Arizona.
  36. ↵
    1. Davis G.,
    2. Tindall S.
    , 1996, Discovery of major right-handed Laramide strike-slip faulting along the eastern margin of the Kaibab uplift, Colorado Plateau, Utah: EOS, Transactions of the American Geophysical Union, 1996 Fall Meeting, p. F641–642.
  37. ↵
    1. Kay S. M.,
    2. Ramos V. A.,
    3. Dickinson W. R.
    1. Davis G. H.,
    2. Bump A. P.
    , 2009, Structural geologic evolution of the Colorado Plateau, in Kay S. M., Ramos V. A., Dickinson W. R., editors, Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision: Geological Society of America Memoir 204, p. 99–124, doi:https://doi.org/10.1130/2009.1204(05)
    OpenUrlCrossRef
  38. ↵
    1. DeCelles P. G.
    , 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA: American Journal of Science, v. 304, n. 2, p. 105–168, doi:https://doi.org/10.2475/ajs.304.2.105
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. DeCelles P. G.,
    2. Tolson R. B.,
    3. Graham S. A.,
    4. Smith G. A.,
    5. Ingersoll R. V.,
    6. White J.,
    7. Schmidt C. J.,
    8. Rice R.,
    9. Moxon I.,
    10. Lemke L.,
    11. Handschy J. W.,
    12. Follo M. F.,
    13. Edwards D. P.,
    14. Cavazza W.,
    15. Caldwell M.,
    16. Bargar E.
    , 1987, Laramide thrust-generated alluvial-fan sedimentation, Sphinx Conglomerate, southwestern Montana: AAPG Bulletin, v. 71, n. 2, p. 135–155.
    OpenUrlAbstract
  40. ↵
    1. DeCelles P. G.,
    2. Gray M. B.,
    3. Ridgeway K. D.,
    4. Cole R. B.,
    5. Srivastava P.,
    6. Pequera N.,
    7. Pivnik D. A.
    , 1991, Kinematic history of a foreland uplift from Paleocene synorogenic conglomerate, Beartooth Range, Wyoming and Montana: Geological Society of America Bulletin, v. 103, n. 11, p. 1458–1475, doi:https://doi.org/10.1130/0016-7606(1991)103<1458:KHOAFU>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Timmons J. M.,
    2. Karlstrom K. E.
    1. Dehler C. M.,
    2. Porter S. M.,
    3. Timmons J. M.
    , 2012, The Neoproterozoic Earth system revealed from the Chuar Group of Grand Canyon, in Timmons J. M., Karlstrom K. E., editors, Grand Canyon Geology: Two Billion Years of Earth’s History: Geological Society of America Special Paper 489, p. 49–72, doi:https://doi.org/10.1130/2012.2489(03)
    OpenUrlCrossRef
  42. ↵
    1. DeLucia M. S.,
    2. Guenthner W. R.,
    3. Marshak S.,
    4. Thomson S. N.,
    5. Ault A. K.
    , 2018, Thermochronology links denudation of the Great Unconformity surface to the supercontinent cycle and snowball Earth: Geology, v. 46, n. 2, p. 167–170, doi:https://doi.org/10.1130/G39525.1
    OpenUrlCrossRef
  43. ↵
    1. Dickinson W. R.
    , 2004, Evolution of the North American Cordillera: Annual Review of Earth and Planetary Sciences, v. 32, p. 13–45, doi:https://doi.org/10.1146/annurev.earth.32.101802.120257
    OpenUrlCrossRef
  44. ↵
    1. Dickinson W. R.
    , 2018, Notes on the Cretaceous and Laramide of the Colorado Plateau: Arizona Geological Survey Contributed Report CR-18-G, p. 32.
  45. ↵
    1. Dickinson W. R.,
    2. Klute M. A.,
    3. Hayes M. J.,
    4. Janecke S. U.,
    5. Lundin E. R.,
    6. McKittrick M. A.,
    7. Olivares M. D.
    , 1988, Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region: Geological Society of America Bulletin, v. 100, n. 7, p. 1023–1039, doi:https://doi.org/10.1130/0016-7606(1988)100<1023:PAPSOL>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Matthews V.
    1. Dickinson W. R.,
    2. Snyder W. S.
    , 1978, Plate tectonics of the Laramide orogeny, in Matthews V., editor, Laramide folding associated with basement block faulting in the western United States: Geolgical Society of America Memior 151, p. 355–366, doi:https://doi.org/10.1130/MEM151-p355
    OpenUrlCrossRef
  47. ↵
    1. Dickinson W. R.,
    2. Lawton T. F.
    , 2001, Carboniferous to Cretaceous assembly and fragmentation of Mexico: Geological Society of America Bulletin, v. 113, n. 9, p. 1142–1160, doi:https://doi.org/10.1130/0016-7606(2001)113<1142:CTCAAF>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Donelick R. A.,
    2. O’Sullivan P. B.,
    3. Ketcham R. A.
    , 2005, Apatite fission-track analysis: Reviews in Mineralogy and Geochemistry, v. 58, n. 1, p. 49–94, doi:https://doi.org/10.2138/rmg.2005.58.3
    OpenUrlFREE Full Text
  49. ↵
    1. Dumitru T. A.,
    2. Duddy I. R.,
    3. Green P. F.
    , 1994, Mesozoic-Cenozoic burial, uplift, and erosion history of the west-central Colorado Plateau: Geology, v. 22, n. 6, p. 499–502, doi:https://doi.org/10.1130/0091-7613(1994)022<0499:MCBUAE>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Erslev E. A.
    , 1991, Trishear fault-propagation folding: Geology, v. 19, n. 6, p. 617–620, doi:https://doi.org/10.1130/0091-7613(1991)019<0617:TFPF>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Schmidt C. J.,
    2. Chase R.,
    3. Erslev E. A.
    1. Erslev E. A.
    , 1993, Thrusts, backthrusts and detachment of Laramide foreland arches, in Schmidt C. J., Chase R., Erslev E. A., editors, Laramide basement deformation in the Rocky Mountain foreland of the western United States: Geological Society of America Special Paper 280, p. 339–358, doi:https://doi.org/10.1130/SPE280-p339
    OpenUrlCrossRef
  52. ↵
    1. Kay S. M.,
    2. Ramos V. A.
    1. Dickinson W. R.
    1. Erslev E. A.,
    2. Koenig N. V.
    , 2009, Three-dimensional kinematics of Laramide, basement-involved Rocky Mountain deformation, USA: Insights from minor faults and GIS-enhanced structure maps, in Kay S. M., Ramos V. A.; Dickinson W. R., editors, Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision: Geological Society of Ameria Memior 204, p. 125–150, doi:https://doi.org/10.1130/2009.1204(06)
    OpenUrlCrossRefWeb of Science
  53. ↵
    1. Evenson N. S.,
    2. Reiners P. W.,
    3. Spencer J. E.,
    4. Shuster D. L.
    , 2014, Hematite and Mn oxide (U-Th)/He dates from the Buckskin-Rawhide detachment system, western Arizona: Gaining insights into hematite (U-Th)/He systematics: American Journal of Science, v. 314, n. 10, p. 1373–1435, doi:https://doi.org/10.2475/10.2014.01
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Fan M.,
    2. Carrapa B.
    , 2014, Late Cretaceous–early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction: Tectonics, v. 33, n. 4, p. 509–529, doi:https://doi.org/10.1002/2012TC003221
    OpenUrlCrossRefGeoRef
    1. Farley K. A.
    , 2002, (U-Th)/He dating: Techniques, calibrations, and applications: Reviews in Mineralogy and Geochemistry, v. 47, n. 1, p. 819–844, doi:https://doi.org/10.2138/rmg.2002.47.18
    OpenUrlFREE Full Text
  55. ↵
    1. Farley K. A.
    , 2018, Helium diffusion parameters of hematite from a single-diffusion-domain crystal: Geochimica et Cosmochimica Acta, v. 231, p. 117–129, doi:https://doi.org/10.1016/j.gca.2018.04.005
    OpenUrlCrossRef
  56. ↵
    1. Farley K. A.,
    2. Flowers R. M.
    , 2012, (U–Th)/Ne and multidomain (U–Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon: Earth and Planetary Science Letters, v. 359–360, p. 131–140, doi:https://doi.org/10.1016/j.epsl.2012.10.010
    OpenUrlCrossRef
  57. ↵
    1. Fitzgerald P. G.,
    2. Fryxell J. E.,
    3. Wernicke B. P.
    , 1991, Miocene crustal extension and uplift in southeastern Nevada: Constraints from fission track analysis: Geology, v. 19, n. 10, p. 1013–1016, doi:https://doi.org/10.1130/0091-7613(1991)019<1013:MCEAUI>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Fowler D. W.
    , 2017, Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America: PLoS ONE, v. 12, n. 11, e0188426, doi:https://doi.org/10.1371/journal.pone.0188426
    OpenUrlCrossRefPubMed
  59. ↵
    1. Flowers R. M.,
    2. Wernicke B. P.,
    3. Farley K. A.
    , 2008, Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry: Geological Society of America Bulletin, v. 120, n. 5–6, p. 571–587, doi:https://doi.org/10.1130/B26231.1
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Flowers R. M.,
    2. Ketcham R. A.,
    3. Shuster D. L.,
    4. Farley K. A.
    , 2009, Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model: Geochimica et Cosmochimica Acta, v. 73, n. 8, p. 2347–2365, doi:https://doi.org/10.1016/j.gca.2009.01.015
    OpenUrlCrossRefGeoRefWeb of Science
  61. ↵
    1. Flowers R. M.,
    2. Farley K. A.,
    3. Ketcham R. A.
    , 2015, A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon: Earth and Planetary Science Letters, v. 432, p. 425–435, doi:https://doi.org/10.1016/j.epsl.2015.09.053
    OpenUrlCrossRef
  62. ↵
    1. Flowers R. M.,
    2. Macdonald F. A.,
    3. Siddoway C. S.,
    4. Havranek R.
    , 2020, Diachronous development of Great Unconformities before Neoproterozoic Snowball Earth: Proceedings of the National Academy of Sciences, v. 117, n. 19, p. 10172–10180, doi:https://doi.org/10.1073/pnas.1913131117
    OpenUrlAbstract/FREE Full Text
    1. Galbraith R. F.
    , 1981, On statistical models for fission track counts: Journal of the International Association for Mathematical Geology, v. 13, p. 471–478, doi:https://doi.org/10.1007/BF01034498
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Gallagher K.
    , 2012, Transdimensional inverse thermal history modeling for quantitative thermochronology: Journal of Geophysical Research: Solid Earth, v. 117, n. B2, 7, B02408, doi:https://doi.org/10.1029/2011JB008825
    OpenUrlCrossRef
  64. ↵
    1. Gallagher K.,
    2. Ketcham R. A.
    , 2018, Comment on “Thermal history modelling: HeFTy vs. QTQt” by Vermeesch and Tian, Earth-Science Reviews (2014), 139, 279–290: Earth-Science Reviews, v. 176, p. 387–394, doi:https://doi.org/10.1016/j.earscirev.2017.11.001
    OpenUrlCrossRef
  65. ↵
    1. Garcia V. H.,
    2. Reiners P. W.,
    3. Shuster D. L.,
    4. Idleman B.,
    5. Zeitler P. K.
    , 2018, Thermochronology of sandstone-hosted secondary Fe- and Mn-oxides near Moab, Utah: Record of paleo–fluid flow along a fault: Geological Society of America Bulletin, v. 130, n. 1–2, p. 93–113, doi:https://doi.org/10.1130/B31627.1
    OpenUrlCrossRef
  66. ↵
    1. Gehrels G.,
    2. Pecha M.
    , 2014, Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America: Geosphere, v. 10, n. 1, p. 49–65, doi:https://doi.org/10.1130/GES00889.1
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Gehrels G. E.,
    2. Valencia V. A.,
    3. Ruiz J.
    , 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry: Geochemistry, Geophysics, Geosystems, v. 9, n. 3, doi:https://doi.org/10.1029/2007GC001805
    OpenUrlCrossRef
  68. ↵
    1. Goddard E. N.
    , 1966, Geologic map and sections of the Zuni Mountains fluorspar district, Valencia County, New Mexico: United States Geological Survey, scale scale 1:31,680.
  69. ↵
    1. Guenthner W. R.,
    2. Reiners P. W.,
    3. Ketcham R. A.,
    4. Nasdala L.,
    5. Giester G.
    , 2013, Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology: American Journal of Science, v. 313, n. 3, p. 145–198, doi:https://doi.org/10.2475/03.2013.01
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Hackman R. J.,
    2. Olson A. B.
    , 1977, Geology, structure, and uranium deposits of the Gallup 1 x 2 Quadrangle, New Mexico and Arizona: U. E. Geological Survey Publication, IMAP 981, doi:https://doi.org/10.3133/i981
    OpenUrlCrossRef
  71. ↵
    1. Haxel G. B.,
    2. Jacobson C. E.,
    3. Wittke J. H.
    , 2015, Mantle peridotite in newly discovered far-inland subduction complex, southwest Arizona: initial report: International Geology Review, v. 57, n. 5–8, p. 871–892, doi:https://doi.org/10.1080/00206814.2014.928916
    OpenUrlCrossRefGeoRef
  72. ↵
    1. Heller P. L.,
    2. Liu L.
    , 2016, Dynamic topography and vertical motion of the U.S. Rocky Mountain region prior to and during the Laramide orogeny: Geological Society of America Bulletin, v. 128, n. 5–6, p. 973–988, doi:https://doi.org/10.1130/B31431.1
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Henderson L. J.,
    2. Gordon R. G.,
    3. Engebretson D. C.
    , 1984, Mesozoic aseismic ridges on the Farallon Plate and southward migration of shallow subduction during the Laramide orogeny: Tectonics, v. 3, n. 2, p. 121–132, doi:https://doi.org/10.1029/TC003i002p00121
    OpenUrlCrossRefGeoRefWeb of Science
  74. ↵
    1. Hoy R. G.,
    2. Ridgway K. D.
    , 1997, Structural and sedimentological development of footwall growth synclines along an intraforeland uplift, east-central Bighorn Mountains, Wyoming: Geological Society of America Bulletin, v. 109, n. 8, p. 915–935, doi:https://doi.org/10.1130/0016-7606(1997)109<0915:SASDOF>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. Huffman A. C.,
    2. Condon S. M.
    , 1993, Stratigraphy, structure, and paleogeography of Pennsylvanian and Permian rocks, San Juan basin and adjacent areas, Utah, Colorado, Arizona, and New Mexico: U.S. Geological Survey Bulletin, n. 1808-O, 44 p., doi:https://doi.org/10.3133/b1808O
    OpenUrlCrossRef
  76. ↵
    1. Humphreys E. D.,
    2. Schmandt B.,
    3. Bezada M. J.,
    4. Perry-Houts J.
    , 2015, Recent craton growth by slab stacking beneath Wyoming: Earth and Planetary Science Letters, v. 429, p. 170–180, doi:https://doi.org/10.1016/j.epsl.2015.07.066
    OpenUrlCrossRefGeoRef
  77. ↵
    1. Huntoon P.
    , 1971, The deep structure on the monoclines in eastern Grand Canyon: Arizona: Plateau, v. 43, n. 2, p. 147–158.
    OpenUrl
  78. ↵
    1. Hurford A. J.,
    2. Green P. F.
    , 1983, The zeta age calibration of fission-track dating: Chemical Geology, v. 41, p. 285–317, doi:https://doi.org/10.1016/S0009-2541(83)80026-6
    OpenUrlCrossRefGeoRef
  79. ↵
    1. Cloos M.,
    2. Carlson W. D.,
    3. Gilbert M. C.
    1. Liou J. G.
    1. Sorensen S. S.
    1. Jacobson C. E.,
    2. Grove M.,
    3. Vucic A.,
    4. Pedrick J. N.,
    5. Ebert K. A.
    , 2007, Exhumation of the Orocopia Schist and associated rocks of southeastern California: Relative roles of erosion, synsubduction tectonic denudation, and middle Cenozoic extension, in Cloos M., Carlson W. D., Gilbert M. C.; Liou J. G.; Sorensen S. S., editors, Convergent Margin Terranes and Associated Regions: A Tribute to W. G. Ernst: Geological Society of America Special Paper 419, p. 1–37, doi:https://doi.org/10.1130/2007.2419(01)
    OpenUrlCrossRef
  80. ↵
    1. Johnson J. E.,
    2. Flowers R. M.,
    3. Baird G. B.,
    4. Mahan K. H.
    , 2017, “Inverted” zircon and apatite (U–Th)/He dates from the Front Range, Colorado: High-damage zircon as a low-temperature (<50  °C) thermochronometer: Earth and Planetary Science Letters, v. 466, p. 80–90, doi:https://doi.org/10.1016/j.epsl.2017.03.002
    OpenUrlCrossRef
  81. ↵
    1. Jones C. H.,
    2. Farmer G. L.,
    3. Sageman B.,
    4. Zhong S.
    , 2011, Hydrodynamic mechanism for the Laramide orogeny: Geosphere, v. 7, n. 1, p. 183–201, doi:https://doi.org/10.1130/GES00575.1
    OpenUrlAbstract/FREE Full Text
  82. ↵
    1. Karlstrom K. E.,
    2. Humphreys E. D.
    , 1998, Persistent influence of Proterozoic accretionary boundaries in the tectonic evolution of southwestern North America: Interaction of cratonic grain and mantle modification events: Rocky Mountain Geology, v. 33, n. 2, p. 161–179, doi:https://doi.org/10.2113/33.2.161
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. Timmons J. M.,
    2. Karlstrom K. E.
    1. Karlstrom K. E.,
    2. Timmons J. M.
    , 2012, Faulting and uplift in the Grand Canyon Region, in Timmons J. M., Karlstrom K. E., editors, Grand Canyon Geology: Two Billion Years of Earth's History: Geological Society of America Special Paper 489, p. 93–107, doi:https://doi.org/10.1130/2012.2489(06)
    OpenUrlCrossRef
  84. ↵
    1. Karlstrom K. E.,
    2. Dallmeyer R. D.,
    3. Grambling J. A.
    , 1997, 40Ar/39Ar evidence for 1.4 Ga regional metamorphism in New Mexico: Implications for thermal evolution of lithosphere in the southwestern USA: The Journal of Geology, v. 105, n. 2, p. 205–224, doi:https://doi.org/10.1086/515912
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Keefer W. R.
    , 1970, Structural geology of the Wind River basin, Wyoming: United States Geological Survey Professional Paper 495-D, 35 p., doi:https://doi.org/10.3133/pp495D
    OpenUrlCrossRef
  86. ↵
    1. Karlstrom K. E.,
    2. Keller G. R.
    1. Kelley S. A.
    , 2005, Low-temperature cooling histories of the Cheyenne Belt and Laramie Peak shear zone, Wyoming, and the Soda Creek-Fish Creek shear zone, Colorado, in Karlstrom K. E., Keller G. R., editors, The Rocky Mountain Region: An evolving lithosphere: Textonics, geochemistry, and geophysics: Washington DC American Geophysical Union Geophysical Monograph Series, v. 154, p. 55–70, doi:https://doi.org/10.1029/154GM05
    OpenUrlCrossRef
  87. ↵
    1. Baueder P. W.,
    2. Kues B. S.,
    3. Dunbar N. W.,
    4. Karlstrom K. E.,
    5. Harrison B.
    1. Kelley S.,
    2. Chapin C.
    , 1995, Apatite fission-track thermochronology mapping in the Southern Rocky Mountains–Rio Grande rift-western High plains province, in Baueder P. W., Kues B. S., Dunbar N. W., Karlstrom K. E., Harrison B., editors, Geology of the Santa Fe Region: New Mexico Geological Society, Guidebook, 46th Field Conference, p. 87–96, doi:https://doi.org/10.56577/FFC-46.87
    OpenUrlCrossRef
  88. ↵
    1. Timmons M. J.,
    2. Karlstrom K. E.
    1. Kelley S. A.,
    2. Karlstrom K. E.
    , 2012, The Laramide and post-Laramide uplift and erosional history of the eastern Grand Canyon: Evidence from apatite fission-track thermochronology, in Timmons M. J., Karlstrom K. E., editors, Grand Canyon geology: Two billion years of Earth’s history: Geological Society of America Special Paper 489, p. 109–117, doi:https://doi.org/10.1130/2012.2489(07)
    OpenUrlCrossRef
  89. ↵
    1. Kelley S. A.,
    2. Chapin C. E.,
    3. Karlstrom K. E.,
    4. Young R. A.,
    5. Spamer E. E.
    , 2001, Laramide cooling histories of Grand Canyon, Arizona, and the Front Range, Colorado, determined from apatite fission-track thermochronology: Colorado River Origin and Evolution: Grand Canyon, Arizona, Grand Canyon Association, p. 37–42.
  90. ↵
    1. Kelley V. C.
    , 1955, Regional tectonics of the Colorado plateau and relationship to the origin and distribution of uranium: University of New Mexico Publications in Geology, Prepared in Cooperation with US Atomic Energy Commission, Division of Raw Materials, n. 5, 120 p.
    OpenUrl
  91. ↵
    1. Trauger F. D.
    1. Kelley V. C.
    , 1967, Tectonics of the Zuni-Defiance region, New Mexico and Arizona, in Trauger F. D., editor, Defiance-Zuni-Mt. Taylor region, Arizona and New Mexico: New Mexico Geological Society, Guidebook, 18th Field Conference, p. 28–31, doi:https://doi.org/10.56577/FFC-18.28
    OpenUrlCrossRef
  92. ↵
    1. Kelley V. C.,
    2. Clinton N. J.
    , 1960, Fracture systems and tectonic elements of the Colorado Plateau: University of New Mexico Publications in Geology, n. 6, 97 p.
    OpenUrl
  93. ↵
    1. Ketcham R. A.
    , 2005, Forward and inverse modeling of low-temperature thermochronometry data: Reviews in Mineralogy and Geochemistry, v. 58, n. 1, p. 275–314, doi:https://doi.org/10.2138/rmg.2005.58.11
    OpenUrlFREE Full Text
  94. ↵
    1. Ketcham R. A.,
    2. Carter A.,
    3. Donelick R. A.,
    4. Barbarand J.,
    5. Hurford A. J.
    , 2007, Improved modeling of fission-track annealing in apatite: American Mineralogist, v. 92, n. 5–6, p. 799–810, doi:https://doi.org/10.2138/am.2007.2281
    OpenUrlAbstract/FREE Full Text
  95. ↵
    1. Kluth C. F.,
    2. Coney P. J.
    , 1981, Plate tectonics of the Ancestral Rocky Mountains: Geology, v. 9, n. 1, p. 10–15, doi:https://doi.org/10.1130/0091-7613(1981)9<10:PTOTAR>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  96. ↵
    1. Lance J. F.
    , 1958, Precambrian rocks of northern Arizona, in Anderson R. Y., Harshbarger J. W., editors, Black Mesa Basin, northeast Arizona: New Mexico Geological Society, 9th Annual Field Conference Guidebook, p. 66–70, doi:https://doi.org/10.56577/FFC-9.66
    OpenUrlCrossRef
  97. ↵
    1. Lowell J. D.
    1. Lawton T. F.
    , 1983, Late Cretaceous fluvial systems and the age of foreland uplifts in central Utah, in Lowell J. D., editor, Rocky Mountain foreland basins and uplifts: Rocky Mountain Association of Geologists, p. 181–199.
  98. ↵
    1. Leary R. J.,
    2. Umhoefer P.,
    3. Smith M. E.,
    4. Riggs N.
    , 2017, A three-sided orogen: A new tectonic model for Ancestral Rocky Mountain uplift and basin development: Geology, v. 45, n. 8, p. 735–738, doi:https://doi.org/10.1130/G39041.1
    OpenUrlCrossRef
  99. ↵
    1. Leary R. J.,
    2. Umhoefer P.,
    3. Smith M. E.,
    4. Smith T. M.,
    5. Saylor J. E.,
    6. Riggs N.,
    7. Burr G.,
    8. Lodes E.,
    9. Foley D.,
    10. Licht A.,
    11. Mueller M. A.,
    12. Baird C.
    , 2020, Provenance of Pennsylvanian–Permian sedimentary rocks associated with the Ancestral Rocky Mountains orogeny in southwestern Laurentia: Implications for continental-scale Laurentian sediment transport systems: Lithosphere, v. 12, n. 1, p. 88–121, doi:https://doi.org/10.1130/L1115.1
    OpenUrlCrossRef
  100. ↵
    1. Liu L.,
    2. Spasojević S.,
    3. Gurnis M.
    , 2008, Reconstructing Farallon Plate Subduction Beneath North America Back to the Late Cretaceous: Science, v. 322, n. 5903, p. 934–938, doi:https://doi.org/10.1126/science.1162921
    OpenUrlAbstract/FREE Full Text
  101. ↵
    1. Liu L.,
    2. Gurnis M.,
    3. Seton M.,
    4. Saleeby J.,
    5. Müller R. D.,
    6. Jackson J. M.
    , 2010, The role of oceanic plateau subduction in the Laramide orogeny: Nature Geoscience, v. 3, p. 353–357, doi:https://doi.org/10.1038/ngeo829
    OpenUrlCrossRef
  102. ↵
    1. Livaccari R. F.,
    2. Burke K.,
    3. Şengör A. M. C.
    , 1981, Was the Laramide orogeny related to subduction of an oceanic plateau?: Nature, v. 289, p. 276–278, doi:https://doi.org/10.1038/289276a0
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Ludwig K. R.
    , 2008, Isoplot 3.60: Berkeley Geochronology Center: Special Publication, n. 4, p. 77.
    OpenUrl
  104. ↵
    1. McDannell K. T.,
    2. Zeitler P. K.,
    3. Schneider D. A.
    , 2018, Instability of the southern Canadian Shield during the late Proterozoic: Earth and Planetary Science Letters, v. 490, p. 100–109, doi:https://doi.org/10.1016/j.epsl.2018.03.012
    OpenUrlCrossRef
  105. ↵
    1. McKee E. D.
    , 1951, Sedimentary basins of Arizona and adjoining areas: Geological Society of America Bulletin, v. 62, n. 5, p. 481–506, doi:https://doi.org/10.1130/0016-7606(1951)62[481:SBOAAA]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  106. ↵
    1. McKee E. D.
    1. McKee E. D.
    , 1982, Paleogeography, in McKee E. D., editor, The Supai Group of Grand Canyon, United States Geological Survey Professional Paper 1173, p. 51–74, doi:https://doi.org/10.3133/pp1173
    OpenUrlCrossRef
  107. ↵
    1. McKee E. D.,
    2. Crosby E. J.
    , 1975, Paleotectonic investigations of the Pennsylvanian System in the United States, Part 1: Introduction and regional analyses of the Pennsylvanian System: United States Geological Survey Professional Paper 853-1, 349 p., doi:https://doi.org/10.3133/pp8531
    OpenUrlCrossRef
  108. ↵
    1. Omar G. I.,
    2. Lutz T. M.,
    3. Giegengack R.
    , 1994, Apatite fission-track evidence for Laramide and post-Laramide uplift and anomalous thermal regime at the Beartooth overthrust, Montana-Wyoming: Geological Society of America Bulletin, v. 106, n. 1, p. 74–85, doi:https://doi.org/10.1130/0016-7606(1994)106<0074:AFTEFL>2.3.CO;2
    OpenUrlCrossRef
  109. ↵
    1. Orme D. A.,
    2. Guenthner W. R.,
    3. Laskowski A. K.,
    4. Reiners P. W.
    , 2016, Long-term tectonothermal history of Laramide basement from zircon–He age-eU correlations: Earth and Planetary Science Letters, v. 453, p. 119–130, doi:https://doi.org/10.1016/j.epsl.2016.07.046
    OpenUrlCrossRef
  110. ↵
    1. Pazzaglia F. J.,
    2. Kelley S. A.
    , 1998, Large-scale geomorphology and fission-track thermochronology in topographic and exhumation reconstructions of the Southern Rocky Mountains: Rocky Mountain Geology, v. 33, n. 2, p. 229–257, doi:https://doi.org/10.2113/33.2.229
    OpenUrlAbstract/FREE Full Text
  111. ↵
    1. Knight C. N.,
    2. Cuzella J. J.,
    3. Cress L. D.
    1. Peyton S. L.,
    2. Carrapa B.
    , 2013, An overview of low-temperature thermochronology in the Rocky Mountains and its application to petroleum system analysis, in Knight C. N., Cuzella J. J., Cress L. D., editors, Application of structural methods to Rocky Mountain hydrocarbon exploration and development: AAPG Studies in Geology, v. 65, p. 37–70, doi:https://doi.org/10.1306/13381689St653578
    OpenUrlCrossRef
  112. ↵
    1. Peyton S. L.,
    2. Reiners P. W.,
    3. Carrapa B.,
    4. DeCelles P. G.
    , 2012, Low-temperature thermochronology of the northern Rocky Mountains, western U.S.A.: American Journal of Science, v. 312, n. 2, p. 145–212, doi:https://doi.org/10.2475/02.2012.04
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Mathews V.
    1. Reches Z.
    , 1978, Development of monoclines: Part 1. Structure of the Palisades Creek branch of the East Kaibab monocline, Grand Canyon, Arizona, in Mathews V., III, editor, Laramide Folding Associated with Basement Block Faulting in the Western United States: Geological Society of America Memoir 151, p. 235–271, doi:https://doi.org/10.1130/MEM151-p235
    OpenUrlCrossRef
  114. ↵
    1. Reiners P. W.
    , 2005, Zircon (U-Th)/He Thermochronometry: Reviews in Mineralogy and Geochemistry, v. 58, n. 1, p. 151–179, doi:https://doi.org/10.2138/rmg.2005.58.6
    OpenUrlFREE Full Text
  115. ↵
    1. Reiners P. W.,
    2. Farley K. A.
    , 2001, Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming: Earth and Planetary Science Letters, v. 188, n. 3–4, p. 413–420, doi:https://doi.org/10.1016/S0012-821X(01)00341-7
    OpenUrlCrossRef
  116. ↵
    1. Ricketts J. W.,
    2. Roiz J.,
    3. Karlstrom K. E.,
    4. Heizler M. T.,
    5. Guenthner W. R.,
    6. Timmons J. M.
    , 2021, Tectonic controls on basement exhumation in the southern Rocky Mountains (United States): The power of combined zircon (U-Th)/He and K-feldspar 40Ar/39Ar thermochronology: Geology, v. 49, n. 10, p. 1187–1192, doi:https://doi.org/10.1130/G49141.1
    OpenUrlCrossRef
  117. ↵
    1. Rønnevik C.,
    2. Ksienzyk A. K.,
    3. Fossen H.,
    4. Jacobs J.
    , 2017, Thermal evolution and exhumation history of the Uncompahgre Plateau (northeastern Colorado Plateau), based on apatite fission track and (U-Th)-He thermochronology and zircon U-Pb dating: Geosphere, v. 13, n. 2, p. 518–537, doi:https://doi.org/10.1130/GES01415.1
    OpenUrlAbstract/FREE Full Text
  118. ↵
    1. Ross C. A.
    , 1986, Paleozoic evolution of southern margin of Permian basin: Geological Society of America Bulletin, v. 97, n. 5, p. 536–554, doi:https://doi.org/10.1130/0016-7606(1986)97<536:PEOSMO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  119. ↵
    1. Ryder R. T.,
    2. Scholten R.
    , 1973, Syntectonic conglomerates in southwestern Montana: Their nature, origin, and tectonic significance: Geological Society of America Bulletin, v. 84, n. 3, p. 773–796, doi:https://doi.org/10.1130/0016-7606(1973)84<773:SCISMT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  120. ↵
    1. Saleeby J.
    , 2003, Segmentation of the Laramide Slab—evidence from the southern Sierra Nevada region: Geological Society of America Bulletin, v. 115, n. 6, p. 655–668, doi:https://doi.org/10.1130/0016-7606(2003)115<0655:SOTLSF>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  121. ↵
    1. Burchfiel B. C.,
    2. Lipman P. W.,
    3. Zoback M. L.
    1. Saleeby J. B.,
    2. Busby-Spera C.,
    3. Oldow J. S.,
    4. Dunne G. C.,
    5. Wright J. E.,
    6. Cowan D. S.,
    7. Walker N. W.,
    8. Allmendinger R. W.
    , 1992, Early Mesozoic tectonic evolution of the western US Cordillera, in Burchfiel B. C., Lipman P. W., Zoback M. L., editors, The Cordilleran orogen: Geological Society of America, p. 107–168, doi:https://doi.org/10.1130/DNAG-GNA-G3.107
    OpenUrlCrossRef
  122. ↵
    1. Lowell J. D.,
    2. Gries R.
    1. Schmidt C. J.,
    2. Garihan J. M.
    , 1983, Laramide tectonic development of the Rocky Mountain foreland of southwestern Montana, in Lowell J. D., Gries R., editors, Rocky Mountain Foreland Basins and Uplifts: Rocky Mountain Association of Geologists, p. 271–294.
  123. ↵
    1. Scoggin S. H.,
    2. Reiners P. W.,
    3. Shuster D. L.,
    4. Davis G. H.,
    5. Ward L. A.,
    6. Worthington J. R.,
    7. Nickerson P. A.,
    8. Evenson N. S.
    , 2021, (U-Th)/He and 4He/3He thermochronology of secondary oxides in faults and fractures: A regional perspective from southeastern Arizona: Geochemistry, Geophysics, Geosystems, v. 22, n. 12, e2021GC009905, doi:https://doi.org/10.1029/2021GC009905
    OpenUrlCrossRef
  124. ↵
    1. Smithson S. B.,
    2. Brewer J.,
    3. Kaufman S.,
    4. Oliver J.,
    5. Hurich C.
    , 1978, Nature of the Wind River thrust, Wyoming, from COCORP deep-reflection data and from gravity data: Geology, v. 6, n. 11, p. 648–652, doi:https://doi.org/10.1130/0091-7613(1978)6<648:NOTWRT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  125. ↵
    1. Snyder W. S.,
    2. Dickinson W. R.,
    3. Silberman M. L.
    , 1976, Tectonic implications of space-time patterns of Cenozoic magmatism in the western United States: Earth and Planetary Science Letters, v. 32, n. 1, p. 91–106, doi:https://doi.org/10.1016/0012-821X(76)90189-8
    OpenUrlCrossRefGeoRefWeb of Science
  126. ↵
    1. Soreghan G. S.,
    2. Keller G. R.,
    3. Gilbert M. C.,
    4. Chase C. G.,
    5. Sweet D. E.
    , 2012, Load-induced subsidence of the Ancestral Rocky Mountains recorded by preservation of Permian landscapes: Geosphere, v. 8, n. 3, p. 654–668, doi:https://doi.org/10.1130/GES00681.1
    OpenUrlAbstract/FREE Full Text
  127. ↵
    1. Spasojevic S.,
    2. Liu L.,
    3. Gurnis M.
    , 2009, Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous: Geochemistry, Geophysics, Geosystems, v. 10, n. 5, doi:https://doi.org/10.1029/2008GC002345
    OpenUrlCrossRef
  128. ↵
    1. Stacey J. S.,
    2. Kramers J. D.
    , 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, n. 2, p. 207–221, doi:https://doi.org/10.1016/0012-821X(75)90088-6
    OpenUrlCrossRefGeoRefWeb of Science
  129. ↵
    1. Steidtmann J. R.,
    2. Middleton L. T.,
    3. Shuster M. W.
    , 1989, Post-Laramide (Oligocene) uplift in the Wind River Range, Wyoming: Geology, v. 17, n. 1, p. 38–41, doi:https://doi.org/10.1130/0091-7613(1989)017<0038:PLOUIT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  130. ↵
    1. Stevens A. L.,
    2. Balgord E. A.,
    3. Carrapa B.
    , 2016, Revised exhumation history of the Wind River Range, WY, and implications for Laramide tectonics: Tectonics, v. 35, n. 5, p. 1121–1136, doi:https://doi.org/10.1002/2016TC004126
    OpenUrlCrossRef
  131. ↵
    1. Stone D. S.
    , 1985, Geologic interpretation of seismic profiles, Big Horn Basin, Wyoming, part 1: East flank: Rocky Mountain Association of Geologists and Denver Geophysical Society, p. 165–174.
  132. ↵
    1. Tagami T.
    , 1987, Determination of zeta calibration constant for fission track dating: International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, v. 13, n. 2–3, p. 127–130, doi:https://doi.org/10.1016/1359-0189(87)90023-9
    OpenUrlCrossRefGeoRef
  133. ↵
    1. Tarduno J. A.,
    2. McWilliams M.,
    3. Debiche M. G.,
    4. Sliter W. V.,
    5. Blake M. C.
    , 1985, Franciscan Complex Calera limestones: accreted remnants of Farallon Plate oceanic plateaus: Nature, v. 317, p. 345–347, doi:https://doi.org/10.1038/317345a0
    OpenUrlCrossRefGeoRefWeb of Science
    1. Frey B. A.,
    2. Kelley S. E.,
    3. Zeigler K. E.,
    4. McLemore V. T.,
    5. Goff F.,
    6. Ulmer-Scholle D. S.
    1. Thacker J. O.
    , 2021, Horizontal shortening of the Laramide Zuni Arch, west-central New Mexico: A preliminary study, in Frey B. A., Kelley S. E., Zeigler K. E., McLemore V. T., Goff F., Ulmer-Scholle D. S., editors, Geology of the Mount Taylor Area: New Mexico Geological Society 71st Annual Fall Field Conference, p. 281–290, doi:https://doi.org/10.56577/FFC-71.281
    OpenUrlCrossRef
  134. ↵
    1. Thacker J. O.,
    2. Kelley S. A.,
    3. Karlstrom K. E.
    , 2021, Late Cretaceous–Recent Low-Temperature Cooling History and Tectonic Analysis of the Zuni Mountains, West-Central New Mexico: Tectonics, v. 40, n. 4, doi:https://doi.org/10.1029/2020TC006643
    OpenUrlCrossRef
  135. ↵
    1. Thaden R. E.
    , 1989, Geologic map of the Fort Defiance quadrangle, Apache County, Arizona, and McKinley County, New Mexico: U.S. Geological Survey Geological Quadrangle Map, n. 1648, scale 1:24,000.
  136. ↵
    1. Thaden R. E.
    , 1990, Geologic map of the Window Rock quadrangle, Apache County, Arizona, and McKinley County, New Mexico: U.S. Geological Survey Geological Quadrangle Map GQ-1647, scale 1:24,000.
  137. ↵
    1. Timmons J. M.,
    2. Karlstrom K. E.,
    3. Dehler C. M.,
    4. Geissman J. W.,
    5. Heizler M. T.
    , 2001, Proterozoic multistage (ca. 1.1 and 0.8 Ga) extension recorded in the Grand Canyon Supergroup and establishment of northwest- and north-trending tectonic grains in the southwestern United States: Geological Society of America Bulletin, v. 113, n. 2, p. 163–181, doi:https://doi.org/10.1130/0016-7606(2001)113<0163:PMCAGE>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  138. ↵
    1. Timmons J. M.,
    2. Karlstrom K.,
    3. Pederson P.,
    4. Anders M.
    , 2007, Geologic map of the Butte fault/East Kaibab monocline area: Eastern Grand Canyon, Arizona (Sheets 1 and 2): Grand Canyon Association, Grand Canyon, Arizona, scale 1:24,000.
  139. ↵
    1. Sprinkle D. A.,
    2. Chidsey T. C.,
    3. Anderson P. B.
    1. Tindall S. E.
    , 2000, The Cockscomb segment of the East Kaibab monocline: Taking the structural plunge, in Sprinkle D. A., Chidsey T. C., Anderson P. B., editors, Geology of Utah’s Parks and Monuments: Utah Geological Association Publication 28, p. 629–643.
  140. ↵
    1. Tindall S. E.,
    2. Davis G. H.
    , 1999, Monocline development by oblique-slip fault-propagation folding: the East Kaibab monocline, Colorado Plateau, Utah: Journal of Structural Geology, v. 21, n. 10, p. 1303–1320, doi:https://doi.org/10.1016/S0191-8141(99)00089-9
    OpenUrlCrossRefGeoRefWeb of Science
  141. ↵
    1. Tindall S. E.,
    2. Storm L. P.,
    3. Jenesky T. A.,
    4. Simpson E. L.
    , 2010, Growth faults in the Kaiparowits Basin, Utah, pinpoint initial Laramide deformation in the western Colorado Plateau: Lithosphere, v. 2, n. 4, p. 221–231, doi:https://doi.org/10.1130/L79.1
    OpenUrlAbstract/FREE Full Text
  142. ↵
    1. Torsvik T. H.,
    2. Steinberger B.,
    3. Shephard G. E.,
    4. Doubrovine P. V.,
    5. Gaina C.,
    6. Domeier M.,
    7. Conrad C. P.,
    8. Sager W. W.
    , 2019, Pacific-Panthalassic Reconstructions: Overview, Errata and the Way Forward: Geochemistry, Geophysics, Geosystems, v. 20, n. 7, p. 3659–3689, doi:https://doi.org/10.1029/2019GC008402
    OpenUrlCrossRef
  143. ↵
    1. Wheelwright M.
    , 1956, The myth and prayers of the great star chant and the myth of the Coyote chant: Tsaile, Arizona, Navajo Community College Press, Navajo Religion Series, Hunters Point story told by Ayoo Anineezi of Sawmill, recorded by Wheelwright in 1933, p. 53–54, v. 4.
    OpenUrl
  144. ↵
    1. Whitmeyer S. J.,
    2. Karlstrom K. E.
    , 2007, Tectonic model for the Proterozoic growth of North America: Geosphere, v. 3, n. 4, p. 220–259, doi:https://doi.org/10.1130/GES00055.1
    OpenUrlAbstract/FREE Full Text
  145. ↵
    1. Winn C.,
    2. Karlstrom K. E.,
    3. Shuster D. L.,
    4. Kelley S.,
    5. Fox M.
    , 2017, 6 Ma age of carving Westernmost Grand Canyon: Reconciling geologic data with combined AFT, (U–Th)/He, and 4He/3He thermochronologic data: Earth and Planetary Science Letters, v. 474, p. 257–271, doi:https://doi.org/10.1016/j.epsl.2017.06.051
    OpenUrlCrossRef
  146. ↵
    1. James H. L.
    1. Woodward L. A.
    , 1973, Structural framework and tectonic evolution of the Four Corners region of the Colorado Plateau, in James H. L., Monument Valley and vicinity Arizona and Utah: New Mexico Geological Society, 24th Field Conference Guidebook, p. 94–98, doi:https://doi.org/10.56577/FFC-24.94
    OpenUrlCrossRef
  147. ↵
    1. Ye H.,
    2. Royden L.,
    3. Burchfiel C.,
    4. Schuepbach M.
    , 1996, Late Paleozoic deformation of interior North America: the greater ancestral Rocky Mountains: AAPG Bulletin, v. 80, p. 1397–1432, doi:https://doi.org/10.1306/64ED9A4C-1724-11D7-8645000102C1865D
    OpenUrlAbstract
  148. ↵
    1. Yonkee W. A.,
    2. Weil A. B.
    , 2015, Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system: Earth-Science Reviews, v. 150, p. 531–593, doi:https://doi.org/10.1016/j.earscirev.2015.08.001
    OpenUrlCrossRefGeoRef
  149. ↵
    1. Yonkee W. A.,
    2. Dehler C. D.,
    3. Link P. K.,
    4. Balgord E. A.,
    5. Keeley J. A.,
    6. Hayes D. S.,
    7. Wells M. L.,
    8. Fanning C. M.,
    9. Johnston S. M.
    , 2014, Tectono-stratigraphic framework of Neoproterozoic to Cambrian strata, west-central U.S.: Protracted rifting, glaciation, and evolution of the North American Cordilleran margin: Earth-Science Reviews, v. 136, p. 59–95, doi:https://doi.org/10.1016/j.earscirev.2014.05.004
    OpenUrlCrossRefGeoRef
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (9)
American Journal of Science
Vol. 322, Issue 9
1 Nov 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
George H. Davis, Lauren J. Reeher, Gilby Jepson, Barbara Carrapa, Peter G. Decelles, Kayla M. Chaudoir
American Journal of Science Nov 2022, 322 (9) 1047-1087; DOI: 10.2475/09.2022.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
George H. Davis, Lauren J. Reeher, Gilby Jepson, Barbara Carrapa, Peter G. Decelles, Kayla M. Chaudoir
American Journal of Science Nov 2022, 322 (9) 1047-1087; DOI: 10.2475/09.2022.02
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • TECTONIC CONTEXT
    • STUDY AREA AND OBJECTIVES
    • THE DEFIANCE UPLIFT SYSTEM OF FAULTING AND FOLDING
    • THE HUNTERS POINT STUDY AREA
    • GEOCHRONOLOGY AND THERMOCHRONOLOGY METHODS
    • GEOCHRONOLOGY AND THERMOCHRONOLOGY RESULTS
    • DISCUSSION OF GEOCHRONOLOGY AND THERMOCHRONOLOGY RESULTS
    • MODELING OF THE EAST DEFIANCE FOLD-FAULT SYSTEM
    • TECTONIC IMPLICATIONS FOR THE OVERALL CORDILLERAN FORELAND
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • SUPPLEMENTARY DATA
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
Show more Article

Similar Articles

Keywords

  • Structural geology
  • Thermochronology
  • Basement-cored uplifts
  • Colorado Plateau
  • Laramide tectonics

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire