Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Late Permian plume and Neoproterozoic subduction-modified mantle interaction: Insights from geochronology and Sr-Nd-O isotopes of mafic dikes of the western Emeishan large igneous province

Yanning Wang, Shengchao Xue, Reiner Klemd, Lin Yang, Feng Zhao and Qingfei Wang
American Journal of Science October 2022, 322 (8) 993-1018; DOI: https://doi.org/10.2475/08.2022.02
Yanning Wang
*State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shengchao Xue
*State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: xuesc@cugb.edu.cn wqf@cugb.edu.cn
Reiner Klemd
**GeoZentrum Nordbayern, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 5a, Erlangen 91054, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lin Yang
*State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Feng Zhao
*State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qingfei Wang
*State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: xuesc@cugb.edu.cn wqf@cugb.edu.cn
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Aldanmaz E.,
    2. Pearce J. A.,
    3. Thirlwall M. F.,
    4. Mitchell J. G.
    , 2000, Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey: Journal of Volcanology and Geothermal Research, v. 102, n. 1–2, p. 67–95, doi:https://doi.org/10.1016/S0377-0273(00)00182-7
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Ali J. R.,
    2. Fitton J. G.,
    3. Herzberg C.
    , 2010, Emeishan large igneous province (SW China) and the mantle-plume up-doming hypothesis: Journal of the Geological Society, v. 167, n. 5, p. 953–959, doi:http://dx.doi.org/10.1144/0016-76492009-129
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Anderson D. L.
    , 2005, Large igneous provinces, delamination, and fertile mantle: Elements, v. 1, p. 271–275, doi:https://doi.org/10.2113/gselements.1.5.271
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Anh T. V.,
    2. Pang K. N.,
    3. Chung S. L.,
    4. Lin H. M.,
    5. Hoa T. T.,
    6. Anh T. T.,
    7. Yang H. J.
    , 2011, The Song Da magmatic suite revisited: a petrologic, geochemical and Sr-Nd isotopic study on picrites, flood basalts and silicic volcanic rocks: Journal of Asian Earth Sciences, v. 42, n. 6, p. 1341–1355, doi:https://doi.org/10.1016/j.jsea es.2011.07.020
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    BGMRY (Bureau of Geology and Mineral Resources of Yunnan Province), 1973, Yunnan Geological Map Series: Jinping District (F-48-VIII), Jianshui District (F-48-I), Dali District (G-47-XXIII): Beijing, Geological Publishing House.
  6. ↵
    1. Bryan S. E.,
    2. Ernst R. E.
    , 2008, Revised definition of large igneous provinces (LIPs): Earth-Science Reviews, v. 86, n. 1–4, p. 175–202, doi:https://doi.org/10.1016/j.earscirev.2007.08.008
    OpenUrlCrossRefGeoRef
  7. ↵
    1. Buiter S. J. H.,
    2. Torsvik T. H.
    , 2014, A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures?: Gondwana Research, v. 26. n. 2, p. 627–653, doi:https://doi.org/10.1016/j.gr.2014.02.007
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Campbell I. H.
    , 2005, Large igneous provinces and the mantle plume hypothesis: Elements, v. 1, n. 5, p. 265–269, doi:https://doi.org/10.2113/gselements.1.5.265
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Cawood P. A.,
    2. Wang Y.,
    3. Xu Y.,
    4. Zhao G.
    , 2013, Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere?: Geology, v. 41, n. 8, p. 903–906, doi:https://doi.org/10.1130/G34395.1
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Cawood P. A.,
    2. Wang W.,
    3. Zhao T.,
    4. Xu Y.,
    5. Mulder J. A.,
    6. Pisarevsky S. A.,
    7. Zhang L.,
    8. Gan C.,
    9. He H.,
    10. Liu H.,
    11. Qi L.,
    12. Wang Y.,
    13. Yao J.,
    14. Zhao G.,
    15. Zhou M. -F.,
    16. Zi J. -W.
    , 2020, Deconstructing South China and consequences for reconstructing Nuna and Rodinia: Earth-Science Reviews, v. 204, 103169, doi:https://doi.org/10.1016/j.ears cirev.2020.103169
    OpenUrlCrossRef
  11. ↵
    1. Chapman J. B.,
    2. Ducea M. N.,
    3. Kapp P.,
    4. Gehrels G. E.,
    5. DeCelles P. G.
    , 2017, Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens: Gondwana Research, v. 48, p. 189–204, doi:https://doi.org/10.1016/j.gr.2017.04.019
    OpenUrlCrossRef
  12. ↵
    1. Chen Z.,
    2. Lin W.,
    3. Faure M.,
    4. Lepvrier C.,
    5. Vuong V. N.,
    6. Tich V. V.
    , 2014, Geochronology and isotope analysis of the Late Paleozoic to Mesozoic granitoids from northeastern Vietnam and implications for the evolution of the South China block: Journal of Asian Earth Science, v. 86, p. 131–150, doi:https://doi.org/10.1016/j.jseaes.2013.07.039
    OpenUrlCrossRef
  13. ↵
    1. Chung S. L.,
    2. Jahn B. M.
    , 1995, Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary: Geology, v. 23, n. 10, p. 889–892, doi:https://doi.org/10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Chung S. L.,
    2. Lee T. Y.,
    3. Lo C. H.,
    4. Wang P. L.,
    5. Chen C. Y.,
    6. Yem N. T.,
    7. Hoa T. T.,
    8. Wu G. Y.
    , 1997, Intraplate extension prior to continental extrusion along the Ailao Shan Red River shear zone: Geology, v. 25, n. 4, p. 311–314, doi:https://doi.org/10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Cooper C. L.,
    2. Swindles G. T.,
    3. Savov I. P.,
    4. Schmidt A.,
    5. Bacon K. L.
    , 2018, Evaluating the relationship between climate change and volcanism: Earth-Science Reviews, v. 177, p. 238–247, doi:https://doi.org/10.1016/j.earscirev.2017.11.009
    OpenUrlCrossRef
  16. ↵
    1. Deng J.,
    2. Wang Q.,
    3. Li G.,
    4. Li C.,
    5. Wang C.
    , 2014a, Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China: Gondwana Research, v. 26, n. 2, p. 419–437, doi:https://doi.org/10.1016/j.gr.2013.08.002
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Deng J.,
    2. Wang Q.,
    3. Li G.,
    4. Santosh M.
    , 2014b, Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China: Earth-Science Reviews, v. 138, p. 268–299, doi:https://doi.org/10.1016/j.earscirev.2014.05.015
    OpenUrlCrossRefGeoRef
  18. ↵
    1. Eiler J. M.
    , 2001, Oxygen isotope variations of basaltic lavas and upper mantle rocks: Reviews in Mineralogy and Geochemistry, v, 43, n. 1, p. 319–364, doi:10.2138/gsrmg.43.1.319
    OpenUrlFREE Full Text
  19. ↵
    1. Goodfellow W. D.
    1. Ernst R. E.,
    2. Goodfellow W. D.
    , 2007, Large igneous provinces in Canada through time and their metallogenic potential, in Goodfellow W. D., editor, Mineral Deposits of Canada: a Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special publication 5, p. 929–937.
    OpenUrl
  20. ↵
    1. Holland H. D.,
    2. Turekian K. K.
    1. Farmer G. L.
    , 2014, Continental basaltic rocks, in Holland H. D., Turekian K. K., editors, Treatise on Geochemistry (Second Edition), v. 4, p. 75–105, doi:https://doi.org/10.1016/B978-0-08-095975-7.00303-X
    OpenUrlCrossRef
  21. ↵
    1. Faure M.,
    2. Nguyen V. V.,
    3. Hoai L. T. T.,
    4. Lepvrier C.
    , 2018, Early Paleozoic or Early-Middle Triassic collision between the South China and Indochina Blocks: The controversy resolved? Structural insights from the Kon Tum massif (Central Vietnam): Journal of Asian Earth Sciences, v. 166, p. 162–180, doi:https://doi.org/10.1016/j.jseaes.2018.07.015
    OpenUrlCrossRef
  22. ↵
    1. Foulger G. R.
    , 2002, Plumes, or plate tectonic processes?: Astronomy & Geophysics, v. 43, n. 6, p. 6.19–6.23, doi:https://doi.org/10.1046/j.1468-4004.2002.43619.x
    OpenUrlCrossRef
  23. ↵
    1. Glazner A. F.
    , 2007, Thermal limitations on incorporation of wall rock into magma: Geology, v. 35, n. 4, p. 319–322, doi:https://doi.org/10.1130/G23134A.1
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Göğüş O. H.
    , 2022, Geodynamic experiments suggest that mantle plume caused Late Permian Emeishan Large Igneous Province in Southern China: International Geology Review, v. 64, n. 3, p. 375–389, doi:https://doi.org/10.1080/00206814.2020.1855602
    OpenUrlCrossRef
  25. ↵
    1. Gregory R. T.,
    2. Taylor H. P. Jr..
    , 1981, An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges: Journal of Geophysical Research: Solid Earth, v. 86, n. B4, p. 2737–2755, doi:https://doi.org/10.1029/JB086iB04p02737
    OpenUrlCrossRef
  26. ↵
    1. Hanski E.,
    2. Kamenetsky V. S.,
    3. Luo Z. Y.,
    4. Xu Y. G.,
    5. Kuzmin D. V.
    , 2010, Primitive magmas in the Emeishan large igneous province, southwestern China and northern Vietnam: Lithos, v. 119, n. 1–2, p. 75–90, doi:https://doi.org/10.1016/j.lithos.2010.04.008
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. He Q.,
    2. Xiao L.,
    3. Balta B.,
    4. Gao R.,
    5. Chen J.
    , 2010, Variety and complexity of the Late-Permian Emeishan basalts: Reappraisal of plume-lithosphere interaction processes: Lithos, v. 119, n. 1–2, p. 91–10, doi:https://doi.org/10.1016/j.litho s.2010.07.020
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Hirschmann M. M.,
    2. Stolper E. M.
    , 1996, A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB: Contributions to Mineralogy and Petrology, v. 124, n. 2, p. 185–208, doi:https://doi.org/10.1007/s004100050184
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Hooper P. R.,
    2. Hawkesworth C. J.
    , 1993, Isotopic and Geochemical Constraints on the Origin and Evolution of the Columbia River Basalt: Journal of Petrology, v. 34, n. 6, p. 1203–1246, doi:https://doi.org/10.1093/petrology/34.6.1203
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Hou T.,
    2. Zhang Z.,
    3. Kusky T.,
    4. Du Y.,
    5. Liu J.,
    6. Zhao Z.
    , 2011, A reappraisal of the high-Ti and low-Ti classification of basalts and petrogenetic linkage between basalts and mafic-ultramafic intrusions in the Emeishan large igneous province, SW China: Ore Geology Reviews, v. 41, n. 1, p. 133–143, doi:https://doi.org/10.1016/j.oregeorev.2011.07.005
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Hou T.,
    2. Zhang Z.,
    3. Encarnacion J.,
    4. Santosh M.,
    5. Sun Y. L.
    , 2013, The role of recycled oceanic crust in magmatism and metallogeny: Os-Sr-Nd isotopes, U-Pb geochronology and geochemistry of picritic dikes in the Panzhihua giant Fe-Ti oxide deposit, central Emeishan large igneous province, SW China: Contributions to Mineralogy and Petrology, v. 165, p. 805–822, doi:https://doi.org/10.1007/s00410-012-0836-3
    OpenUrlCrossRefGeoRef
  32. ↵
    1. Hou Z. Q.,
    2. Lu J. R.,
    3. Lin S. Z.
    , 2006, Heterogeneity of a plume axis: bulk-rock geochemical evidence from picrites and basalts in the Emei large igneous province, southwest China: International Geology Review, v. 48, n. 12, p. 1087–1112, doi:https://doi.org/10.2747/0020-6814.48.12.1087
    OpenUrlCrossRefGeoRefWeb of Science
  33. ↵
    1. Huang H.,
    2. Cawood P. A.,
    3. Hou M. -C.,
    4. Yang J. -H.,
    5. Ni S. -J.,
    6. Du Y. -S.,
    7. Yan Z. -K.,
    8. Wang J.
    , 2016, Silicic ash beds bracket Emeishan Large Igneous Province to <1 m.y. at ∼260 Ma: Lithos, v. 264, p. 17–27, doi:https://doi.org/10.1016/j.lithos.2016.08.013
    OpenUrlCrossRef
  34. ↵
    1. Jahn B. M.,
    2. Wu F.,
    3. Lo C. H.,
    4. Tsai C. H.
    , 1999, Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China: Chemical Geology, v. 157, n. 1–2, p. 119–146, doi:https://doi.org/10.1016/S0009-2541(98)00197-1
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Jourdan F.,
    2. Bertrand H.,
    3. Schärer U.,
    4. Blichert-Toft J.,
    5. Féraud G.,
    6. Kampunzu A. B.
    , 2007, Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: lithosphere vs mantle plume contribution: Journal of Petrology, v. 48, n. 6, p. 1043–1077, doi:https://doi.org/10.1093/petrology/egm010
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Kamenetsky V. S.,
    2. Chung S. L.,
    3. Kamenetsky M. B.,
    4. Kuzmin D. V.
    , 2012, Picrites from the Emeishan large igneous province, SW China: a compositional continuum in primitive magmas and their respective mantle sources: Journal of Petrology, v. 53, n. 10, p. 2095–2113, doi:https://doi.org/10.1093/petrology/egs045
    OpenUrlCrossRefGeoRefWeb of Science
  37. ↵
    1. Li C.,
    2. Tao Y.,
    3. Qi L.,
    4. Ripley E. M.
    , 2012, Controls on PGE fractionation in the Emeishan picrites and basalts: Constraints from integrated lithophile-siderophile elements and Sr-Nd isotopes: Geochimica et Cosmochimica Acta, v. 90, p. 12–32, doi:https://doi.org/10.1016/j.gca.2012.04.046
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Li H.,
    2. Zhang Z.,
    3. Ernst R.,
    4. Lü L.,
    5. Santosh M.,
    6. Zhang D.,
    7. Cheng Z.
    , 2015, Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province: Identifying the mantle plume centre: Terra Nova, v. 27, n. 4, p. 247–257, doi:10.1111/ter.12154
    OpenUrlCrossRef
  39. ↵
    1. McKenzie D.,
    2. O'Nions R. K.
    , 1991, Partial melt distribution from inversion of rare earth element concentrations: Journal of Petrology, v. 32, n. 5, p. 1021–1991, doi:https://doi.org/10.1093/petrology/32.5.1021
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Qiao L.,
    2. Wang Q.,
    3. Li C.
    , 2015, The western segment of the suture between the Yangtze and Cathaysia blocks: constraints from inherited and co-magmatic zircons from Permian S-type granitoids in Guangxi, South China: Terra Nova, v. 27, n. 5, p. 392–398, doi:https://doi.org/10.1111/ter.12171
    OpenUrlCrossRef
  41. ↵
    1. Ren Z. Y.,
    2. Wu Y. D.,
    3. Zhang L.,
    4. Nichols A. R. L.,
    5. Hong L. B.,
    6. Zhang Y. H.,
    7. Zhang Y.,
    8. Liu J. Q.,
    9. Xu Y. G.
    , 2017, Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions: Geochimica et Cosmochimica Acta, v. 208, p. 63–85, doi:https://doi.org/10.1016/j.gca.2017.01.054
    OpenUrlCrossRef
  42. ↵
    1. Rooney T. O.
    , 2020, The Cenozoic magmatism of East Africa: Part V – Magma sources and processes in the East African Rift: Lithos, v. 360–361, 105296, doi:https://doi.org/10.1016/j.lithos.2019.105296
    OpenUrlCrossRef
  43. ↵
    1. Holland H. D.,
    2. Trekian K. K.
    1. Rudnick R. L.,
    2. Gao S.
    , 2014, Composition of the continental crust, in Holland H. D., Trekian K. K., editors, Treatise on Geochemistry (Second Edition), v. 4, p. 1–51, doi:https://doi.org/10.1016/B978-0-08-095975-7.00301-6
    OpenUrlCrossRef
  44. ↵
    1. Shellnutt J. G.
    , 2014, The Emeishan large igneous province: a synthesis: Geoscience Frontiers, v. 5, n. 3, p. 369–394, doi:https://doi.org/10.1016/j.gsf.2013.07.003
    OpenUrlCrossRef
  45. ↵
    1. Shellnutt J. G.,
    2. Jahn B. M.
    , 2011, Origin of Late Permian Emeishan basaltic rocks from the Panxi region (SW China): implications for the Ti-classification and spatial-compositional distribution of the Emeishan basalts: Journal of Volcanology and Geothermal Research, v. 199, n. 1–2, p. 85–95, doi:https://doi.org/10.1016/j.jvolgeores.2010.10.009
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Shellnutt J. G.,
    2. Pham T. T.
    , 2018, Mantle potential temperature estimates and primary melt compositions of the low-Ti Emeishan flood basalt: Frontiers in Earth Science, v. 6, 67, doi:https://doi.org/10.3389/feart.2018.00067
    OpenUrlCrossRef
  47. ↵
    1. Shellnutt J. G.,
    2. Zhou M. -F.,
    3. Yan D. -P.,
    4. Wang Y.
    , 2008, Longevity of the Permian Emeishan mantle plume (SW China): 1 million years; 8 million years or 18 million years?: Geological Magazine, v. 145, n. 3, p. 373–388, doi:https://doi.org/10.1017/S0016756808004524
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Shellnutt J. G.,
    2. Jahn B. M.,
    3. Zhou M. F.
    , 2011, Crustal-derived granites in the Panzhihua region, SW China: implications for felsic magmatism in the Emeishan large igneous province: Lithos, v. 123, n. 1–4, p. 145–157, doi:https://doi.org/10.1016/j.lithos.2010.10.016
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Shellnutt J. G.,
    2. Denyszyn S. W.,
    3. Mundil R.
    , 2012, Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China): Gondwana Research, v. 22, n. 1, p. 118–126, doi:https://doi.org/10.1016/j.gr.2011.10.009
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Shellnutt J. G.,
    2. Usuki T.,
    3. Kennedy A. K.,
    4. Chiu H. -Y.
    , 2015, A lower crust origin of some flood basalts of the Emeishan large igneous province, SW China: Journal of Asian Earth Sciences, v. 109, p. 74–85, doi:http://dx.doi.org/10.1016/j.jseaes.2015.04.037
    OpenUrlCrossRef
  51. ↵
    1. Shellnutt J. G.,
    2. Pham T. T.,
    3. Denyszyn S. W.,
    4. Yeh M. W.,
    5. Tran T. A.
    , 2020, Magmatic duration of the Emeishan large igneous province: Insight from northern Vietnam: Geology, v. 48, n. 5, p. 457–461, doi:https://doi.org/10.1130/G47076.1
    OpenUrlCrossRef
  52. ↵
    1. Song X. Y.,
    2. Zhou M. F.,
    3. Keays R. R.,
    4. Cao Z. M.,
    5. Sun M.,
    6. Qi L.
    , 2006, Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China: implications for sulfide segregation: Contributions to Mineralogy and Petrology, v. 152, p. 53–74, doi:https://doi.org/10.1007/s00410-006-0094-3
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Song X. Y.,
    2. Qi H. W.,
    3. Robinson P. T.,
    4. Zhou M. F.,
    5. Cao Z. M.,
    6. Chen L. M.
    , 2008, Melting of the subcontinental lithospheric mantle by the Emeishan mantle plume; evidence from the basal alkaline basalts in Dongchuan, Yunnan, southwestern China: Lithos, v. 100, n. 1–4, p. 93–111, doi:https://doi.org/10.1016/j.lithos.2007.06.023
    OpenUrlCrossRefGeoRefWeb of Science
  54. ↵
    1. Stefano C. J.,
    2. Mukasa S. B.,
    3. Cabato J. A.
    , 2019, Elemental abundance patterns and Sr-, Nd- and Hf-isotope systematics for the Yellowstone hotspot and Columbia River flood basalts: Bearing on petrogenesis: Chemical Geology, v. 513, p. 44–53, doi:https://doi.org/10.1016/j.chemgeo.2019.03.012
    OpenUrlCrossRef
  55. ↵
    1. Taylor H. P. Jr..,
    2. O'Neil J. R.,
    3. Kaplan I.
    1. Stolper E. M.,
    2. Epstein S.
    , 1991, An experimental study of oxygen isotope partitioning between silica glass and CO2 vapor, in Taylor H. P. Jr.., O'Neil J. R., Kaplan I., editors, Stable Isotope Geochemistry: A Tribute to Samuel Epstein: Geochemical Society, Special Publications, v. 3, p. 35–51.
    OpenUrl
  56. ↵
    1. Sun S. S.,
    2. McDonough W. F.
    , 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313–345, doi:https://doi.org/10.1144/GSL.SP.1989.042.01.19
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Tang Q.,
    2. Ma Y.,
    3. Zhang M.,
    4. Li C.,
    5. Zhu D.,
    6. Tao Y.
    , 2013, The origin of Ni-Cu-PGE sulfide mineralization in the margin of the Zhubu mafic-ultramafic intrusion in the Emeishan large igneous province, Southwestern China: Economic Geology, v. 108, n. 8, p. 1889–1901, doi:https://doi.org/10.2113/econgeo.108.8.1889
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Tang Q.,
    2. Li C.,
    3. Ripley E. M.,
    4. Bao J.,
    5. Su T.,
    6. Xu S.
    , 2021, Sr-Nd-Hf-O isotope constraints on crustal contamination and mantle source variation of three Fe-Ti-V oxide ore deposits in the Emeishan large igneous province: Geochimica et Cosmochimica Acta, v. 292, p. 364–381, doi:https://doi.org/10.1016/j.gca.2020.10.006
    OpenUrlCrossRef
  59. ↵
    1. Tao Y.,
    2. Li C.,
    3. Hu R.,
    4. Ripley E. M.,
    5. Du A.,
    6. Zhong H.
    , 2007, Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan large igneous province, SW China: Contributions to Mineralogy and Petrology, v. 153, n. 3, p. 321–337, doi:https://doi.org/10.1007/s00410-006-0149-5
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Valley J. W.
    , 2003, Oxygen isotopes in zircon: Reviews in Mineralogy and Geochemistry, v. 53, n. 1, p. 343–385, doi:https://doi.org/10.2113/0530343
    OpenUrlFREE Full Text
  61. ↵
    1. Wang C. Y.,
    2. Zhou M. F.,
    3. Keays R. R.
    , 2006, Geochemical constraints on the origin of the Permian Baimazhai mafic-ultramafic intrusion, SW China: Contributions to Mineralogy and Petrology, v. 152, p. 309–321, doi:https://doi.org/10.1007/s00410-006-0103-6
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Wang C. Y.,
    2. Zhou M. F.,
    3. Qi L.
    , 2007, Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district: mantle sources, crustal contamination and sulfide segregation: Chemical Geology, v. 243, n. 3–4, p. 317–343, doi:https://doi.org/10.1016/j.chemgeo.2007.05.017
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Wang Q.,
    2. Deng J.,
    3. Li C.,
    4. Li G.,
    5. Yu L.,
    6. Qiao L.
    , 2014, The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: constraints from detrital and inherited zircons: Gondwana Research, v. 26, n. 2, p. 438–448, doi:https://doi.org/10.1016/j.gr.2013.10.002
    OpenUrlCrossRefGeoRef
  64. ↵
    1. Wang Q.,
    2. Yang L.,
    3. Xu X.,
    4. Santosh M.,
    5. Wang Y.,
    6. Wang T.,
    7. Chen F.,
    8. Wang R.,
    9. Gao L.,
    10. Liu X.,
    11. Yang S.,
    12. Zeng Y.,
    13. Chen J.,
    14. Zhang Q.,
    15. Deng J.
    , 2020, Multi-stage tectonics and metallogeny associated with Phanerozoic evolution of the South China Block: A holistic perspective from the Youjiang Basin: Earth-Science Reviews, v. 211, 103405, doi:https://doi.org/10.1016/j.earscirev.2020.103405
    OpenUrlCrossRef
  65. ↵
    1. Wang Q.,
    2. Yang L.,
    3. Zhao H.,
    4. Groves D. I.,
    5. Weng W.,
    6. Xue S.,
    7. Li H.,
    8. Dong C.,
    9. Yang L.,
    10. Li D.,
    11. Deng J.
    , 2021a, Towards a universal model for orogenic gold systems: A perspective based on Chinese examples with geodynamic, temporal, and deposit-scale structural and geochemical diversity: Earth-Science Reviews, v. 224, 103861, doi:https://doi.org/10.1016/j.earscirev.2021.103861
    OpenUrlCrossRef
  66. ↵
    1. Wang Y. J.,
    2. Qian X.,
    3. Cawood P. A.,
    4. Liu H. C.,
    5. Feng Q. L.,
    6. Zhao G. C.,
    7. Zhang Y. H.,
    8. He H. Y.,
    9. Zhang P. Z.
    , 2018, Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments: Earth-Science Reviews, v. 186, p. 195–230, doi:https://doi.org/10.1016/j.earscirev.2017.09.013
    OpenUrlCrossRef
  67. ↵
    1. Wang Y.,
    2. Wang Q.,
    3. Deng J.,
    4. Xue S.,
    5. Li C.,
    6. Ripley E. M.
    , 2021b, Late Permian–Early Triassic mafic dikes in the southwestern margin of the South China block: Evidence for Paleo-Pacific subduction: Lithos, v. 384–385, doi:https://doi.org/10.1016/j.lithos.2021.105994
    OpenUrlCrossRef
  68. ↵
    1. Wei X.,
    2. Xu Y. G.,
    3. He B.,
    4. Zhang L.,
    5. Xia X. P.,
    6. Shi X. F.
    , 2019, Zircon U-Pb age and Hf-O isotope insights into genesis of Permian Tarim felsic rocks, NW China: Implications for crustal melting in response to a mantle plume: Gondwana Research, v. 76, p. 290–302, doi:https://doi.org/10.1016/j.gr.2019.06.015
    OpenUrlCrossRef
  69. ↵
    1. White L. T.,
    2. Ireland T. R.
    , 2012, High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations: Chemical Geology, v. 306–307, p. 78–91, doi:https://doi.org/10.1016/j.chemgeo.2012.02.025
    OpenUrlCrossRef
  70. ↵
    1. Xiao L.,
    2. Xu Y. G.,
    3. Mei H. J.,
    4. Zheng Y. F.,
    5. He B.,
    6. Pirajno F.
    , 2004, Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume-lithosphere interaction: Earth and Planetary Science Letters, v. 228, n. 3–4, p. 525–546, doi:https://doi.org/10.1016/j.epsl.2004.10.002
    OpenUrlCrossRefGeoRefWeb of Science
  71. ↵
    1. Xu J. F.,
    2. Suzuki K.,
    3. Xu Y. G.,
    4. Mei H. J.,
    5. Li J.
    , 2007, Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: insights into the source of a large igneous province: Geochimica et Cosmochimica Acta, v. 71, n. 8, p. 2104–2119, doi:https://doi.org/10.1016/j.gca.2007.01.027
    OpenUrlCrossRefGeoRefWeb of Science
  72. ↵
    1. Xu J.,
    2. Xia X. -P.,
    3. Lai C. -K.,
    4. Zhou M.,
    5. Ma P.
    , 2019, First identification of Late Permian Nb-enriched basalts in Ailaoshan region (SW Yunnan, China): Contribution from Emeishan plume to subduction of eastern Paleotethys: Geophysical Research Letters, v. 46, n. 5, p. 2511–2523, doi:https://doi.org/10.1029/2018GL081687
    OpenUrlCrossRef
  73. ↵
    1. Xu J.,
    2. Xia X. -P.,
    3. Wang Q.,
    4. Spencer C. J.,
    5. He B.,
    6. Lai C. -K.
    , 2021, Low-δ18O A-type granites in SW China: Evidence for the interaction between the subducted Paleotethyan slab and the Emeishan mantle plume: Geological Society of America Bulletin, v. 134, n. 1–2, p. 81–93, doi:https://doi.org/10.1130/B35929.1
    OpenUrlCrossRef
  74. ↵
    1. Xu Y. G.,
    2. Chung S. L.,
    3. Jahn B. M.,
    4. Wu G.
    , 2001a, Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China: Lithos, v. 58, n. 3–4, p. 145–168, doi:https://doi.org/10.1016/S0024-4937(01)00055-X
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Xu Y. G.,
    2. Menzies M. A.,
    3. Thirlwall M. F.,
    4. Xie G. H.
    , 2001b, Exotic lithosphere mantle beneath the western Yangtze Craton: petrogenetic links to Tibet using highly magnesian ultrapotassic rocks: Geology, v. 29, n. 9, p. 863–866, doi:https://doi.org/10.1130/0091-7613(2001)029<0863:ELMBTW>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Xu Y. G.,
    2. He B.,
    3. Chung S. L.,
    4. Menzies M. A.,
    5. Frey F. A.
    , 2004, Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province: Geology, v. 32, n. 10, p. 917–920, doi:https://doi.org/10.1130/G20602.1
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Yao J.,
    2. Cawood P. A.,
    3. Shu L. S.,
    4. Zhao G.
    , 2019, Jiangnan Orogen, South China: A ∼970–820 Ma Rodinia margin accretionary belt: Earth-Science Reviews, v. 196, 102972, doi:https://doi.org/10.1016/j.earscirev.2019.05.016
    OpenUrlCrossRef
  78. ↵
    1. Yao Z. S.,
    2. Qin K. Z.,
    3. Mungall J. E.
    , 2018, Tectonic controls on Ni and Cu contents of primary mantle-derived magmas for the formation of magmatic sulfide deposits: American Mineralogist, v. 103, n. 10, p. 1545–1567, doi:https://doi.org/10.2138/am-2018-6392
    OpenUrlCrossRef
  79. ↵
    1. Yu S. Y.,
    2. Song X. Y.,
    3. Ripley E. M.,
    4. Li C.,
    5. Chen L. M.,
    6. She Y. W.,
    7. Luan Y.
    , 2015, Integrated O-Sr-Nd isotope constraints on the evolution of four important Fe-Ti oxide ore-bearing mafic ultramafic intrusions in the Emeishan large igneous province, SW China: Chemical Geology, v. 401, p. 28–42, doi:https://doi.org/10.1016/j.chemgeo.2015.02.020
    OpenUrlCrossRefGeoRef
  80. ↵
    1. Yu S. Y.,
    2. Shen N. P.,
    3. Song X. Y.,
    4. Ripley E. M.,
    5. Li C.,
    6. Chen L. M.
    , 2017, An integrated chemical and oxygen isotopic study of primitive olivine grains in picrites from the Emeishan large Igneous Province, SW China: evidence for oxygen isotope heterogeneity in mantle sources: Geochimica et Cosmochimica Acta, v. 215, p. 263–276, doi:https://doi.org/10.1016/j.gca.2017.08.007
    OpenUrlCrossRef
  81. ↵
    1. Zhang D. Y.,
    2. Zhang Z. C.,
    3. Mao J. W.,
    4. Huang H.,
    5. Cheng Z. G.
    , 2016, Zircon U-Pb ages and Hf-O isotopic signatures of the Wajilitag and Puchang Fe-Ti oxide-bearing intrusive complexes: Constraints on their source characteristics and temporal-spatial evolution of the Tarim large igneous province: Gondwana Research, v. 37, p. 71–85, doi:https://doi.org/10.1016/j.gr.2016.05.011
    OpenUrlCrossRef
  82. ↵
    1. Zhang J. J.,
    2. Zheng Y. F.,
    3. Zhao Z. F.
    , 2009b, Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China: Lithos, v. 110, n. 1–4, p. 305–326, doi:https://doi.org/10.1016/j.lithos.2009.01.006
    OpenUrlCrossRefGeoRefWeb of Science
  83. ↵
    1. Zhang L.,
    2. Ren Z. Y.,
    3. Handler M. R.,
    4. Wu Y. D.,
    5. Zhang L.,
    6. Qian S. P.,
    7. Xia X. P.,
    8. Yang Q.,
    9. Xu Y. -G.
    , 2019, The origins of high-Ti and low-Ti magmas in large igneous provinces, insights from melt inclusion trace elements and Sr-Pb isotopes in the Emeishan large Igneous Province: Lithos, v. 344–345, p. 122–133, doi:https://doi.org/10.1016/j.lithos.2019.06.014
    OpenUrlCrossRef
  84. ↵
    1. Zhang Z.,
    2. Mao J.,
    3. Wang F.,
    4. Hao Y.,
    5. Mahoney J. J.
    , 2005, Mantle plume activity and melting conditions: Evidence from olivines in picritic-komatiitic rocks from the Emeishan Large Igneous Province, southwestern China: Episodes, v. 28, n. 3, p. 171–176, doi:https://doi.org/10.18814/epiiugs/2005/v28i3/003
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Zhang Z.,
    2. Mahoney J. J.,
    3. Mao J.,
    4. Wang F.
    , 2006, Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China: Journal of Petrology, v. 47, n. 10, p. 1997–2019, doi:https://doi.org/10.1093/petrology/egl034
    OpenUrlCrossRefGeoRefWeb of Science
  86. ↵
    1. Zhang Z.,
    2. Mao J.,
    3. Saunders A. D.,
    4. Ai Y.,
    5. Li Y.,
    6. Zhao L.
    , 2009a, Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints: Lithos, v. 113, n. 3–4, p. 369–392, doi:https://doi.org/10.1016/j.lithos.2009.04.023
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Zhao G. C.,
    2. Cawood P. A.
    , 2012, Precambrian geology of China: Precambrian Research, v. 222–223, p. 13–54, doi:https://doi.org/10.1016/j.precamres.2012.09.017
    OpenUrlCrossRef
  88. ↵
    1. Zhao J. H.,
    2. Zhou M. F.,
    3. Yan D. P.,
    4. Zheng J. P.,
    5. Li J. W.
    , 2011, Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny: Geology, v. 39, n. 4, p. 299–302, doi:https://doi.org/10.1130/G31701.1
    OpenUrlAbstract/FREE Full Text
  89. ↵
    1. Zhao J. H.,
    2. Li Q. W.,
    3. Liu H.,
    4. Wang W.
    , 2018, Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator: Earth-Science Reviews, v. 187, p. 1–18. doi:https://doi.org/10.1016/j.earscirev.2018.10.004
    OpenUrlCrossRef
  90. ↵
    1. Zhao J. X.,
    2. McCulloch M. T.
    , 1993, Melting of a subduction-modified continental lithospheric mantle: Evidence from Late Proterozoic mafic dike swarms in central Australia: Geology, v. 21, n. 5, p. 463–466, doi:https://doi.org/10.1130/0091-7613(1993)021<0463:MOASMC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  91. ↵
    1. Zhong H.,
    2. Zhu W. G.,
    3. Chu Z. Y.,
    4. He D. F.,
    5. Song X. Y.
    , 2007, SHRIMP U-Pb zircon geochronology, geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China: Chemical Geology, v. 236, n. 1–2, p. 112–133, doi:https://doi.org/10.1016/j.chemgeo.2006.09.004
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    1. Zhou H.,
    2. Hoernle K.,
    3. Geldmacher J.,
    4. Hauff F.,
    5. Homrighausen S.,
    6. Garbe-Schönberg D.,
    7. Jung S.
    , 2020, Geochemistry of Etendeka magmatism: Spatial heterogeneity in the Tristan-Gough plume head: Earth and Planetary Science Letters, v. 535, 116123, doi:https://doi.org/10.1016/j.epsl.2020.116123
    OpenUrlCrossRef
  93. ↵
    1. Zhou M. -F.,
    2. Malpas J.,
    3. Song X. -Y.,
    4. Robinson P. T.,
    5. Sun M.,
    6. Kennedy A. K.,
    7. Lesher C. M.,
    8. Keays R. R.
    , 2002, A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction: Earth and Planetary Science Letters, v. 196, n. 3–4, p. 113–122, doi:https://doi.org/10.1016/S0012-821X(01)00608-2
    OpenUrlCrossRefGeoRefWeb of Science
  94. ↵
    1. Zhou M. F.,
    2. Zhao J. H.,
    3. Qi L.,
    4. Su W.,
    5. Hu R.
    , 2006, Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China: Contributions to Mineralogy and Petrology, v. 151, p. 1–19, doi:https://doi.org/10.1007/s00410-005-0030-y
    OpenUrlCrossRefGeoRefWeb of Science
  95. ↵
    1. Zhou M. F.,
    2. Arndt N. T.,
    3. Malpas J.,
    4. Wang C. Y.,
    5. Kennedy A. K.
    , 2008, Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China: Lithos, v. 103, n. 3–4, p. 352–368, doi:https://doi.org/10.1016/j.lithos.2007.10.006
    OpenUrlCrossRefGeoRefWeb of Science
  96. ↵
    1. Zhou X. Y.,
    2. Yu J. H.,
    3. O'Reilly S. Y.,
    4. Griffin W. L.,
    5. Sun T.,
    6. Wang X. L.,
    7. Tran M. D.,
    8. Nguyen D.
    , 2018, Component variation in the late Neoproterozoic to Cambrian sedimentary rocks of SW China-NE Vietnam, and its tectonic significance: Precambrian Research, v. 308, p. 92–110, doi:https://doi.org/10.1016/j.precamres.2018.02.003
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (8)
American Journal of Science
Vol. 322, Issue 8
1 Oct 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Late Permian plume and Neoproterozoic subduction-modified mantle interaction: Insights from geochronology and Sr-Nd-O isotopes of mafic dikes of the western Emeishan large igneous province
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
12 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Late Permian plume and Neoproterozoic subduction-modified mantle interaction: Insights from geochronology and Sr-Nd-O isotopes of mafic dikes of the western Emeishan large igneous province
Yanning Wang, Shengchao Xue, Reiner Klemd, Lin Yang, Feng Zhao, Qingfei Wang
American Journal of Science Oct 2022, 322 (8) 993-1018; DOI: 10.2475/08.2022.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Late Permian plume and Neoproterozoic subduction-modified mantle interaction: Insights from geochronology and Sr-Nd-O isotopes of mafic dikes of the western Emeishan large igneous province
Yanning Wang, Shengchao Xue, Reiner Klemd, Lin Yang, Feng Zhao, Qingfei Wang
American Journal of Science Oct 2022, 322 (8) 993-1018; DOI: 10.2475/08.2022.02
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL BACKGROUND
    • SAMPLING AND ANALYTICAL RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • SUPPLEMENTARY DATA
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Mafic dikes
  • Sr-Nd-O isotopes
  • Mantle plume
  • Subduction-modified lithospheric mantle
  • Emeishan large igneous province

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire