Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Guadalupian carbon isotope stratigraphy indicates extended interval of carbon cycle stability

Sakineh Arefifard, Jonathan L. Payne and Malgorzata Rizzi
American Journal of Science November 2022, 322 (9) 1019-1046; DOI: https://doi.org/10.2475/09.2022.01
Sakineh Arefifard
*Department of Geology, Lorestan University, Khorramabad, Lorestan 68151-44316, Iran,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: arefi.s@lu.ac.ir arefi.s@lu.ac.ir
Jonathan L. Payne
**Department of Geological Sciences, Stanford University, Stanford, California, USA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jlpayne@stanford.edu
Malgorzata Rizzi
***Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: malgorzatarizzi@gmail.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Ahm A. C.,
    2. Bjerrum C. J.,
    3. Blättler C. L.,
    4. Swart P. K.,
    5. Higgins J. A.
    , 2018, Quantifying early marine diagenesis in shallow-water carbonate sediments: Geochimica et Cosmochimica Acta, v. 236, p. 140–159, doi:https://doi.org/10.1016/j.gca.2018.02.042
    OpenUrlCrossRef
  2. ↵
    1. Alavi M.
    , 1991, Tectonic map of the Middle East: Geological Survey of Iran, scale 1:5000000.
  3. ↵
    1. Alavi M.,
    1994, Tectonics of the Zagros Orogenic belt of Iran; new data and interpretations: Tectonophysics, v. 299, n. 3–4, p. 211–238, doi:https://doi.org/10.1016/0040-1951(94)90030-2
    OpenUrlCrossRef
  4. ↵
    1. Allan J. R.,
    2. Matthews R. K.
    , 1982, Isotope signatures associated with early meteoric diagenesis: Sedimentology, v. 29, n. 6, p. 797–817, doi:https://doi.org/10.1111/j.1365-3091.1982.tb00085.x
    OpenUrlCrossRef
  5. ↵
    1. Arefifard S.,
    2. Isaacson P. E.
    , 2011, Permian Sequence stratigraphy in east-central Iran: Microplate records of Peri-Tethyan and Peri-Gondwanan events: Stratigraphy, v. 8, n. 1, p. 61–83.
    OpenUrl
  6. ↵
    1. Arefifard S.,
    2. Payne J. L.
    , 2020, End-Guadalupian extinction of larger fusulinids in central Iran and implications for the global biotic crisis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 550, p. 109743, doi:https://doi.org/10.1016/j.palaeo.2020.109743
    OpenUrlCrossRef
  7. ↵
    1. Bagheri S.,
    2. Stampfli G. M.
    , 2008, The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications: Tectonophysics, v. 451, n. 1–4, p. 123–155, doi:https://doi.org/10.1016/j.tecto.2007.11.047
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Bagherpour B.,
    2. Bucher H.,
    3. Yuan D.-X.,
    4. Leu M.,
    5. Zhang C.,
    6. Shen S.-Z.
    , 2018, Early Wuchiapingian (Lopingian, late Permian) drowning event in the South China block suggests a late eruptive phase of Emeishan large igneous province: Global and Planetary Change, v. 169, p. 119–132, doi:https://doi.org/10.1016/j.gloplacha.2018.07.013
    OpenUrlCrossRef
  9. ↵
    1. Banner J. L.,
    2. Hanson J. N.
    , 1990, Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis: Geochimica et Cosmochimica Acta, v. 54, n. 11, p. 3123–3137, doi:https://doi.org/10.1016/0016-7037(90)90128-8
    OpenUrlCrossRefGeoRefWeb of Science
  10. ↵
    1. Berner R. A.
    , 2006, GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2: Geochimica et Cosmochimica Acta, v. 70, n. 23, p. 5653–5664, doi:https://doi.org/10.1016/j.gca.2005.11.032
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Berner R. A.
    , 2009, Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model: American Journal of Science, v. 309, n. 7, p. 603–606, doi:https://doi.org/10.2475/07.2009.03
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Keller G.,
    2. Kerr A. C.
    1. Bond D. P. G.,
    2. Wignall P. B.
    , 2014, Large igneous provinces and mass extinctions: an Update, in Keller G., Kerr A. C., editors, Volcanism, Impacts, and Mass Extinctions: Causes and Effects: Geological Society of America Special Paper, v. 505, p. 29–55, doi:https://doi.org/10.1130/2014.2505(02)
    OpenUrlCrossRef
  13. ↵
    1. Bond D. P. G.,
    2. Hilton J.,
    3. Wignall P. B.,
    4. Ali J. R.,
    5. Stevens L. G.,
    6. Sun Y.-D.,
    7. Lai X.-L.
    , 2010a, The Middle Permian (Capitanian) mass extinction on land and in the oceans: Earth-Science Reviews, v. 102, n. 1–2, p. 100–116, doi:https://doi.org/10.1016/j.earscirev.2010.07.004
    OpenUrlCrossRefGeoRef
  14. ↵
    1. Bond D. P. G.,
    2. Wignall P. B.,
    3. Wang W.,
    4. Izon G.,
    5. Jiang H.-S.,
    6. Lai X.-L.,
    7. Sun Y.-D.,
    8. Newton R. J.,
    9. Shao L.-Y.,
    10. Védrine S.,
    11. Cope H.
    , 2010b, The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 292, n. 1–2, p. 282–294, doi:https://doi.org/10.1016/j.palaeo.2010.03.056
    OpenUrlCrossRefGeoRefWeb of Science
  15. ↵
    1. Bond D. P. G.,
    2. Wignall P. B.,
    3. Joachimski M. M.,
    4. Sun Y.-D.,
    5. Savov I.,
    6. Grasby S. E.,
    7. Beauchamp B.,
    8. Blomeier D. P. G.
    , 2015, An abrupt extinction in the middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification: Geological Society of America Bulletin, v. 127, n. 9–10, p. 1411–1421, doi:https://doi.org/10.1130/B31216.1
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Brunet M.-F.,
    2. Wilmsen M.,
    3. Granath J. W.
    1. Brunet M.-F.,
    2. Granath J. W.,
    3. Wilmsen M.
    , 2009, South Caspian to Central Iran Basins: Introduction, in Brunet M.-F., Wilmsen M., Granath J. W., editors, South Caspian to Central Iran Basins: Geological Society, London, Special Publications, v. 312, p. 1–6, doi:https://doi.org/10.1144/SP312.1
    OpenUrlCrossRef
  17. ↵
    1. Buggisch W.,
    2. Wang X.,
    3. Alekseev A. S.,
    4. Joachimski M. M.
    , 2011, Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 301, n. 1–4, p. 18–38, doi:https://doi.org/10.1016/j.palaeo.2010.12.015
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Cao C.,
    2. Cui C.,
    3. Chen J.,
    4. Summons R. E.,
    5. Shen S.,
    6. Zhang H.
    , 2018, A positive C-isotope excursion 583 induced by sea-level fall in the middle Capitanian of South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 505, p. 305–316, doi:https://doi.org/10.1016/j.palaeo.2018.06.010
    OpenUrlCrossRef
  19. ↵
    1. Carpenter S. J.,
    2. Lohmann K. C.
    , 1997, Carbon isotope ratios of Phanerozoic marine cements: re-evaluating the global carbon and sulfur systems: Geochimica et Cosmochimica Acta, v. 61, n. 22, p. 4831–4846, doi:https://doi.org/10.1016/S0016-7037(97)00361-X
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Chen B.,
    2. Joachimski M. M.,
    3. Shen S. Z.,
    4. Lambert L. L.,
    5. Lai X. L.,
    6. Wang X. D.,
    7. Chen J.,
    8. Yuan D. X.
    , 2013, Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited: Gondwana Research, v. 24, n. 1, p. 77–89, doi:https://doi.org/10.1016/j.gr.2012.07.007
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Cheng C.,
    2. Li S.,
    3. Xie X.,
    4. Cao T.,
    5. Manger W. L.,
    6. Busbey A. B.
    , 2019, Permian carbon isotope and clay mineral records from the Xikou section, Zhen'an, Shaanxi Province, central China: Climatological implications for the easternmost Paleo-Tethys: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 514, p. 417–422, doi:https://doi.org/10.1016/j.palaeo.2018.10.023
    OpenUrlCrossRef
  22. ↵
    1. Clapham M. E.,
    2. Shen S.,
    3. Bottjer D. J.
    , 2009, The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian): Paleobiology, v. 35, n. 1, p. 32–50, doi:https://doi.org/10.1666/08033.1
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Denison R. E.,
    2. Koepnick R. B.,
    3. Fletcher A.,
    4. Howell M. W.,
    5. Callaway W. S.
    , 1994, Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf limestones: Chemical Geology, v. 112, n. 1–2, p. 131–143, doi:https://doi.org/10.1016/0009-2541(94)90110-4
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Geyman E. C.,
    2. Maloof A. C.
    , 2019, A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen: Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 49, p. 24433–24439, doi:https://doi.org/10.1073/pnas.1908783116
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Ghasemi A.,
    2. Talbot C. J.
    , 2006, A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran): Journal of Asian Earth Sciences, v. 26, n. 6, p. 683–693, doi:https://doi.org/10.1016/j.jseaes.2005.01.003
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Haq B. U.,
    2. Schutter S. R.
    , 2008, A chronology of Paleozoic sea-level changes: Science, v. 322, n. 5898, p. 64–68, doi:https://doi.org/10.1126/science.1161648
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Hassanzadeh J.,
    2. Wernicke B. P.
    , 2016, The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions: Tectonics, v. 35, n. 3, p. 586–621, doi:https://doi.org/10.1002/2015TC003926
    OpenUrlCrossRef
  28. ↵
    1. Heydari E.,
    2. Hassandzadeh J.,
    3. Wade W. J.
    , 2000, Geochemistry of central Tethyan Upper Permian and Lower Triassic strata, Abadeh region, Iran: Sedimentary Geology, v. 137, n. 1–2, p. 85–99, doi:https://doi.org/10.1016/S0037-0738(00)00138-X
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Higgins J. A.,
    2. Blättler C. L.,
    3. Lundstrom E. A.,
    4. Santiago-Ramos D. P.,
    5. Akhtar A. A.,
    6. Crüger Ahm A.-S.,
    7. Bialik O.,
    8. Holmden C.,
    9. Bradbury H.,
    10. Murray S. T.,
    11. Swart P. K.
    , 2018, Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments: Geochimica et Cosmochimica Acta, v. 220, p. 512–534, doi:https://doi.org/10.1016/j.gca.2017.09.046
    OpenUrlCrossRef
  30. ↵
    1. Hoffman P. F.,
    2. Lamothe K. G.
    , 2019, Seawater-buffered diagenesis, destruction of carbon isotope excursions, and the composition of DIC in Neoproterozoic oceans: Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 38, p. 18874–18879, doi:https://doi.org/10.1073/pnas.1909570116
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Huck S.,
    2. Wohlwend S.,
    3. Coimbra R.,
    4. Christ N.,
    5. Weissert H.
    , 2017, Disentangling shallow-water bulk carbonate carbon isotope archives with evidence for multi-stage diagenesis: An in-depth component-specific petrographic and geochemical study from Oman (mid-Cretaceous): The Depositional Record, v. 3, n. 2, p. 233–257, doi:https://doi.org/10.1002/dep2.35
    OpenUrlCrossRef
  32. ↵
    1. Isozaki Y.
    , 2009, Illawarra Reversal: The fingerprint of a superplume that triggering Pangean breakup and the end-Guadalupian (Permian) extinction: Gondwana Research, v. 15, n. 3–4, p. 421–432, doi:https://doi.org/10.1016/j.gr.2008.12.007
    OpenUrlCrossRefGeoRefWeb of Science
  33. ↵
    1. Isozaki Y.,
    2. Kawahata H.,
    3. Minoshima K.
    , 2007b, The Capitanian (Permian) Kamura cooling event: the beginning of the Paleozoic-Mesozoic transition: Palaeoworld, v. 16, n. 1–3, p. 16–30, doi:https://doi.org/10.1016/j.palwor.2007.05.011
    OpenUrlCrossRef
  34. ↵
    1. Isozaki Y.,
    2. Kawahata H.,
    3. Ota A.
    , 2007a, A unique carbon isotope record across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic paleo-atoll carbonates: the high-productivity “Kamura event” and its collapse in Panthalassa: Global Planetary Change, v. 55, n. 1–3, p. 21–38, doi:https://doi.org/10.1016/j.gloplacha.2006.06.006
    OpenUrlCrossRef
  35. ↵
    1. Jin Y.-G.,
    2. Shen S.-Z.,
    3. Henderson C. M.,
    4. Wang X.-D.,
    5. Wang W.,
    6. Wang Y.,
    7. Cao C.-Q.,
    8. Shang Q.-H.
    , 2006, The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian): Episodes, 29, n. 4, p. 253–262, doi:https://doi.org/10.18814/epiiugs/2006/v29i4/003
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Jost A. B.,
    2. Mundil R.,
    3. He B.,
    4. Brown S. T.,
    5. Altiner D.,
    6. Sun Y.-D.,
    7. DePaolo D. J.,
    8. Payne J. L.
    , 2014, Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes: Earth and Planetary Science Letters, v. 396, p. 201–212, doi:https://doi.org/10.1016/j.epsl.2014.04.014
    OpenUrlCrossRef
  37. ↵
    1. Kaufman A. J.,
    2. Jacobsen S. B.,
    3. Knoll A. H.
    , 1993, The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate: Earth and Planetary Science Letters, v. 120, n. 3–4, p. 409–430, doi:https://doi.org/10.1016/0012-821X(93)90254-7
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Knoll A. H.,
    2. Hayes J. M.,
    3. Kaufman A. J.,
    4. Swett K.,
    5. Lambert I. B.
    , 1986, Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland: Nature, v. 321, n. 6073, p. 832–838, doi:https://doi.org/10.1038/321832a0
    OpenUrlCrossRefGeoRefPubMed
  39. ↵
    1. Kobayashi F.,
    2. Ishii K.-I.
    , 2003, Paleobiogeographic analysis of Yahtashian to Midian fusulinacean faunas of the Surmaq Formation in the Abadeh region, central Iran: Journal of Foraminiferal Research, v. 33, n. 2, p. 155–165, doi:https://doi.org/10.2113/0330155
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Korte C.,
    2. Jasper T.,
    3. Kozur H. W.,
    4. Veizer J.
    , 2005, δ18O and δ13C of Permian brachiopods: a record of seawater evolution and continental glaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, n. 4, p. 333–351, doi:https://doi.org/10.1016/j.palaeo.2005.03.015
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Korte C.,
    2. Jasper T.,
    3. Kozur H. W.,
    4. Veizer J.
    , 2006, 87Sr/86Sr record of Permian seawater: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, n. 1–2, p. 89–107, doi:https://doi.org/10.1016/j.palaeo.2006.03.047
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Lai X.,
    2. Wang W.,
    3. Wignall P. B.,
    4. Bond D. P. G.,
    5. Jiang H.,
    6. Ali J. R.,
    7. John E. H.,
    8. Sun Y.
    , 2008, Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 269, n. 1–2, p. 78–93, doi:https://doi.org/10.1016/j.palaeo.2008.08.005
    OpenUrlCrossRefGeoRef
  43. ↵
    1. Laya J. C.,
    2. Tucker M. E.,
    3. Gröcke D. R.,
    4. Perez-Huerta A.
    , 2013, Carbon, oxygen and strontium isotopic composition of low-latitude Permian carbonates (Venezuelan Andes): climate proxies of tropical Pangea: Geological Society, London, Special Publications, v. 376, p. 367–385, doi:https://doi.org/10.1144/SP376.10
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Lenton T. M.,
    2. Daines S. J.,
    3. Mills B. J. W.
    , 2018, COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time: Earth-Science Reviews, v. 178, p. 1–28, doi:https://doi.org/10.1016/j.earscirev.2017.12.004
    OpenUrlCrossRef
  45. ↵
    1. Liu C.,
    2. Du Y.,
    3. Jarochowska E.,
    4. Yan J.,
    5. Munnecke A.,
    6. Lu G.
    , 2018, A major anomaly in the carbon cycle during the late Cisuralian (Permian): timing, underlying triggers and implications: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 491, p. 112–122, doi:https://doi.org/10.1016/j.palaeo.2017.11.061
    OpenUrlCrossRef
  46. ↵
    1. Liu X.-C.,
    2. Wang W.,
    3. Shen S.-Z.,
    4. Gorgij M. N.,
    5. Ye F.-C.,
    6. Zhang Y.-C.,
    7. Furuyama S.,
    8. Kano A.,
    9. Chen X.-Z.
    , 2013, Late Guadalupian to Lopingian (Permian) carbon and strontium isotopic chemostratigraphy in the Abadeh section, central Iran: Gondwana Research, v. 24, n. 1, p. 222–232, doi:https://doi.org/10.1016/j.gr.2012.10.012
    OpenUrlCrossRefGeoRef
  47. ↵
    1. James N. P.,
    2. Choquette P. W.
    1. Lohmann K. C.
    , 1988, Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst, in James N. P., Choquette P. W., editors, Paleokarst: New York, Springer, p. 58–80, doi:https://doi.org/10.1007/978-1-4612-3748-8_3
    OpenUrlCrossRef
  48. ↵
    1. Marshall J. D.
    , 1992, Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation: Geological Magazine, v. 129, n. 2, p. 143–160, doi:https://doi.org/10.1017/S0016756800008244
    OpenUrlAbstract
  49. ↵
    1. Meyer K. M.,
    2. Yu M.,
    3. Jost A. B.,
    4. Kelley B. M.,
    5. Payne J. L.
    , 2011, δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction: Earth and Planetary Science Letters, v. 302, n. 3–4, p. 378–384, doi:https://doi.org/10.1016/j.epsl.2010.12.033
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Oehlert A. M.,
    2. Swart P. K.
    , 2014, Interpreting carbonate and organic carbon isotope covariance in the sedimentary record: Nature Communications, v. 5, p. 4672, doi:https://doi.org/10.1038/ncomms5672
    OpenUrlCrossRef
  51. ↵
    1. Payne J. L.,
    2. Clapham M. E.
    , 2012, End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?: Annual Review of Earth and Planetary Sciences, v. 40, p. 89–111, doi:https://doi.org/10.1146/annurev-earth-042711-105329
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Peckmann J.,
    2. Thiel V.
    , 2004, Carbon cycling at ancient methane seeps: Chemical Geology v. 205, n. 3–4, p. 443–467, doi:https://doi.org/10.1016/j.chemgeo.2003.12.025
    OpenUrlCrossRef
  53. ↵
    1. Rao C. P.,
    2. Goodwin I. D.,
    3. Gibson J. A. E.
    , 1998, Shelf, coastal and subglacial polar carbonates, East Antarctica: Carbonates and Evaporites, v. 13, p. 174–188, doi:https://doi.org/10.1007/BF03176591
    OpenUrlCrossRefGeoRef
  54. ↵
    1. Romanek C. S.,
    2. Grossman E. L.,
    3. Morse J. W.
    , 1992, Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate: Geochimica et Cosmochimica acta, v. 56, n. 1, p. 419–430, doi:https://doi.org/10.1016/0016-7037(92)90142-6
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Saidi A.,
    2. Brunet M. F.,
    3. Ricou L. E.
    , 1997, Continental accretion of the Iran Block to Eurasia as seen from Late Paleozoic to Early Cretaceous subsidence curves: Geodinamica Acta, v. 10, n. 5, p. 189–208, doi:https://doi.org/10.1080/09853111.1997.11105302
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Saitoh M.,
    2. Isozaki Y.,
    3. Ueno Y.,
    4. Yoshida N.,
    5. Yao J. X.,
    6. Ji Z. S.
    , 2013a, Middle-Upper Permian carbon isotope stratigraphy at Chaotian, South China: pre-extinction multiple upwelling of oxygen-depleted water onto continental shelf: Journal of Asian Earth Sciences, v. 67–68, p. 51–62, doi:https://doi.org/10.1016/j.jseaes.2013.02.009
    OpenUrlCrossRef
  57. ↵
    1. Saitoh M.,
    2. Isozaki Y.,
    3. Yao J. X.,
    4. Ji Z. S.,
    5. Uneo Y.,
    6. Yoshida N.
    , 2013b, The appearance of an oxygen-depleted condition on the Capitanian disphotic slope/basin in South China: Middle-Upper Permian stratigraphy at Chaotian in northern Sichuan: Global and Planetary Chang, v. 105, p. 180–192, doi:https://doi.org/10.1016/j.gloplacha.2012.01.002
    OpenUrlCrossRef
  58. ↵
    1. Schachat S. R.,
    2. Labandeira C. C.,
    3. Saltzman M. R.,
    4. Cramer B. D.,
    5. Payne J. L.,
    6. Boyce C. K.
    , 2018, Phanerozoic pO2 and the early evolution of terrestrial animals: Proceedings of the Royal Society B: Biological Sciences, v. 285, n. 1871, p. 20172631, doi:https://doi.org/10.1098/rspb.2017.2631
    OpenUrlCrossRefPubMed
  59. ↵
    1. Schrag D. P.,
    2. Higgins J. A.,
    3. Macdonald F. A.,
    4. Johnston D. T.
    , 2013, Authigenic carbonate and the history of the global carbon cycle: Science, v. 339, n. 6119, p. 540–543, doi:https://doi.org/10.1126/science.1229578
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Shahinfar S.,
    2. Yousefi Yeganeh B.,
    3. Arefifard S.,
    4. Vachard D.,
    5. Payne J. L.
    , 2020, Refined foraminiferal biostratigraphy of upper Wordian, Capitanian and Wuchiapingian strata in Hambast Valley, Abadeh region (Iran), and paleobiogeographic implications: Geological Journal, v. 55, n. 9, p. 6255–6279, doi:https://doi.org/10.1002/gj.3798
    OpenUrlCrossRef
  61. ↵
    1. Shen S. Z.,
    2. Cao C. Q.,
    3. Zhang H.,
    4. Bowring S. A.,
    5. Henderson C. M.,
    6. Payne J. L.,
    7. Davydov V. I.,
    8. Chen B.,
    9. Yuan D. X.,
    10. Zhang Y. C.,
    11. Wang W.,
    12. Zheng Q. F.
    , 2013, High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran: Earth and Planetary Science Letters, v. 375, p. 156–165, doi:https://doi.org/10.1016/j.epsl.2013.05.020
    OpenUrlCrossRefGeoRef
  62. ↵
    1. Shen S.,
    2. Zhang H.,
    3. Zhang Y.,
    4. Yuan D.,
    5. Chen B.,
    6. He W.,
    7. Mu L.,
    8. Lin W.,
    9. Wang W.,
    10. Chen J.,
    11. Wu Q.,
    12. Cao C.,
    13. Wang Y.,
    14. Wang X.
    , 2019, Permian integrative stratigraphy and timescale of China: Science China Earth Sciences, v. 62, p. 154–188, doi:https://doi.org/10.1007/s11430-017-9228-4
    OpenUrlCrossRef
  63. ↵
    1. Shi Z.,
    2. Yin G.,
    3. Li W.,
    4. Yang H.,
    5. Zhang J.,
    6. Lu L.,
    7. Tian Y.,
    8. Wang Y.
    , 2017, Major geological events in the late Guadalupian and carbon–strontium isotope responses in the Yangtze platform, South China: Canadian Journal of Earth Sciences, v. 54, n. 10, p. 1025–1032, doi:https://doi.org/10.1139/cjes-2017-0103
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Stocklin J.
    , 1968, Structural history and tectonics of Iran, A review: American Association of Petroleum Geology Bulletin, v. 52, n. 7, p. 1229–1258, doi:https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
    OpenUrlAbstract
  65. ↵
    1. Swart P. K.
    , 2008, Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle: Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 37, p. 13741–13745, doi:https://doi.org/10.1073/pnas.0802841105
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Swart P. K.
    , 2015, The geochemistry of carbonate diagenesis: the past, present and future: Sedimentology, v. 62, n. 5, p. 1233–1304, doi:https://doi.org/10.1111/sed.12205
    OpenUrlCrossRefGeoRef
  67. ↵
    1. Swart P. K.,
    2. Kennedy M. J.
    , 2012, Does the global stratigraphic reproducibility of δ13C in Neoproterozoic carbonates require a marine origin? A Pliocene–Pleistocene comparison: Geology, v. 40, n. 1, p. 87–90, doi:https://doi.org/10.1130/G32538.1
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Taraz H.,
    2. Golshani F.,
    3. Nakazawa K.,
    4. Shimizu D.,
    5. Bando Y.,
    6. Ishii K.-I.,
    7. Maurata M.,
    8. Okimura Y.,
    9. Sakagami S.,
    10. Nakamura K.,
    11. Tokuoka T.
    , 1981, The Permian and the Lower Triassic systems in Abadeh region, central Iran: Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, v. 47, n. 2, p. 62–133.
    OpenUrl
  69. ↵
    1. Tierney K. E.
    , ms, 2010, Carbon and Strontium Isotope Stratigraphy of the Permian from Nevada and China: Implications from an Icehouse to Greenhouse Transition: Ph.D. Thesis, The Ohio State University, Columbus, Ohio,179 p.
  70. ↵
    1. Reeder R. J.
    1. Veizer J.
    , 1983, Trace elements and isotopes in sedimentary carbonates, in Reeder R. J., Carbonates: Reviews in Mineralogy, v. 11, p. 265–300, doi:https://doi.org/10.1515/9781501508134-012
    OpenUrlCrossRef
  71. ↵
    1. Veizer J.,
    2. Ala D.,
    3. Azmy K.,
    4. Bruckschen P.,
    5. Buhl D.,
    6. Bruhn F.,
    7. Carden G. A. F.,
    8. Diener A.,
    9. Ebneth S.,
    10. Godderis Y.,
    11. Jasper T.,
    12. Korte C.,
    13. Pawellek F.,
    14. Podlaha O. G.,
    15. Strauss H.
    , 1999, 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater: Chemical Geology, v. 161, n. 1–3, p. 59–88, doi:https://doi.org/10.1016/S0009-2541(99)00081-9
    OpenUrlCrossRefGeoRefWeb of Science
  72. ↵
    1. Wang W.,
    2. Cao C. Q.,
    3. Wang Y.
    , 2004, The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary: Earth and Planetary Science Letters, v. 220, n. 1–2, p. 57–67, doi:https://doi.org/10.1016/S0012-821X(04)00033-0
    OpenUrlCrossRefGeoRefWeb of Science
  73. ↵
    1. Wang W. Q.,
    2. Katchinoff J. A. R.,
    3. Garbelli C.,
    4. Immenhauser A.,
    5. Zheng Q.-F.,
    6. Zhang Y.-C.,
    7. Yuan D.-X.,
    8. Shi Y.-K.,
    9. Wang J.,
    10. Planavsky N.,
    11. Shen S.-Z.
    , 2021, Revisiting the Permian seawater 87Sr/86Sr record: New perspectives from brachiopod proxy data and stochastic oceanic box models: Earth-Science Reviews, v. 218, p. 103679, doi:https://doi.org/10.1016/j.earscirev.2021.103679
    OpenUrlCrossRef
  74. ↵
    1. Wignall P. B.,
    2. Sun Y.,
    3. Bond D. P. G.,
    4. Izon G.,
    5. Newton R. J.,
    6. Védrine S.,
    7. Widdowson M.,
    8. Ali J. R.,
    9. Lai X.,
    10. Jiang H.,
    11. Cope H.,
    12. Bottrell S. H.
    , 2009, Volcanism, mass extinction and carbon isotope fluctuations in the Middle Permian of China: Science, v. 324, n. 5931, p. 1179–1182, doi:https://doi.org/10.1126/science.1171956
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. Yan D.,
    2. Zhang L.,
    3. Qiu Z.
    , 2013, Carbon and sulfur isotopic fluctuations associated with the end-Guadalupian mass extinction in South China: Gondwana Research, v. 24, n. 3–4, p. 1276–1282, doi:https://doi.org/10.1016/j.gr.2013.02.008
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Zhang B.,
    2. Yao S.,
    3. Wignall P. B.,
    4. Hu W.,
    5. Ding H.,
    6. Liu B.,
    7. Ren Y.
    , 2018, Widespread coastal upwelling along the Eastern Paleo-Tethys Margin (South China) during the Middle Permian (Guadalupian): Implications for organic matter accumulation: Marine and Petroleum Geology, v. 97, p. 113–126, doi:https://doi.org/10.1016/j.marpetgeo.2018.06.025
    OpenUrlCrossRef
  77. ↵
    1. Zhang B.,
    2. Yao S.,
    3. Mills B. J. W.,
    4. Wignall P. B.,
    5. Hu W.,
    6. Liu B.,
    7. Ren Y.,
    8. Li L.,
    9. Shi G.
    , 2020, Middle Permian organic carbon isotope stratigraphy and the origin of the Kamura Event: Gondwana Research, v. 79, p. 217–232, doi:https://doi.org/10.1016/j.gr.2019.09.013
    OpenUrlCrossRef
  78. ↵
    1. Zhao M.-Y.,
    2. Zheng Y.-F.,
    3. Zhao Y.-Y.
    , 2016, Seeking a geochemical identifier for authigenic carbonate: Nature Communications, v. 7, p. 10885, doi:https://doi.org/10.1038/ncomms10885
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (9)
American Journal of Science
Vol. 322, Issue 9
1 Nov 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Guadalupian carbon isotope stratigraphy indicates extended interval of carbon cycle stability
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 9 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Guadalupian carbon isotope stratigraphy indicates extended interval of carbon cycle stability
Sakineh Arefifard, Jonathan L. Payne, Malgorzata Rizzi
American Journal of Science Nov 2022, 322 (9) 1019-1046; DOI: 10.2475/09.2022.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Guadalupian carbon isotope stratigraphy indicates extended interval of carbon cycle stability
Sakineh Arefifard, Jonathan L. Payne, Malgorzata Rizzi
American Journal of Science Nov 2022, 322 (9) 1019-1046; DOI: 10.2475/09.2022.01
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL SETTING
    • STUDY SECTIONS
    • METHODS
    • RESULTS
    • DIAGENETIC ALTERATION OF CARBON AND OXYGEN STABLE ISOTOPE RECORDS IN STUDY SECTIONS
    • DISCUSION
    • CONCLUSIONS
    • ACKNOWLEDGMENT
    • SUPPLEMENTARY DATA
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Carbon isotopes
  • Guadalupian
  • Diagenetic alteration
  • Abadeh
  • Global carbon cycle

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire