Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic

Jin Zhang, Junfeng Qu, Beihang Zhang, Heng Zhao, Ronggou Zheng, Jianfeng Liu, Jie Hui, Pengfei Niu, Long Yun, Shuo Zhao and Yiping Zhang
American Journal of Science September 2022, 322 (7) 851-897; DOI: https://doi.org/10.2475/07.2022.01
Jin Zhang
*Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: zhangjinem@sina.com
Junfeng Qu
*Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beihang Zhang
*Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heng Zhao
*Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ronggou Zheng
*Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianfeng Liu
*Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jie Hui
**University of Chinese Academy of Sciences, Beijing, 100049, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pengfei Niu
*Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Long Yun
***Beijing Research Institute of Uranium Geology, Beijing, 100029, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shuo Zhao
*Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yiping Zhang
§Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Allen M. B.,
    2. Windley B. F.,
    3. Zhang C.,
    4. Guo J. H.
    , 1993, Evolution of the Turfan basin, Chinese central Asia: Tectonics, v. 12, n. 4, p. 889–896, doi:https://doi.org/10.1029/93TC00598
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Allen M. B.,
    2. Şengör A. M. C.,
    3. Natal'in B. A.
    , 1995, Junggar, Turfan and Alakol basins as Late Permian to? Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central Asia: Journal of the Geological Society, London, v. 152, p. 327–338, doi:https://doi.org/10.1144/gsjgs.152.2.0327
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Arthaud F.,
    2. Matte P.
    , 1977, Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals: Geological Society of America Bulletin, v. 88, n. 9, p. 1305–1320, doi:https://doi.org/10.1130/0016-7606(1977)88<1305:LPSFIS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Ayarza P.,
    2. Brown D.,
    3. Alvarez-Marrón J.,
    4. Juhlin C.
    , 2000, Contrasting tectonic history of the arc–continent suture in the Southern and Middle Urals: implications for the evolution of the orogen: Journal of the Geological Society, v. 157, n. 5, p. 1065–1076, doi:https://doi.org/10.1144/jgs.157.5.1065
    OpenUrlAbstract/FREE Full Text
  5. ↵
    BGMRIMAR (Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region), 1991, Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region: Beijing, China, Geological Publishing House, 725 p.
  6. ↵
    1. Briggs S. M.,
    2. Yin A.,
    3. Manning C. E.,
    4. Chen Z. L.,
    5. Wang X. F.,
    6. Grove M.
    , 2007, Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System: Geological Society of America Bulletin, v. 119, n. 7–8, p. 944–960, doi:https://doi.org/10.1130/B26044.1
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Brown D.,
    2. Puchkov V.,
    3. Alvarez-Marron J.,
    4. Bea F.,
    5. Perez-Estaún A.
    , 2006b, Tectonic processes in the Southern and Middle Urals: an overview: Geological Society, London, Memoirs, v. 32, no. 1, p. 407–419, doi:https://doi.org/10.1144/GSL.MEM.2006.032.01.24
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Brown D.,
    2. Spadea P.,
    3. Puchkov V.,
    4. Alvarez-Marron J.,
    5. Herrington R.,
    6. Willner A. P.,
    7. Hetzel R.,
    8. Gorozhanina Y.,
    9. Juhlin C.
    , 2006a, Arc–continent collision in the Southern Urals: Earth-Science Reviews, v. 79, n. 3–4, p. 261–287, doi:https://doi.org/10.1016/j.earscirev.2006.08.003
    OpenUrlCrossRefGeoRef
  9. ↵
    1. Bullard E.,
    2. Everett J. E.,
    3. Smith A. G.
    , 1965, The fit of the continents around the Atlantic: Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, v. 258, n. 1088, p. 41–51, doi:https://doi.org/10.1098/rsta.1965.0020
    OpenUrlCrossRefGeoRef
  10. ↵
    1. Buslov M. M.
    , 2011, Tectonics and geodynamics of the Central Asian Foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults: Russian Geology and Geophysics, v. 52, n. 1, p. 52–71, doi:https://doi.org/10.1016/j.rgg.2010.12.005
    OpenUrlCrossRefWeb of Science
  11. ↵
    1. Buslov M. M.,
    2. Fujiwara Y.,
    3. Iwata K.,
    4. Semakov N. N.
    , 2004a, Late Paleozoic-Early Mesozoic Geodynamics of Central Asia: Gondwana Research, v. 7, n. 3, p. 791–808, doi:https://doi.org/10.1016/S1342-937X(05)71064-9
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Buslov M. M.,
    2. Watanabe T.,
    3. Fujiwara Y.,
    4. Iwata K.,
    5. Smirnova L. V.,
    6. Safonova I. Y.,
    7. Semakov N. N.,
    8. Kiryanova A. P.
    , 2004b, Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation: Journal of Asian Earth Sciences, v. 23, n. 5, p. 655–671, doi:https://doi.org/10.1016/S1367-9120(03)00131-7
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Cai Z. H.,
    2. Xu Z. Q.,
    3. He B. Z.,
    4. Wang R. R.
    , 2012, Age and tectonic evolution of ductile shear zones in the eastern Tianshan-Beishan orogenic belt: Acta Petrologica Sinica, v. 28, n. 6, p. 1875–1895.
    OpenUrlGeoRef
  14. ↵
    1. Chai P.,
    2. Sun J. G,
    3. Xing S. W.,
    4. Li B.,
    5. Lu C.
    , 2016, Ore geology, fluid inclusion and 40Ar/39Ar geochronology constraints on the genesis of the Yingchengzi gold deposit, southern Heilongjiang Province, NE China: Ore Geology Reviews, v. 72, Part 1, p. 1022–1036, doi:https://doi.org/10.1016/j.oregeorev.2015.09.026
    OpenUrlCrossRef
  15. ↵
    1. Charvet J.,
    2. Shu L. S,
    3. Laurent-Charvet S.,
    4. Wang B.,
    5. Faure M.,
    6. Cluzel D.,
    7. Chen Y.,
    8. de Jong K.
    , 2011, Palaeozoic tectonic evolution of the Tianshan belt, NW China: Science China Earth Sciences, v. 54, n. 2, p. 166–184, doi:https://doi.org/10.1007/s11430-010-4138-1
    OpenUrlCrossRef
  16. ↵
    1. Chen B. L.,
    2. Wu G. G.,
    3. Yang N.,
    4. Ye D. J.,
    5. Shu B.,
    6. Liu X. C.
    , 2007, Baidunzi-Xiaoxigong ductile shear zone and its ore-controlling effect in the southern Beishan Area, Gansu: Journal of Geomechanics, v. 13, n. 2, p. 99–109.
    OpenUrl
  17. ↵
    1. Chen W.,
    2. Sun S.,
    3. Zhang Y.,
    4. Xiao W. J.,
    5. Wang Y. T.,
    6. Wang Q. L.,
    7. Jiang L. Z.,
    8. Yang J. T.
    , 2005, 40Ar/39Ar geochronology of the Qiugemingtashi-Huangshan ductile shear zone in east Tianshan, Xinjiang, NW China: Acta Geologica Sinica, v. 79, n. 6, p. 790–804.
    OpenUrl
  18. ↵
    1. Choulet F.,
    2. Faure M.,
    3. Cluzel D.,
    4. Chen Y.,
    5. Lin W.,
    6. Wang B.
    , 2012, From oblique accretion to transpression in the evolution of the Altaid collage: new insights from West Junggar, northwestern China: Gondwana Research, v. 21, n. 2–3, p. 530–547, doi:https://doi.org/10.1016/j.gr.2011.07.015
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Cisneros J. C.,
    2. Abdala F.,
    3. Atayman-Güven S.,
    4. Rubidge B. S.,
    5. Şengör A. M. C.,
    6. Schultz C. L.
    , 2012, Carnivorous dinocephalian from the Middle Permian of Brazil and tetrapod dispersal in Pangaea: Proceedings of the National Academy of Sciences of the United States of America, v. 109, n. 5, p. 1584–1588, doi:https://doi.org/10.1073/pnas.1115975109
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Collins W. J.
    , 2003, Slab pull, mantle convection, and Pangaean assembly and dispersal: Earth and Planetary Science Letters, v. 205, n. 3–4, p. 225–237, doi:https://doi.org/10.1016/S0012-821X(02)01043-9
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Collins W. J.,
    2. Belousova E. A.,
    3. Kemp A. I. S.,
    4. Murphy J. B.
    , 2011, Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data: Nature Geoscience, v. 4, n. 5, p. 333–337, doi:https://doi.org/10.1038/ngeo1127
    OpenUrlCrossRef
  22. ↵
    1. Corsini M.,
    2. Vauchez A.,
    3. Caby R.
    , 1996, Ductile duplexing at a bend of a continental-scale strike-slip shear zone: example from NE Brazil: Journal of Structural Geology, v. 18, n. 4, p. 385–394, doi:https://doi.org/10.1016/0191-8141(95)00102-J
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    1. Cui X.,
    2. Wang G. H.,
    3. Wang Z. Y.,
    4. Liu D. W.,
    5. Lei C. C.,
    6. Tang Y.
    , 2019, Discovery of structural schist belt in Huobuhaer area of Ejinaqi, Inner Mongolia: Implication for its tectonic significance: Journal of Mineralogy and Petrology, v. 39, n. 2, p. 81–89.
    OpenUrl
  24. ↵
    1. Cunningham D.
    , 2013, Mountain building processes in intracontinental oblique deformation belts: Lessons from the Gobi Corridor, Central Asia: Journal of Structural Geology, v. 46, p. 255–282, doi:https://doi.org/10.1016/j.jsg.2012.08.010
    OpenUrlCrossRefWeb of Science
  25. ↵
    1. de Jong K.,
    2. Xiao W. J.,
    3. Windley B. F.,
    4. Masago H.,
    5. Lo C. H.
    , 2006, Ordovician 40Ar/39Ar phengite ages from the blueschist-facies Ondor Sum subduction-accretion complex (Inner Mongolia) and implications for the Early Paleozoic history of continental blocks in China and adjacent areas: American Journal of Science, v. 306, n. 10, p. 799–845, doi:https://doi.org/10.2475/10.2006.02
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. de Jong K.,
    2. Wang B.,
    3. Faure M.,
    4. Shu L. S.,
    5. Cluzel D.,
    6. Charvet J.,
    7. Ruffet G.,
    8. Chen Y.
    , 2009, New 40Ar/39Ar age constraints on the late Palaeozoic tectonic evolution of the western Tianshan (Xinjiang, northwestern China), with emphasis on Permian fluid ingress: International Journal of Earth Sciences, v. 98, n. 6, p. 1239–1258, doi:https://doi.org/10.1007/s00531-008-0338-8
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Deng J.,
    2. Yuan W. M.,
    3. Carranza E. J. M.,
    4. Yang L. Q.,
    5. Wang C. M.,
    6. Yang L. Y.,
    7. Hao N. N.
    , 2014, Geochronology and thermochronometry of the Jiapigou gold belt, northeastern China: New evidence for multiple episodes of mineralization: Journal of Asian Earth Sciences, v. 89, p. 10–27, doi:https://doi.org/10.1016/j.jseaes.2014.03.013
    OpenUrlCrossRefGeoRef
  28. ↵
    1. Dewey J. F.
    , 2002, Transtension in arcs and orogens: International Geology Review, v. 44, n. 5, p. 402–439, doi:https://doi.org/10.2747/0020-6814.44.5.402
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Ding S. H.
    , 2021, 40Ar-39Ar age of sericite and its geological significance in Qianhongquan gold deposit, Beishan Area, Gansu Province: Gold Science and Technology, v. 29, n. 2, p. 173–183.
    OpenUrl
  30. ↵
    1. Domeier M.,
    2. Van der Voo R.,
    3. Torsvik T. H.
    , 2012, Paleomagnetism and Pangaea: the road to reconciliation: Tectonophysics, v. 514–517, p. 14–43, doi:https://doi.org/10.1016/j.tecto.2011.10.021
    OpenUrlCrossRef
  31. ↵
    1. Domeier M.,
    2. Font E.,
    3. Youbi N.,
    4. Davies J.,
    5. Nemkin S.,
    6. Van der Voo R.,
    7. Perrot M.,
    8. Benabbou M.,
    9. Boumehdi M. A.,
    10. Torsvik T. H.
    , 2021, On the Early Permian shape of Pangea from paleomagnetism at its core: Gondwana Research, v. 90, p. 171–198, doi:https://doi.org/10.1016/j.gr.2020.11.005
    OpenUrlCrossRef
  32. ↵
    1. Dong Y.,
    2. Ge W. C.,
    3. Yang H.,
    4. Bi J. H.,
    5. Wang Z. H.,
    6. Xu W. L.
    , 2017, Permian tectonic evolution of the Mudanjiang Ocean: Evidence from zircon U-Pb-Hf isotopes and geochemistry of a N-S trending granitoid belt in the Jiamusi Massif, NE China: Gondwana Research, v. 49, p. 147–163, doi:https://doi.org/10.1016/j.gr.2017.05.017
    OpenUrlCrossRef
  33. ↵
    1. Eizenhöfer P. R.,
    2. Zhao G. C.,
    3. Zhang J.,
    4. Sun M.
    , 2014, Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks: Tectonics, v. 33, n. 4, p. 441–463, doi:https://doi.org/10.1002/2013TC003357
    OpenUrlCrossRefGeoRef
  34. ↵
    1. Feng L. M.,
    2. Lin S.F .,
    3. Li L. M.,
    4. Davis D. W.,
    5. Song C. Z.,
    6. Li J. H.,
    7. Ren S. L.,
    8. Han X.,
    9. Ge Y. P.,
    10. Lu K. J.
    , 2020, Constraints on the tectonic evolution of the southern central Asian orogenic belt from early Permian–middle Triassic granitoids from the central Dunhuang orogenic belt, NW China: Journal of Asian Earth Sciences, v. 194, 104283, doi:https://doi.org/10.1016/j.jseaes.2020.104283
    OpenUrlCrossRef
  35. ↵
    1. Fossen H.,
    2. Cavalcante G. C. G.
    , 2017, Shear zones – A review: Earth-Science Reviews, v. 171, p. 434–455, doi:https://doi.org/10.1016/j.earscirev.2017.05.002
    OpenUrlCrossRef
  36. ↵
    1. Fossen H.,
    2. Harris L. B.,
    3. Cavalcante C.,
    4. Archanjo C. J.,
    5. Ávila C. F.
    , 2022, The Patos-Pernambuco shear system of NE Brazil: Partitioned intracontinental transcurrent deformation revealed by enhanced aeromagnetic data: Journal of Structural Geology, v. 158, 104573, doi:https://doi.org/10.1016/j.jsg.2022.104573
    OpenUrlCrossRef
  37. ↵
    1. Franke W.,
    2. Żelaźniewicz A.
    , 2002, Structure and evolution of the Bohemian Arc: Geological Society, London, Special Publication, v. 201, p. 279–293, doi:https://doi.org/10.1144/GSL.SP.2002.201.01.13
    OpenUrlCrossRef
  38. ↵
    1. Gao J.,
    2. Jiang T.,
    3. Wang X. S.,
    4. Li J. L.,
    5. Zhai Q. G.,
    6. Hu P. Y.,
    7. Qian Q.
    , 2022, The Junggar, Tianshan and Beishan ophiolites: Constraint on the evolution of oceanic and continental framework along the southwestern margin of the Central-Asian Orogenic Belt: Chinese Journal of Geology, v. 57, n. 1, p. 1–42, doi:https://doi.org/10.12017/dzkx.2022.001
    OpenUrlCrossRef
  39. ↵
    1. Gao L. M.
    , ms, 2004, Basic characteristics and dynamic significance of Xarmoron River fault zone: Master Thesis, Beijing, China, Chinese Academy of Geological Sciences (Beijing), 40 p.
  40. ↵
    1. Gao Y.,
    2. Ding H. L.,
    3. Guo R.J .,
    4. Liu Y. Y .,
    5. Wang J. B.
    , 2016, Structural deformation of Gonglujing—Sangejing ductile shear zone in the Beishan orogenic belt, and its geological significance: Geological Survey of China, v. 3, n. 1, p. 26–34, doi:https://doi.org/10.19388/j.zgdzdc.2016.01.005
    OpenUrlCrossRef
  41. ↵
    1. Gates A. E.,
    2. Simpson C.,
    3. Glover L. III.
    1986, Appalachian Carboniferous dextral strike-slip faults: an example from Brookneal, Virginia: Tectonics, v. 5, n. 1, p. 119–133, doi:https://doi.org/10.1029/TC005i001p00119
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Ge M. H.,
    2. Zhang J. J.,
    3. Liu K.,
    4. Ling Y. Y.,
    5. Wang M.,
    6. Wang J. M.
    , 2016, Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China: Lithos, v. 261, p. 232–249, doi:https://doi.org/10.1016/j.lithos.2015.11.019
    OpenUrlCrossRef
  43. ↵
    1. Ge M. H.,
    2. Zhang J.J .,
    3. Li L.,
    4. Liu K.
    , 2018, A Triassic-Jurassic westward scissor-like subduction history of the Mudanjiang Ocean and amalgamation of the Jiamusi Block in NE China: Constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes of the Lesser Xing'an-Zhangguangcai Range granitoids: Lithos, v. 302–303, p. 263–277, doi:https://doi.org/10.1016/j.lithos.2018.01.004
    OpenUrlCrossRef
  44. ↵
    1. Chang Z.,
    2. Goldfarb R. J.
    1. Goldfarb R.,
    2. Qiu K .F.,
    3. Deng J.,
    4. Chen Y. J.,
    5. Yang L. Q.
    , 2019, Orogenic Gold Deposits of China, in Chang Z., Goldfarb R. J., editors, Mineral Deposits of China: Society of Economic Geologists Special Publications, v. 22, p. 263–324.
    OpenUrl
  45. ↵
    1. Gong J. H.,
    2. Zhang J. X.,
    3. Wang Z. Q.,
    4. Yu S. Y.,
    5. Wang D. S.
    , 2018, Late Ordovician-Carboniferous tectonic evolutionary history of the Alxa Block: Constrained by the multistage magmatic-metamorphic-deformation events in Beidashan area: Acta Petrologica et Minerlogica, v. 37, n. 5, p. 771–798.
    OpenUrl
  46. ↵
    1. Graham S. A.,
    2. Hendrix M. S.,
    3. Johnson C. L.,
    4. Badamgarav D.,
    5. Badarch G.,
    6. Amory J.,
    7. Porter M.,
    8. Barsbold R.,
    9. Webb L. E.,
    10. Hacker B. R.
    , 2001, Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia: Geological Society of America Bulletin, v. 113, n. 12, p. 1560–1579, doi:https://doi.org/10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Guan J.
    , ms, 2010, Study of the Aergashun ductile shear zone in Tamusu region of Alxa Youqi, Inner Mongolia: Master Thesis, Beijing, China, China University of Geosciences (Beijing), 49 p.
  48. ↵
    1. Han Y. G.,
    2. Zhao G. C.,
    3. Sun M.,
    4. Eizenhöfer P. R.,
    5. Hou W. Z.,
    6. Zhang X. R.,
    7. Liu Q.,
    8. Wang B.,
    9. Liu D. X.,
    10. Xu B.
    , 2016, Late Paleozoic subduction and collision processes during the amalgamation of the Central Asian Orogenic Belt along the South Tianshan suture zone: Lithos, v. 246–247, p. 1–12, doi:https://doi.org/10.1016/j.lithos.2015.12.016
    OpenUrlCrossRef
  49. ↵
    1. Hart C. J. R.,
    2. Goldfarb R. J.,
    3. Qiu Y. M.,
    4. Snee L.,
    5. Miller L. D.,
    6. Miller M. L.
    , 2002, Gold deposits of the northern margin of the North China Craton: multiple late Paleozoic–Mesozoic mineralizing events: Mineralium Deposita, v. 37, p. 326–351, doi:https://doi.org/10.1007/s00126-001-0239-2
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. He D. F.,
    2. Zhang L.,
    3. Wu S. T.,
    4. Li D.,
    5. Zhen Y.
    , 2018, Tectonic evolution stages and features of the Junggar Basin: Oil and Gas Geology, v. 39, n. 5, p. 845–861.
    OpenUrl
  51. ↵
    1. He Z.,
    2. Wang B.,
    3. Ni X.,
    4. De Grave J.,
    5. Scaillet S.,
    6. Chen Y.,
    7. Liu J.,
    8. Zhu X.
    , 2021, Structural and kinematic evolution of strike-slip shear zones around and in the Central Tianshan: insights for eastward tectonic wedging in the southwest Central Asian Orogenic Belt: Journal of Structural Geology, v. 144, p. 104279, doi:https://doi.org/10.1016/j.jsg.2021.104279
    OpenUrlCrossRef
  52. ↵
    1. Hetzel R.,
    2. Glodny J.
    , 2002, A crustal-scale, orogen-parallel strike-slip fault in the Middle Urals: age, magnitude of displacement, and geodynamic significance: International Journal of Earth Sciences, v. 91, n. 2, p. 231–245, doi:https://doi.org/10.1007/s005310100208
    OpenUrlCrossRef
  53. ↵
    1. Heumann M. J.,
    2. Johnson C. L.,
    3. Webb L. E.,
    4. Taylor J. P.,
    5. Jalbaa U.,
    6. Minjin C.
    , 2014, Total and incremental left-lateral displacement across the East Gobi Fault Zone, southern Mongolia: Implications for timing and modes of polyphase intracontinental deformation: Earth and Planetary Science Letters, v. 392, p. 1–15, doi:https://doi.org/10.1016/j.epsl.2014.01.016
    OpenUrlCrossRefGeoRef
  54. ↵
    1. Hoskin P. W. O.,
    2. Schaltegger U.
    , 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in Mineralogy and Geochemistry, v. 53, n. 1, p. 27–62, doi:https://doi.org/10.2113/0530027
    OpenUrlFREE Full Text
  55. ↵
    1. Huang T. K.
    , 1945, On the major tectonic forms of China: National Geological Survey of China, Geological Memoirs, Ser. A, v. 20, p.1–165.
    OpenUrl
  56. ↵
    1. Hui J.,
    2. Zhang K. J.,
    3. Zhang J.,
    4. Qu J. F.,
    5. Zhang B. H.,
    6. Zhao H.,
    7. Niu P. F.
    , 2021, Middle–late Permian high-K adakitic granitoids in the NE Alxa block, northern China: Orogenic record following the final closure of Paleo-Asian oceanic branch?: Lithos, v. 400–401, p. 106379, doi:https://doi.org/10.1016/j.lithos.2021.106379
    OpenUrlCrossRef
  57. ↵
    1. Irving E.
    , 1977, Drift of the major continental blocks since the Devonian: Nature, v. 270, n. 5635, p. 304–309, doi:https://doi.org/10.1038/270304a0
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. McElhinny M. W.
    1. Irving E.
    , 1979, Pole positions and continental drift since the Devonian, in McElhinny M. W., editor, The Earth its origins, structure and evolution: Waltham, Massachusetts, Academic Press, p. 567–593.
  59. ↵
    1. Irving E.
    , 2004, The case for Pangaea B, and the Intra-Pangaean Megashear: Geophysical Monograph Series, v. 145, p. 13–27 doi:https://doi.org/10.1029/145GM02
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Jahn B. M.,
    2. Wu F. Y.,
    3. Chen B.
    , 2000, Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 91, n. 1–2, p. 181–193, doi:https://doi.org/10.1017/S0263593300007367
    OpenUrlCrossRef
  61. ↵
    1. Jiang H. B.,
    2. Yang H. Q.,
    3. Dong F. C.,
    4. Tan W. J.,
    5. Zhao G. B.,
    6. Ren H. N.
    , 2012, Division of metallogenic unit in the East Tianshan-Beishan area: Northwestern Geology, v. 45, n. 3, p. 1–12.
    OpenUrl
  62. ↵
    1. Jiang Y. D.,
    2. Schulmann K.,
    3. Sun M.,
    4. Weinberg R. F.,
    5. Štípská P.,
    6. Li P. F.,
    7. Zhang J.,
    8. Chopin F.,
    9. Wang S.,
    10. Xia X. P.,
    11. Xiao W. J.
    , 2019, Structural and geochronological constraints on Devonian suprasubduction tectonic switching and Permian collisional dynamics in the Chinese Altai, Central Asia: Tectonics, v. 38, n. 1, p. 253–280, doi:https://doi.org/10.1029/2018TC005231
    OpenUrlCrossRef
  63. ↵
    1. Jourdon A.,
    2. Peti C.,
    3. Rolland Y.,
    4. Loury C.,
    5. Bellahsen N.,
    6. Guillot S.,
    7. Le Pourhiet L.,
    8. Ganino C.
    , 2017, New structural data on Late Paleozoic tectonics in the Kyrgyz Tien Shan (Central Asian Orogenic Belt): Gondwana Research, v. 46, p. 57–78, doi:https://doi.org/10.1016/j.gr.2017.03.004
    OpenUrlCrossRef
  64. ↵
    1. Kent D. V.,
    2. Muttoni G.
    , 2020, Pangea B and the Late Paleozoic Ice Age: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 553, p. 109753, doi:https://doi.org/10.1016/j.palaeo.2020.109753
    OpenUrlCrossRef
  65. ↵
    1. Khain E. V.,
    2. Bibikova E. V.,
    3. Kröner A.,
    4. Zhuravlev D. Z.,
    5. Sklyarov E. V.,
    6. Fedotova A. A.,
    7. Kravchenko-Berezhnoy I. R.
    , 2002, The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications: Earth and Planetary Science Letters, v. 199, n.3–4, p. 311–325, doi:https://doi.org/10.1016/S0012-821X(02)00587-3
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    1. Laurent-Charvet S.,
    2. Charvet J.,
    3. Shu L. S.,
    4. Ma R. S.,
    5. Lu H. F.
    , 2002, Palaeozoic late collisional strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China: Terra Nova, v. 14, n. 4, p. 249–256, doi:https://doi.org/10.1046/j.1365-3121.2002.00417.x
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Laurent-Charvet S.,
    2. Charvet J.,
    3. Monie P.,
    4. Shu L. S.
    , 2003, Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data: Tectonics, v. 22, n. 2, 1009, doi:https://doi.org/10.1029/2001TC901047
    OpenUrlCrossRef
  68. ↵
    1. Le Pichon X.,
    2. Şengör A. M. C.,
    3. İmren C.
    , 2019, Pangea and the lower mantle: Tectonics, v. 38, n. 10, p. 3479–3504, doi:https://doi.org/10.1029/2018TC005445
    OpenUrlCrossRef
  69. ↵
    1. Le Pichon X.,
    2. Jellinek M.,
    3. Lenardic A.,
    4. Şengör A. M. C.,
    5. İmren C.
    , 2021, Pangea migration: Tectonics, v. 40, n. 6, p. e2020TC006585, doi:https://doi.org/10.1029/2020TC006585
    OpenUrlCrossRef
  70. ↵
    1. Lenardic A.,
    2. Moresi L.,
    3. Jellinek A. M.,
    4. O'Neill C. J.,
    5. Cooper C. M.,
    6. Lee C. T.
    , 2011, Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation: Theory, numerical simulations, and laboratory experiments: Geochemistry, Geophysics, Geosystems, v. 12, n. 10, p. Q10016, doi:https://doi.org/10.1029/2011GC003663
    OpenUrlCrossRef
  71. ↵
    1. Levashova N. M.,
    2. Degtyarev K. E.,
    3. Bazhenov M. L.
    , 2012, Oroclinal bending of the Middle and Late Paleozoic volcanic belts in Kazakhstan: Paleomagnetic evidence and geological implications: Geotectonics, v. 46, n. 4, p. 285–302, doi:https://doi.org/10.1134/S0016852112030041
    OpenUrlCrossRef
  72. ↵
    1. Li C. L.,
    2. Li S. R.,
    3. Yuan M. W.,
    4. Du B. Y.,
    5. Li W. L.,
    6. Masroor A.,
    7. Liu D. Y.,
    8. Liu H.
    , 2020, Genesis of the Keluo Au deposit in the Nenjiang-Heihe tectonic mélange belt, Heilongjiang Province: evidence from chemical composition and pyrite He-Ar, S, Pb isotopes: Earth Science Frontiers, v. 27, n. 5, p. 99–115, doi:https://doi.org/10.13745/j.esf.sf.2020.5.37
    OpenUrlCrossRef
  73. ↵
    1. Li G. Y.,
    2. Zhou J. B.,
    3. Li L.,
    4. Chen Z.,
    5. Wang H. Y.
    , 2022, Late Paleozoic to Mesozoic tectonic transition in northeastern Eurasia: Constraints from two island arc magmatic belts in eastern NE China: Geological Society of America Bulletin, doi:https://doi.org/10.1130/B36314.1
    OpenUrlCrossRef
  74. ↵
    1. Li J. Y.,
    2. Gao L. M.,
    3. Sun G. H.,
    4. Li Y. P.,
    5. Wang Y. B.
    , 2007, Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolian and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates: Acta Petrologica Sinica, v. 23, n. 3, p. 565–582.
    OpenUrlGeoRef
  75. ↵
    1. Li P. F.,
    2. Sun M.,
    3. Rosenbaum G.,
    4. Cai K. D.,
    5. Yu Y.
    , 2015, Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt: Journal of Structural Geology, v. 80, p. 142–156, doi:https://doi.org/10.1016/j.jsg.2015.08.008
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Li P. F.,
    2. Sun M.,
    3. Rosenbaum G.,
    4. Yuan C.,
    5. Safonova I.,
    6. Cai K.,
    7. Jiang Y.,
    8. Zhang Y.
    , 2018, Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt: Journal of Asian Earth Sciences, v. 153, p. 42–56, doi:https://doi.org/10.1016/j.jseaes.2017.07.029
    OpenUrlCrossRef
  77. ↵
    1. Li P. F.,
    2. Sun M.,
    3. Yuan C.,
    4. Jourdan F.,
    5. Hu W. W.,
    6. Jiang Y. D.
    , 2021, Late Paleozoic tectonic transition from subduction to collision in the Chinese Altai and Tianshan (Central Asia): New geochronological constaints: American Journal of Science, v. 321, n. 1–2, p. 178–205, doi:https://doi.org/10.2475/01.2021.05
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Li X. P.,
    2. Jiao L. X.,
    3. Zheng Q. D.,
    4. Dong X.,
    5. Kong F. M.,
    6. Song Z. J.
    , 2009, U-Pb zircon dating of the Heilongjiang complex at Huanan, Heilongjiang Province: Acta Petrologica Sinica, v. 25, n. 8, p. 1909–1916.
    OpenUrlGeoRef
  79. ↵
    1. Li X. P.,
    2. Kong F. M.,
    3. Zheng Q. D.,
    4. Dong X.,
    5. Yang Z. Y.
    , 2010, Geochronological study on the Heilongjiang complex at Luobei area, Heilongjiang Province: Acta Petrologica Sinica, v. 26, n. 7, p. 2015–2024.
    OpenUrlGeoRef
  80. ↵
    1. Li Y. L.,
    2. Zhou H. W.,
    3. Brouwer F. M.,
    4. Xiao W. J.,
    5. Wijbrans J. R.,
    6. Zhong Z. Q.
    , 2014, Early Paleozoic to Middle Triassic bivergent accretion in the Central Asian orogenic belt: Insights from zircon U-Pb dating of ductile shear zones in central Inner Mongolia, China: Lithos, v. 205, p. 84–111, doi:https://doi.org/10.1016/j.lithos.2014.06.017
    OpenUrlCrossRef
  81. ↵
    1. Liang C. Y.,
    2. Liu Y. J.,
    3. Zheng C. Q.,
    4. Li W. M.,
    5. Neubauer F.,
    6. Zhang Q.
    , 2019, Macro-and Microstructural, Textural Fabrics and Deformation Mechanism of Calcite Mylonites from Xar Moron-Changchun Dextral Shear Zone, Northeast China: Acta Geologica Sinica (English Edition), v. 93, n. 5, p. 1477–1499, doi:https://doi.org/10.1111/1755-6724.14357
    OpenUrlCrossRef
  82. ↵
    1. Liu B.,
    2. Chen Z. L.,
    3. Yuan F.,
    4. Wu B.,
    5. Zhang X. H.,
    6. Han F. B.,
    7. Zhang W. G.,
    8. Huo H. L.,
    9. Li J. L.,
    10. Qu M. M.,
    11. Zhao T. Y.,
    12. Han Q.,
    13. Li P.,
    14. Xia D.
    , 2022, Late Paleozoic deformation and tectonic significance of the South Central Tianshan Shear Zone, Kawabulake area, East Tianshan, NW China: Constraints from quartz fabrics and geochronologic data: Journal of Asian Earth Sciences, v. 227, p. 105074, doi:https://doi.org/10.1016/j.jseaes.2021.105074
    OpenUrlCrossRef
  83. ↵
    1. Liu J. F.,
    2. Li J. Y.,
    3. Chi X. G.,
    4. Zhao Z. Z.,
    5. Hu Z. C.,
    6. Feng Q. W.
    , 2012, Petrogenesis of middle Triassic post-collisional granite from Jiefangyingzi area, southeast Inner Mongolia: Constraint on the Triassic tectonic evolution of the north margin of the Sino-Korean paleoplate: Journal of Asian Earth Sciences, v. 60, p. 147–159, doi:https://doi.org/10.1016/j.jseaes.2012.08.012
    OpenUrlCrossRefGeoRef
  84. ↵
    1. Liu Q.,
    2. Zhao G.,
    3. Han Y.,
    4. Zhu Y.,
    5. Wang B.,
    6. Eizenhöfer P. R.,
    7. Zhang X.,
    8. Tsui R. W.
    , 2019, Timing of the final closure of the middle segment of the Paleo-Asian Ocean: Insights from geochronology and geochemistry of Carboniferous–Triassic volcanosedimentary successions in western Inner Mongolia, China: Geological Society of America Bulletin, v. 131, n. 5–6, p. 941–965, doi:https://doi.org/10.1130/B32023.1
    OpenUrlCrossRef
  85. ↵
    1. Liu Y. J.,
    2. Li W. M.,
    3. Feng Z. Q.,
    4. Wen Q. B.,
    5. Neubauer F.,
    6. Liang C. Y.
    , 2017, A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt: Gondwana Research, v. 43, p. 123–148, doi:https://doi.org/10.1016/j.gr.2016.03.013
    OpenUrlCrossRef
  86. ↵
    1. Long X. Y.,
    2. Xu W. L.,
    3. Guo P.,
    4. Sun C. Y.,
    5. Luan J. P.
    , 2020, Opening and closure history of the Mudanjiang Ocean in the eastern Central Asian Orogenic Belt: Geochronological and geochemical constraints from early Mesozoic intrusive rocks: Gondwana Research, v. 84, p. 111–130, doi:https://doi.org/10.1016/j.gr.2020.03.003
    OpenUrlCrossRef
  87. ↵
    1. Lu C. G.,
    2. Bai S. M.,
    3. Yang G.
    , 2012, Geological characteristics and prospecting indicators of Narenhala gold mine in Inner Mongolia: Ningxia Engineering Technology, v. 11, n. 444, p. 297–300.
    OpenUrl
  88. ↵
    1. Lu J.
    , ms, 2016, Inner Mongolia Alxa Bayan Nuru NW dike swarm study in public area: Master Thesis, Beijing, China, China University of Geosciences (Beijing), 41 p.
  89. ↵
    1. Lusk A. D. J.,
    2. Platt J. P.
    , 2020, The deep structure and rheology of a plate boundary-scale shear zone: constraints from an exhumed Caledonian shear zone, NW Scotland: Lithosphere, v. 2020, n. 1, p. 8824736, doi:https://doi.org/10.2113/2020/8824736
    OpenUrlCrossRef
  90. ↵
    1. Ma A. Y.
    , 2009, 40Ar-39Ar dating of muscovite in mylonite of Shangganggangkundui fault-New evidence for the main stage of Xar Moron river fault zone: Xinjiang Geology, v. 27, n. 2, p. 170–175.
    OpenUrl
  91. ↵
    1. Mao Q. G.,
    2. Xiao W. J.,
    3. Windley B. F.,
    4. Han C. M.,
    5. Qu J. F.,
    6. Ao S. J.,
    7. Zhang J. E.,
    8. Guo Q. Q.
    , 2012, The Liuyuan complex in the Beishan, NW China: a Carboniferous-Permian ophiolitic fore-are sliver in the southern Altaids: Geological Magazine, v. 149, n. 3, p. 483–506, doi:https://doi.org/10.1017/S0016756811000811
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Martínez Catalán J. R.
    , 2011, Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics?: Terra Nova, v. 23, n. 4, p. 241–247, doi:https://doi.org/10.1111/j.1365-3121.2011.01005.x
    OpenUrlCrossRefGeoRefWeb of Science
  93. ↵
    1. Matte P.
    , 1991, Accretionary history and crustal evolution of the Variscan belt in Western Europe: Tectonophysics, v. 196, n. 3–4, p. 309–337, doi:https://doi.org/10.1016/0040-1951(91)90328-P
    OpenUrlCrossRefGeoRefWeb of Science
  94. ↵
    1. Matte P.
    , 2001, The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: a review: Terra Nova, v. 13, n. 2, p. 112–128, doi:https://doi.org/10.1046/j.1365-3121.2001.00327.x
    OpenUrlCrossRef
  95. ↵
    1. McDougall I.,
    2. Harrison T. M.
    , 1999, Geochronology and Thermochronology by the 40Ar/39Ar method: New York, USA, Oxford University Press, 269 p.
  96. ↵
    1. Melnikov A.,
    2. Travin A.,
    3. Plotnikov A.,
    4. Smirnova L.,
    5. Theunissen K.
    , 1998, Kinematics and 40Ar/39Ar geochro-nology of the Irtysh Shear zone in the NE Kazakhstan: IGCP 420, Ottawa, Canada, International Union of Geological Sciences, 60 p.
  97. ↵
    1. Merzer A. M.,
    2. Freund R.
    , 1976, Equal spacing of strike-slip faults: Geophysical Journal International, v. 45, n. 1, p. 177–188, doi:https://doi.org/10.1111/j.1365-246X.1976.tb00319.x
    OpenUrlCrossRef
  98. ↵
    1. Metelkin D. V.,
    2. Vernikovsky V. A.,
    3. Kazansky A. Y.,
    4. Wingate M. T. D.
    , 2010, Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence: Gondwana Research, v. 18, n. 2–3, p. 400–419, doi:https://doi.org/10.1016/j.gr.2009.12.008
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Miao L. C.,
    2. Fan W. M.,
    3. Zhang F. Q.,
    4. Liu D. Y.,
    5. Jian P.,
    6. Shi G. H.,
    7. Tao H.,
    8. Shi Y. R.
    , 2004, Zircon SHRIMP geochronology of the Xinkailing–Kele complex in the northwestern Lesser Xing'an Range, and its geological implications: Chinese Science Bulletin, v. 49, n. 2, p. 201–209, doi:https://doi.org/10.1360/03wd0316
    OpenUrlCrossRefGeoRefWeb of Science
  100. ↵
    1. Miao L. C.,
    2. Qiu Y. M.,
    3. Fan W. M.,
    4. Zhang F. Q.,
    5. Zhai M. G.
    , 2005, Geology, geochronology, and tectonic setting of the Jiapigou gold deposits, southern Jilin Province, China: Ore Geology Reviews, v. 26, n. 1–2, p. 137–165, doi:https://doi.org/10.1016/j.oregeorev.2004.10.004
    OpenUrlCrossRefGeoRef
  101. ↵
    1. Miao L.,
    2. Zhang F.,
    3. Zhu M.,
    4. Liu D.
    , 2015, Zircon SHRIMP U-Pb dating of metamorphic complexes in the conjunction of the Greater and Lesser Xing'an ranges, NE China: Timing of formation and metamorphism and tectonic implications: Journal of Asian Earth Sciences, v. 114, p. 634–648, doi:https://doi.org/10.1016/j.jseaes.2014.09.035
    OpenUrlCrossRef
  102. ↵
    1. Mitchell R. N.,
    2. Zhang N.,
    3. Salminen J.,
    4. Liu Y. B.,
    5. Spencer C. J.,
    6. Steinberger B.,
    7. Murphy J. B.,
    8. Li Z. X.
    , 2021, The supercontinent cycle: Nature Reviews Earth & Environment, v. 2, n. 5, p. 358–374, doi:https://doi.org/10.1038/s43017-021-00160-0
    OpenUrlCrossRef
  103. ↵
    1. Mitrokhin D.,
    2. Zazansky A.,
    3. Theunissen K.,
    4. Berzin N.
    , 1997, Paleomagnetic and kinematic characteristics of the Irtysh shear zone near Predgornoye (East Kazakhstan), Preliminary Results: Tervuren, Belgium, Royal Museum of Central Africa, Annual Report, v. 1995–1996, p. 187–201.
  104. ↵
    1. Murphy J. B.,
    2. van Staal C. R.,
    3. Collins W. J.
    , 2011, A comparison of the evolution of arc complexes in Paleozoic interior and peripheral orogens: Speculations on geodynamic correlations: Gondwana Research, v. 19, n. 3, p. 812–827, doi:https://doi.org/10.1016/j.gr.2010.11.019
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Muttoni G.,
    2. Kent D. V.
    , 2019, Adria as promontory of Africa and its conceptual role in the Tethys Twist and Pangea B to Pangea A transformation in the Permian: Rivista Italiana di Paleontologia e Stratigrafia, v. 125, n. 1, p. 249–269, doi:https://doi.org/10.13130/2039-4942/11437
    OpenUrlCrossRef
  106. ↵
    1. Muttoni G.,
    2. Kent D. V.,
    3. Garzanti E.,
    4. Brack P.,
    5. Abrahamsen N.,
    6. Gaetani M.
    , 2003, Early Permian Pangaea ‘B’ to Late Permian Pangaea ‘A’: Earth and Planetary Science Letters, v. 215, n. 3–4, p. 379–394, doi:https://doi.org/10.1016/S0012-821X(03)00452-7
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. Muttoni G.,
    2. Gaetani M.,
    3. Kent D. V.,
    4. Sciunnach D.,
    5. Angiolini L.,
    6. Berra F.,
    7. Garzanti E.,
    8. Mattei M.,
    9. Zanchi A.
    , 2009, Opening of the Neo-Tethys Ocean and the Pangaea B to Pangaea A transformation during the Permian: GeoArabia, v. 14, n. 4, p. 17–48, doi:https://doi.org/10.2113/geoarabia140417
    OpenUrlCrossRef
  108. ↵
    1. Natal'in B. A.,
    2. Şengör A. M. C.
    , 2005, Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre-history of the Palaeo-Tethyan closure: Tectonophysics, v. 404, n. 3–4, p. 175–202, doi:https://doi.org/10.1016/j.tecto.2005.04.011
    OpenUrlCrossRefGeoRefWeb of Science
  109. ↵
    1. Neves S. P.,
    2. Tommasi A.,
    3. Vauchez A.,
    4. Carrino T. A.
    , 2021, The Borborema Strike-Slip Shear Zone System (NE Brazil): Large- Scale Intracontinental Strain Localization in a Heterogeneous Plate: Lithosphere, v. 2021, Special 6, p. 6407232, doi:https://doi.org/10.2113/2021/6407232
    OpenUrlCrossRef
  110. ↵
    1. Norris R. J.,
    2. Toy V. G.
    , 2014, Continental transforms: A view from the Alpine Fault: Journal of Structural Geology, v. 64, p. 3–31, doi:https://doi.org/10.1016/j.jsg.2014.03.003
    OpenUrlCrossRefGeoRef
  111. ↵
    1. Passchier C. W.,
    2. Trouw R. A. J.
    , 2005, Microtectonics, 2nd edition: Berlin Heidelberg, Germany, Springer-Verlag, 366 p.
  112. ↵
    1. Pastor-Galána D.
    , 2022, From supercontinent to superplate: Late Paleozoic Pangea's inner deformation suggests it was a short-lived superplate: Earth-Science Reviews, v. 226, p. 103918, doi:https://doi.org/10.1016/j.earscirev.2022.103918
    OpenUrlCrossRef
  113. ↵
    1. Peng R.,
    2. Zhang G. S.,
    3. Qiu H. X.,
    4. Liu T. T.,
    5. Fan X. X.,
    6. Zhao J. C.
    , 2020, Petrogenesis and tectonic significances of the late Paleozoic mafic dykes in the Beishan area in Gansu Province: Bulletin of Mineralogy, Petrology and Geochemistry, v. 39, n. 2, doi:https://doi.org/10.19658/j.issn.1007-2802.2019.38.121
    OpenUrlCrossRef
  114. ↵
    1. Pfiffner O. A.
    , 2017, Thick-Skinned and Thin-Skinned Tectonics: A Global Perspective: Geosciences, v. 7, n. 3, 71, doi:https://doi.org/10.3390/geosciences7030071
    OpenUrlCrossRef
  115. ↵
    1. Puchkov V. N.
    , 1997, Structure and geodynamics of the Uralian orogen: Geological Society, London, Special Publications, v. 121, n. 1, p. 201–236, doi:https://doi.org/10.1144/GSL.SP.1997.121.01.09
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Qi Q.,
    2. Wang Y. H.,
    3. Feng M. X.,
    4. Yang J. G.,
    5. Yu J. Y.,
    6. Wang L.,
    7. Wang X. H.
    , 2016, Geochronology, geochemistry and tectonic significance of dike swarms in Beishan, Gansu: Acta Geologica Sinica (English Edition), v. 90, n. s1, p. 114–115, doi:https://doi.org/10.1111/1755-6724.12919
    OpenUrlCrossRef
  117. ↵
    1. Ramsay J. G.,
    2. Graham R. H.
    , 1970, Strain variation in shear belts: Canadian Jounral of Earth Sciences, v. 7, n. 3, p. 786–813, doi:https://doi.org/10.1139/e70-078
    OpenUrlCrossRef
  118. ↵
    1. Şengör A. M. C.
    , 2013, The Pyrenean Hercynian Keirogen and the Cantabrian Orocline as genetically coupled structures: Journal of Geodynamics, v. 65, p. 3–21, doi:https://doi.org/10.1016/j.jog.2012.10.003
    OpenUrlCrossRefGeoRef
  119. ↵
    1. Yin A.,
    2. Harrison T. M.
    1. Şengör A. M. C.,
    2. Natal'in B. A.
    , 1996, Paleotectonics of Asia: Fragments of a synthesis, in Yin A., Harrison T. M., editors, The tectonic evolution of Asia: Cambridge, Britain: Cambridge University Press, p. 486–640.
  120. ↵
    1. Şengör A. M. C.,
    2. Natal'in B. A.,
    3. Burtman V. S.
    , 1993, Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia: Nature, v. 364, n. 6435, p. 299–307, doi:https://doi.org/10.1038/364299a0
    OpenUrlCrossRefGeoRefWeb of Science
  121. ↵
    1. Şengör A. M. C.,
    2. Natal'in B. A.,
    3. Sunal G.,
    4. van der Voo R.
    , 2018, The tectonics of the Altaids: Crustal growth during the construction of the continental lithosphere of Central Asia between ∼750 and ∼130 Ma ago: Annual Review of Earth and Planetary Science, v. 46, p. 439–494, doi:https://doi.org/10.1146/annurev-earth-060313-054826
    OpenUrlCrossRef
  122. ↵
    1. Duarte J. C.
    1. Şengör A. M. C,
    2. Zabci C.,
    3. Natal'in B. A.
    , 2019a, Continental transform faults: Congruence and incongruence with normal plate kinematics, in Duarte J. C., editor, Transform plate boundaries and fracture zones: Amsterdam, The Netherlands, Elsevier, chapter 9, p. 169–247, doi:https://doi.org/10.1016/B978-0-12-812064-4.00009-8
    OpenUrlCrossRef
  123. ↵
    1. Wilson R. W.,
    2. Houseman G. A.,
    3. McCaffrey K. J. W.,
    4. Dore A. G.,
    5. Buiter S. J. H.
    1. Şengör A. M. C.,
    2. Lom N.,
    3. Sagdic N. G.
    , 2019b, Tectonic inheritance, structure reactivation and lithospheric strength: the relevance of geological history, in Wilson R. W., Houseman G. A., McCaffrey K. J. W., Dore A. G., Buiter S. J. H., editors, Fifty Years of the Wilson Cycle Concept in Plate Tectonics: Geological Society, London, Special Publications, v. 470, p. 105–135, doi:https://doi.org/10.1144/SP470.8
    OpenUrlCrossRef
  124. ↵
    1. Shelley D.,
    2. Bossière G.
    , 2000, A new model for the Hercynian Orogen of Gondwanan France and Iberia: Journal of Structural Geology, v. 22, n. 6, p. 757–776, doi:https://doi.org/10.1016/S0191-8141(00)00007-9
    OpenUrlCrossRefGeoRefWeb of Science
  125. ↵
    1. Shi G. Z.,
    2. Faure M.,
    3. Xu B.,
    4. Zhao P.,
    5. Chen Y.
    , 2013, Structural and kinematic analysis of the Early Paleozoic Ondor Sum-Hongqi mélange belt, eastern part of the Altaids (CAOB) in Inner Mongolia, China: Journal of Asian Earth Sciences, v. 66, p. 123–139, doi:https://doi.org/10.1016/j.jseaes.2012.12.034
    OpenUrlCrossRefGeoRef
  126. ↵
    1. Shu L. S.,
    2. Chavert J.,
    3. Guo L. Z.,
    4. Lu H. F.,
    5. Sebastien L. C.
    , 1999, A large-scale Palaeozoic dextral ductile strike-slip zone: the Aqqikkudug-Weiya Zone along the Northern Margin of the Central Tianshan Belt, Xinjiang, NW China: Acta Geologica Sinica, v. 73, n. 2, p. 189.
    OpenUrl
  127. ↵
    1. Simpson C.
    , 1983, Strain and shape-fabric variations associated with ductile shear zones: Journal of Structural Geology, v. 5, n. 1, p. 61–72, doi:https://doi.org/10.1016/0191-8141(83)90008-1
    OpenUrlCrossRefGeoRefWeb of Science
  128. ↵
    1. Smith A. G.,
    2. Hurley A. M.,
    3. Briden J. C.
    , 1981, Phanerozoic Paleocontinental World Maps: Cambridge, United Kingdom, Cambridge University Press, 102 p.
  129. ↵
    1. Stampfli G. M.,
    2. Hochard C.,
    3. Vérard C.,
    4. Wilhem C.,
    5. VonRaumer J.
    , 2013, The formation of Pangea: Tectonophysics, v. 593, p. 1–19, doi:https://doi.org/10.1016/j.tecto.2013.02.037
    OpenUrlCrossRefGeoRefWeb of Science
  130. ↵
    1. Storti F.,
    2. Holdsworth R. E.,
    3. Salvini F.
    , 2003, Intraplate Strike-Slip Deformation Belts: Geological Society, London, Special Publications, v. 210, p. 1–14, doi:https://doi.org/10.1144/GSL.SP.2003.210.01.01
    OpenUrlAbstract/FREE Full Text
  131. ↵
    1. Sun D. Y.,
    2. Liang Y. H.,
    3. Zhang Y. M.
    , 1990, Dectile shear zone and gold deposits in Wuchuan-Guyang-Dashetai, Inner Mongolia: Journal of Changchun University of Earth Science, v. 20, n. 4, p. 399–406.
    OpenUrl
  132. ↵
    1. Tang K. D.
    , 1990, Tectonic development of Paleozoic fold belts at the northern margin of the northern margin of the Sino-Korean craton: Tectonics, v. 9, n. 2, p. 249–260, doi:https://doi.org/10.1029/TC009i002p00249
    OpenUrlCrossRefGeoRefWeb of Science
  133. ↵
    1. Tang K.,
    2. Yan Z.
    , 1993, Regional metamorphism and tectonic evolution of the Inner Mongolian suture zone: Journal of Metamorphic Geology, v. 11, n. 4, p. 511–522, doi:https://doi.org/10.1111/j.1525-1314.1993.tb00168.x
    OpenUrlCrossRefGeoRefWeb of Science
  134. ↵
    1. Tian R. S.,
    2. Xie G. A.,
    3. Zhu W. B.,
    4. Zhang J.,
    5. Zhang B. H.,
    6. Zhao H.,
    7. Li T.
    , 2020, Late Paleozoic tectonic evolution of the Paleo-Asian ocean in the Northern Alexa Block (NW China): Tectonics, v. 39, e2020TC006359, doi:https://doi.org/10.1029/2020TC006359
    OpenUrlCrossRef
  135. ↵
    1. Torsvik T. H.,
    2. Van der Voo R.,
    3. Preeden U.,
    4. Niocaill C. M.,
    5. Steinberger B.,
    6. Doubrovine P. V.,
    7. van Hinsbergen D. J. J.,
    8. Domeier M.,
    9. Gaina C.,
    10. Tohver E.,
    11. Meert J. G.,
    12. McCausland P. J. A.,
    13. Cocks L. R. M.
    , 2012, Phanerozoic polar wander, palaeogeography and dynamics: Earth-Science Reviews, v. 114, n. 3–4, p. 325–368, doi:https://doi.org/10.1016/j.earscirev.2012.06.007
    OpenUrlCrossRefGeoRef
  136. ↵
    1. Travin A. V.,
    2. Vladimirov V. G.,
    3. Boven A.
    , 2001, Implication of 40Ar/39Ar data on the tectonothermal evolution of the Irtysh shear zone (Eastern Kazakhstan): Continental growth in the Phanerozoic: evidence from central Asia, IGCP 480 Conference Abstract Volume, p. 106–107.
  137. ↵
    1. Van der Voo R.
    , 2004, Paleomagnetism, Oroclines, and Growth of the Continental Crust: GSA Today, v. 14, n. 12, p. 4–9, doi:https://doi.org/10.1130/1052-5173(2004)014<4:POAGOT>2.0.CO;2
    OpenUrlCrossRefGeoRef
  138. ↵
    1. Van der Voo R.,
    2. French R. B.
    , 1974, Apparent polar wander for the Atlantic-bordering continents: late Carboniferous to Eocene: Earth-Science Reviews, v. 10, n. 2, p. 99–119, doi:https://doi.org/10.1016/0012-8252(74)90082-8
    OpenUrlCrossRefGeoRef
  139. ↵
    1. Van der Voo R.,
    2. Levashov N. M.,
    3. Skrinnik L. I.,
    4. Kara T. V.,
    5. Bazhenov M. L.
    , 2006, Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan: Tectonophysics, v. 426, n. 3–4, p. 335–360, doi:https://doi.org/10.1016/j.tecto.2006.08.008
    OpenUrlCrossRefGeoRefWeb of Science
  140. ↵
    1. Van Hilten D.
    , 1964, Evaluation of some geotectonic hypotheses by paleomagnetism: Tectonophysics, v. 1, n. 1, p. 3–71, doi:https://doi.org/10.1016/0040-1951(64)90028-9
    OpenUrlCrossRefGeoRefWeb of Science
  141. ↵
    1. Vladimirov A. G.,
    2. Ponomareva A. P.,
    3. Shokalskii S. P.,
    4. Khalilov V. A.,
    5. Kostitsyn Y. A.,
    6. Ponomarchuk V. A.,
    7. Rudnev S. N.,
    8. Vystavnoi S. A.,
    9. Kruk N. N.,
    10. Titov A. V.
    , 1997, Late Paleozoic early Mesozoic granitoid magmatism in Altai: Russian Geology and Geophysics, v. 38, n. 4, p.715–729.
    OpenUrl
  142. ↵
    1. Wang B.,
    2. Chen Y.,
    3. Zhan S.,
    4. Shu L. S.,
    5. Faure M.,
    6. Cluzel D.,
    7. Charvet J.,
    8. Laurent-Charvet S.
    , 2007, Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt: Earth and Planetary Science Letters, v. 263, n. 3–4, p. 288–308, doi:https://doi.org/10.1016/j.epsl.2007.08.037
    OpenUrlCrossRefGeoRefWeb of Science
  143. ↵
    1. Wang T. Y.,
    2. Zhang M. J.,
    3. Wang J. R.,
    4. Gao J. P.
    , 1998, The characteristics and tectonic implications of the thrust belt in Euger Wusu, China: Scientia Geologica Sinica, v. 33, n. 4, p. 385–394.
    OpenUrl
  144. ↵
    1. Wang X. A.,
    2. Li S. C.
    , 2020, Late Triassic extensional deformation and magmatism in the eastern part of the Central Asian Orogenic Belt; Constraint from 40Ar/39Ar and zircon U-Pb geochronology: Acta Petrologica Sircica, v. 36, n. 8, p. 2447–2462, doi:https://doi.org/10.18654/1000-0569/2020.08.11
    OpenUrlCrossRef
  145. ↵
    1. Wang Y.
    , 1996, Tectonic processes of the Inner Mongolia–Yanshan Orogenic Belt in Eastern China during the Late of Late Paleozoic–Mesozoic: Beijing, China, Geological Publishing House, 142 p.
  146. ↵
    1. Wang Y.,
    2. Li J. Y.,
    3. Sun G. H.
    , 2008, Postcollisional Eastward Extrusion and Tectonic Exhumation along the Eastern Tianshan Orogen, Central Asia: Constraints from Dextral Strike-Slip Motion and 40Ar/39Ar Geochronological Evidence: The Journal of Geology, v. 116, n. 6, p. 599–618, doi:https://doi.org/10.1086/591993
    OpenUrlCrossRefGeoRefWeb of Science
  147. ↵
    1. Wang Y.,
    2. Li J. Y.,
    3. Sun G. H.
    , 2010, Postcollisional eastward extrusion and tectonic exhumation along the eastern Tianshan Orogen, Central Asia: Constraints from dextral strike-slip motion and 40Ar/39Ar geochronological evidence: The Journal of Geology, v. 116, n. 6, p. 599–618, doi:https://doi.org/10.1086/591993
    OpenUrlCrossRef
  148. ↵
    1. Wang Z. H.,
    2. Wan J. L.
    , 2014, Collision-Induced Late Permian-Early Triassic transpressional deformation in the Yanshan Tectonic Belt, North China: the Journal of Geology, v. 122, n. 6, p. 705–716, doi:https://doi.org/10.1086/677843
    OpenUrlCrossRefGeoRef
  149. ↵
    1. Weil A. B.,
    2. Van der Voo R.,
    3. van der Pluijm B. A.
    , 2001, Oroclinal bending and evidence against the Pangaea megashear: The Cantabria-Asturias Arc (northern Spain): Geology, v. 29, n. 11, p. 991–994, doi:https://doi.org/10.1130/0091-7613(2001)029<0991:OBAEAT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  150. ↵
    1. Wilson J. T.
    , 1965, A new class of faults and their bearing on continental drift: Nature, v. 207, n. 4995, p. 343–347, doi:https://doi.org/10.1038/207343a0
    OpenUrlCrossRefGeoRefWeb of Science
  151. ↵
    1. Windley B. F.,
    2. Alexeiev D.,
    3. Xiao W. J.,
    4. Kröner A.,
    5. Badarch G.
    , 2007, Tectonic models for accretion of the Central Asian Orogenic Belt: Journal of the Geological Society, v. 164, n. 1, p. 31–47, doi:https://doi.org/10.1144/0016-76492006-022
    OpenUrlAbstract/FREE Full Text
  152. ↵
    1. Wu F. Y.,
    2. Yang J. H.,
    3. Lo C. H.,
    4. Wilde S. A.,
    5. Sun D. Y.,
    6. Jahn B. M.
    , 2007, The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China: Island Arc, v. 16, n. 1, p. 156–172, doi:https://doi.org/10.1111/j.1440-1738.2007.00564.x
    OpenUrlCrossRef
  153. ↵
    1. Wu F. P.,
    2. Zhang W. J.,
    3. Wang W.
    , 2012, Discovery of the NNE ductile shear zone and its deformation age analysis of Tamusu area, inner Mongolia: Xinjiang Geology, v. 30, n. 2, p. 216–220.
    OpenUrl
  154. ↵
    1. Wu L.,
    2. Murphy J. B.,
    3. Quesada C.,
    4. Li Z. X.,
    5. Waldron J. W. F.,
    6. Williams S.,
    7. Pisarevsky S.,
    8. Collins W. J.
    , 2021, The amalgamation of Pangea: Paleomagnetic and geological observations revisited: Geological Scociety of America Bulletin, v. 133, n. 3–4, p. 625–646, doi:https://doi.org/10.1130/B35633.1
    OpenUrlCrossRef
  155. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Hao J.,
    4. Zhai M. G.
    , 2003, Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt: Tectonics, v. 22, n. 6, p. 1069, doi:https://doi.org/10.1029/2002TC001484
    OpenUrlCrossRef
  156. ↵
    1. Xiao W. J.,
    2. Mao Q. G.,
    3. Windley B. F.,
    4. Han C. M.,
    5. Qu J. F.,
    6. Zhang J. E.,
    7. Ao S. J.,
    8. Guo Q. Q.,
    9. Cleven N. R.,
    10. Lin S. F.,
    11. Shan Y. H.,
    12. Li J. L.
    , 2010, Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage: American Journal of Science, v. 310, n. 10, p. 1553–1595, doi:https://doi.org/10.2475/10.2010.12
    OpenUrlAbstract/FREE Full Text
  157. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Sun S.,
    4. Li J. L.,
    5. Huang B. C.,
    6. Han C. M.,
    7. Yuan C.,
    8. Sun M.,
    9. Chen H. L.
    , 2015, A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion: Annual Review of Earth and Planetary Sciences, v. 43, p. 477–507, doi:https://doi.org/10.1146/annurev-earth-060614-105254
    OpenUrlCrossRef
  158. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Han C. M.,
    4. Liu W.,
    5. Wan B.,
    6. Zhang J. E.,
    7. Ao S. J.,
    8. Zhang Z. Y.,
    9. Song D. F.
    , 2018, Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia: Earth-Science Reviews, v. 186, p. 94–128, doi:https://doi.org/10.1016/j.earscirev.2017.09.020
    OpenUrlCrossRef
  159. ↵
    1. Xin H. T.,
    2. Niu W. C.,
    3. Tian J.,
    4. Teng X. J.,
    5. Duan X. L
    , 2020, Spatio-temporal structure of Beishan orogenic belt and evolution of Paleo-Asian Ocean, Inner Mongolia: Geological Bulletin of China, v. 39. n. 9, 1297–1316.
    OpenUrl
  160. ↵
    1. Xiong S. Q.
    , 2019, Atlas of aeromagnetic survey results of petroliferous basins in China: Beijing, China, Geological Publishing House, 151 p.
  161. ↵
    1. Xu H.,
    2. Chen T. H.,
    3. Gong Q. D.,
    4. Liu X. G.,
    5. Liu B.,
    6. Xie Y. F.
    , 2014, Relationship between ductile shear zone and gold deposit in Sunite Zuoqi, Inner Mongolia: Journal of Mineral and Petrology, v. 34, n. 2, p. 68–76, doi:https://doi.org/10.19719/j.cnki.1001-6872.2014.02.011
    OpenUrlCrossRef
  162. ↵
    1. Yakubchuk A.
    , 2004, Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model: Journal of Asian Earth Sciences, v. 23, n. 5, p. 761–779, doi:https://doi.org/10.1016/j.jseaes.2004.01.006
    OpenUrlCrossRefGeoRefWeb of Science
  163. ↵
    1. Ye K.,
    2. Zhang L.,
    3. Wang T.,
    4. Shi X. J.,
    5. Zhang J. J.,
    6. Liu C.
    , 2016, Geochronology, geochemistry and zircon Hf isotope of the Permian intermediateacid igneous rocks from the Yabulai Mountain in western Alxa, Inner Mongolia, and their tectonic implications: Acta Petrologica et Mineralogica, v. 35, n. 6, p. 901–928.
    OpenUrl
  164. ↵
    1. Yu J. Y.,
    2. Guo L.,
    3. Li J. X.,
    4. Li Y. G.,
    5. Smithies R. H.,
    6. Wingate M.T.D.,
    7. Meng Y.,
    8. Chen S. F.
    , 2016, The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China: Lithos, v. 256–257, p. 250–268, doi:https://doi.org/10.1016/j.lithos.2016.04.003
    OpenUrlCrossRef
  165. ↵
    1. Zhang J.,
    2. Cunningham D.
    , 2012, Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China: Tectonics, v. 31, n. 3, p. TC3009, doi:https://doi.org/10.1029/2011TC003050
    OpenUrlCrossRef
  166. ↵
    1. Zhang B. H.,
    2. Zhang J.,
    3. Zhao H.,
    4. Qu J. F.,
    5. Zhang Y. P.,
    6. Niu P. F.,
    7. Hui J.,
    8. Yun L.
    , 2021b, Kinematics and Geochronology of Late Paleozoic–Early Mesozoic Ductile Deformation in the Alxa Block, NW China: New Constraints on the Evolution of the Central Asian Orogenic Belt: Lithoshpere, v. 2021, n. 1, p. 3365581, doi:https://doi.org/10.2113/2021/3365581
    OpenUrlCrossRef
  167. ↵
    1. Zhang C. L.,
    2. Santosh M.,
    3. Zou H. B.,
    4. Xu Y. G.,
    5. Zhou G.,
    6. Dong Y. G.,
    7. Ding R. F.,
    8. Wang H. Y.
    , 2012, Revisiting the “Irtish tectonic belt”: Implications for the Paleozoic tectonic evolution of the Altai orogen: Journal of Asian Earth Sciences, v. 52, p. 117–133, doi:https://doi.org/10.1016/j.jseaes.2012.02.016
    OpenUrlCrossRefGeoRefWeb of Science
  168. ↵
    1. Zhang H. T.,
    2. So C. S.,
    3. Yun S. T.
    , 1999, Regional geologic setting and metallogenesis of central Inner Mongolia, China: guides for exploration of mesothermal gold deposits: Ore Geological Reviews, v. 14, n. 2, p. 129–146, doi:https://doi.org/10.1016/S0169-1368(98)00019-5
    OpenUrlCrossRef
  169. ↵
    1. Zhang J.,
    2. Li J. Y.,
    3. Xiao W. X.,
    4. Wang Y. N.,
    5. Qi W. H.
    , 2013, Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China: New constraints on the relationship between the North China Plate and the Alxa block: Journal of Structural Geology, v. 57, p. 38–57, doi:https://doi.org/10.1016/j.jsg.2013.10.002
    OpenUrlCrossRefGeoRefWeb of Science
  170. ↵
    1. Zhang J.,
    2. Li J. Y.,
    3. Li Y. F.,
    4. Qi W. H.,
    5. Zhang Y. P.
    , 2014, Mesozoic-Cenozoic intraplate deformations at the Langshan region and their tectonic implication: Acta Geologica Sinica (English Edition), v. 88, n. 1, p. 78–102, doi:https://doi.org/10.1111/1755-6724.12184
    OpenUrlCrossRef
  171. ↵
    1. Zhang J.,
    2. Zhang Y. P.,
    3. Xiao W. X.,
    4. Wang Y. N.,
    5. Zhang B. H.
    , 2015a, Linking the Alxa Terrane to the eastern Gondwana during the Early Paleozoic: Constraints from detrital zircon U–Pb ages and Cambrian sedimentary records: Gondwana Research, v. 28, n. 3, p. 1168–1182, doi:https://doi.org/10.1016/j.gr.2014.09.012
    OpenUrlCrossRef
  172. ↵
    1. Zhang J. J.,
    2. Wang T.,
    3. Zhang L.,
    4. Tong Y.,
    5. Zhang Z. C.,
    6. Shi X. J.,
    7. Guo L.,
    8. Huang H.,
    9. Yang Q. D.,
    10. Huang W.,
    11. Zhao J. X.,
    12. Ye K.,
    13. Hou J. Y.
    , 2015b, Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: Constraints on the southern boundary of the Central Asian Orogenic Belt: Journal of Asian Earth Sciences, v. 108, p. 150–169, doi:https://doi.org/10.1016/j.jseaes.2015.04.019
    OpenUrlCrossRefGeoRef
  173. ↵
    1. Zhang J.,
    2. Li J. Y.,
    3. Zhang B. H.,
    4. Zhao H.
    , 2016, Timing of amalgamation of the Alxa Block and the North China Block: Constraints based on detrital zircon U–Pb ages and sedimentologic and structural evidence: Tectonophysics, v. 668–669, p. 65–81, doi:https://doi.org/10.1016/j.tecto.2015.12.006
    OpenUrlCrossRef
  174. ↵
    1. Zhang J. R.,
    2. Wei C. J.,
    3. Chu H.
    , 2018, Multiple metamorphic events recorded in the metamorphic terranes in central Inner Mongolia, Northern China: Implication for the tectonic evolution of the Xing'an-Inner Mongolia Orogenic Belt: Journal of Asian Earth Sciences, v. 167, p. 52–67, doi:https://doi.org/10.1016/j.jseaes.2018.04.007
    OpenUrlCrossRef
  175. ↵
    1. Zhang J.,
    2. Yun L.,
    3. Zhang B. H.,
    4. Qu J. F.,
    5. Zhao H.,
    6. Hui J.,
    7. Wang Y. N.,
    8. Zhang Y. P.
    , 2020, Deformation at the easternmost Altyn Tagh fault: constraints on the growth of the northern Qinghai-Tibetan Plateau: Acta Geologica Sinica (English Edition), v. 94, n. 4, p. 988–1006, doi:https://doi.org/10.1111/1755-6724.14555
    OpenUrlCrossRef
  176. ↵
    1. Zhang J.,
    2. Qu J. F.,
    3. Zhang B. H.,
    4. Zhao H.,
    5. Zheng R. G.,
    6. Zhang Q. L.,
    7. Zhao S.,
    8. Liu J. F.,
    9. Zhang Y. P.,
    10. Niu P. F.,
    11. Hui J.,
    12. Yun L.,
    13. Tian R. S.,
    14. Amirdin A.,
    15. Li F. H.,
    16. Xie G. A.
    , 2021a, China Geological Survey: 1: 50,000 Geological Map of Bayan Hara (K48E021017) in Inner Mongolia: Beijing, China: Geoscientific Data & Discovery Publishing System, 95 p., http://dcc.ngac.org.cn/cn//geologicalData/details/doi/10.35080/data.C.2021.P12
  177. ↵
    1. Zhang J.,
    2. Cunningham D.,
    3. Ynn L.,
    4. Qu J. F.,
    5. Zhao H.,
    6. Zhang B. H.,
    7. Niu P. F.,
    8. Hui J.
    , 2021c, Kinematic variability of late Cenozoic fault systems and contrasting mountain building processes in the Alxa block, western China: Journal of Asian Earth Sciences, v. 205, p. 104597, doi:https://doi.org/10.1016/j.jseaes.2020.104597
    OpenUrlCrossRef
  178. ↵
    1. Zhang J. J.,
    2. Zhang S. H.,
    3. Zhao Y.,
    4. Hu G. H.,
    5. Gao H. L.
    , 2021d, Identification of an early Neoproterozoic gabbro sill emplaced into the Zha'ertai Group in the Guyang area, Inner Mongolia and its geological significance: Acta Geologica Sinica, v. 95, n. 3, p. 667–685, doi:https://doi.org/10.19762/j.cnki.dizhixuebao.2021125
    OpenUrlCrossRef
  179. ↵
    1. Zhang J.,
    2. Qu J. F.,
    3. Liu J. F.,
    4. Wang Y. N.,
    5. Zhao H.,
    6. Zhao S.,
    7. Zhang B. H.,
    8. Zheng R. G.,
    9. Yun L.,
    10. Yang Y. Q.,
    11. Niu P. F.
    , 2021e, The nature and evolution of the Xar Moron tectonic belt in the eastern Central Asian Orogenic Belt: constraints from deformation and low-temperature thermochronology: Sedimentary Geology and Tethyan Geology, v. 41, n. 2, p. 190–217, doi:https://doi.org/10.19826/j.cnki.1009-3850.2021.02010
    OpenUrlCrossRef
  180. ↵
    1. Zhang J.,
    2. Wang Y. N.,
    3. Qu J. F.,
    4. Zhang B. H.,
    5. Zhao H.,
    6. Yun L.,
    7. Li T. Y.,
    8. Niu P. F.,
    9. Nie F. J.,
    10. Hui J.,
    11. Zhang Y. P.
    , 2021f, Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: A review: International Geological Review, v. 63, n. 12, p. 1490–1520, doi:https://doi.org/10.1080/00206814.2020.1783583
    OpenUrlCrossRef
  181. ↵
    1. Zhang J.,
    2. Cunningham D.,
    3. Qu J. F.,
    4. Zhang B. H.,
    5. Zhao H.,
    6. Zheng R.G.,
    7. Niu P. F.,
    8. Hui J.,
    9. Yun L.,
    10. Zhao S.,
    11. Zheng R.,
    12. Zhang Y. P.
    , 2022, Poly-phase accretionary, collisional and intraplate tectonism in the Langshan region of the Alxa Block, China: Unravelling the complex structural evolution of the southern Central Asian Orogenic Belt: Gondwana Research, v. 105, p. 25–50, doi:https://doi.org/10.1016/j.gr.2021.12.007
    OpenUrlCrossRef
    1. Zhang W
    , ms. 2013, Late Paleozoic granitoids in Beishan-northern Alxa area (NW China) and their tectonic implications: Ph.D Dissertation, Peking University, Beijing, China, 200 p.
  182. ↵
    1. Zhang Y. Y.,
    2. Yuan C.,
    3. Sun M.,
    4. Long X. P.,
    5. Xia X. P.,
    6. Wang X. Y.,
    7. Huang Z. Y.
    , 2015c, Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere–lithosphere interaction in response to slab break-off: Lithos, v. 233, p. 174–192, doi:https://doi.org/10.1016/j.lithos.2015.04.001
    OpenUrlCrossRefGeoRef
  183. ↵
    1. Zhang Y.,
    2. Yuan C.,
    3. Sun M.,
    4. Long X.,
    5. Wang Y.,
    6. Jiang Y.,
    7. Lin Z.
    , 2017, Arc magmatism associated with steep subduction: Insights from trace element and Sr–Nd–Hf–B isotope systematics: Journal of Geophysical Research: Solid Earth, v. 122, n. 3, p. 1816–1834, doi:https://doi.org/10.1002/2016JB013289
    OpenUrlCrossRef
  184. ↵
    1. Zhao G. C.,
    2. Sun M.,
    3. Wilde S. A.,
    4. Li S. Z.
    , 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited: Precambrian Research, v. 136, n. 2, p. 177–202, doi:https://doi.org/10.1016/j.precamres.2004.10.002
    OpenUrlCrossRefGeoRefWeb of Science
  185. ↵
    1. Zhao G. C,
    2. Wang Y. J,
    3. Huang B. C,
    4. Dong Y. P,
    5. Li S. Z,
    6. Zhang G. W.,
    7. Yu S.
    , 2018, Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea: Earth-Science Reviews, v. 186, p. 262-286, doi:https://doi.org/10.1016/j.earscirev.2018.10.003
    OpenUrlCrossRef
  186. ↵
    1. Zhao H.,
    2. Zhang J.,
    3. Wang Y.N.,
    4. Zhang B. H.
    , 2017, The Deformation Features, Phases and Significance of Keluo Complex in Nenjiang Area, Heilongjiang Province: Geotectonica et Metallogenia, v. 41, n. 4, p. 617–637, doi:https://doi.org/10.16539/j.ddgzyckx.2017.04.001
    OpenUrlCrossRef
  187. ↵
    1. Zhao H.,
    2. Zhang J.,
    3. Zhang B. H.,
    4. Qu J. F.,
    5. Zhang Y. P.,
    6. Niu P. F.,
    7. Hui J.,
    8. Wang Y.
    , 2022, Structures and chronology of the Yabrai shear zone in the Alxa, NW China: constraints on the late Paleozoic shear shear system in central segment of the Central Asian orogenic belt: Journal of Structural Geology, v. 142, p. 104575, doi:https://doi.org/10.1016/j.jsg.2022.104575
    OpenUrlCrossRef
  188. ↵
    1. Zhao P.,
    2. Faure M.,
    3. Chen Y.,
    4. Shi G. Z.,
    5. Xu B.
    , 2015, A new Triassic shortening-extrusion tectonic model for Central-Eastern Asia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China): Earth and Planetary Science Letters, v. 426, p. 46–57, doi:https://doi.org/10.1016/j.epsl.2015.06.011
    OpenUrlCrossRefGeoRef
  189. ↵
    1. Zheng R. G.,
    2. Wu T. R.,
    3. Zhang W.,
    4. Xu C.,
    5. Meng Q. R.,
    6. Zhang Z. Y.
    , 2014, Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: Geochronological and geochemical evidences from ophiolites: Gondwana Research, v. 25, n. 2, p. 842–858, doi:https://doi.org/10.1016/j.gr.2013.05.011
    OpenUrlCrossRefGeoRef
  190. ↵
    1. Zheng R. G.,
    2. Li J. Y.,
    3. Xiao W. J.,
    4. Wang L. J.
    , 2018, A new ophiolitic mélange containing boninitic blocks in Alxa region: Implications for Permian subduction events in southern CAOB: Geosience Frontiers, v. 9, n. 5, p. 1355–1367, doi:https://doi.org/10.1016/j.gsf.2018.02.014
    OpenUrlCrossRef
  191. ↵
    1. Zheng R. G.,
    2. Li J. Y.,
    3. Zhang J.,
    4. Xiao W. J.,
    5. Wang Q. J.
    , 2020, Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high-Mg diorite in the southern Beishan: Lithos, v. 358–359, p. 105406, doi:https://doi.org/10.1016/j.lithos.2020.105406
    OpenUrlCrossRef
    1. Zheng Y. D.,
    2. Wang S.,
    3. Wang Y.
    , 1991, An enornous thrust nappe and extensional metamorphic core complex newly discovered in Sino-Mongolian boundary area: Science in China, Series B, v. 34, n. 9, p. 1145–1152.
    OpenUrl
  192. ↵
    1. Zhong S. J.,
    2. Zhang N.,
    3. Li Z. X.,
    4. Roberts J. H.
    , 2007, Supercontinent cycles, true polar wander, and very long-wavelength mantle convection: Earth and Planetary Science Letters, v. 261, n. 3–4, p. 551–564, doi:https://doi.org/10.1016/j.epsl.2007.07.049
    OpenUrlCrossRefGeoRefWeb of Science
  193. ↵
    1. Zhou J. B.,
    2. Wilde S. A.
    , 2013, The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt: Gondwana Research, v. 23, n. 4, p. 1365–1377, doi:https://doi.org/10.1016/j.gr.2012.05.012
    OpenUrlCrossRefGeoRef
  194. ↵
    1. Zhou J. B.,
    2. Wilde S. A.,
    3. Zhang X. Z.,
    4. Zhao G. C.,
    5. Zheng C. Q.,
    6. Wang Y. J.,
    7. Zhang X. H.
    , 2009, The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt: Tectonophysics, v. 478, n. 3–4, p. 230–246, doi:https://doi.org/10.1016/j.tecto.2009.08.009
    OpenUrlCrossRefGeoRefWeb of Science
  195. ↵
    1. Zhou J. B.,
    2. Cao J. L.,
    3. Wilde S. A.,
    4. Zhao G. C.,
    5. Zhang J. J.,
    6. Wang B.
    , 2014, Paleo-Pacific subduction-accretion: Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China: Tectonics, v. 33, n. 12, p. 2444–2466, doi:https://doi.org/10.1002/2014TC003637
    OpenUrlCrossRefGeoRef
  196. ↵
    1. Zhou X. C.,
    2. Zhang H. F.,
    3. Luo B. J.,
    4. Pan F. B.,
    5. Zhang S. S.,
    6. Guo L.
    , 2016, Origin of high Sr/Y-type granitic magmatism in the southwestern of the Alxa Block, Northwest China: Lithos, v. 256–257, p. 211–227, doi:https://doi.org/10.1016/j.lithos.2016.04.021
    OpenUrlCrossRef
  197. ↵
    1. Zhu X.,
    2. Wang B.,
    3. Chen Y.,
    4. Liu H.,
    5. Horng C. S.,
    6. Choulet F.,
    7. Faure M.,
    8. Shu L. S.,
    9. Xue Z. H.
    , 2018, First Early Permian paleomagnetic pole for the Yili Block and its implications for late Paleozoic postorogenic kinematic evolution of the SW Central Asian Orogenic Belt: Tectonics, v. 37, n. 6, p. 1709–1732, doi:https://doi.org/10.1029/2017TC004642
    OpenUrlCrossRef
  198. ↵
    1. Zorin Y. A.
    , 1999, Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia: Tectonophysics, v. 306, n. 1, p. 33–56, doi:https://doi.org/10.1016/S0040-1951(99)00042-6
    OpenUrlCrossRefGeoRefWeb of Science
  199. ↵
    1. Zuo G. C.,
    2. He G. Q.
    , 1990, Plate tectonics and metallogenic regularities in Beishan region: Beijing, China, Geological Publishing House, 224 p.
  200. ↵
    1. Zuo G. C.,
    2. Zheng Y. D.
    , 1991, Great breakthroughs in the field investigation of Beishan lithosphere in 1990, eight regional ductile shear zones and major thrust faults: Gansu Geological Science and Technology Information, n. 1, p. 1–4.
  201. ↵
    1. Zuo G. C.,
    2. Zhang S. L.,
    3. He G. Q.,
    4. Zhang Y.
    , 1990, Early Paleozoic plate tectonics in Beishan area: Scientia Geologica Sinica, v. 25, n. 4, p. 305–314.
    OpenUrl
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (7)
American Journal of Science
Vol. 322, Issue 7
1 Sep 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic
Jin Zhang, Junfeng Qu, Beihang Zhang, Heng Zhao, Ronggou Zheng, Jianfeng Liu, Jie Hui, Pengfei Niu, Long Yun, Shuo Zhao, Yiping Zhang
American Journal of Science Sep 2022, 322 (7) 851-897; DOI: 10.2475/07.2022.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic
Jin Zhang, Junfeng Qu, Beihang Zhang, Heng Zhao, Ronggou Zheng, Jianfeng Liu, Jie Hui, Pengfei Niu, Long Yun, Shuo Zhao, Yiping Zhang
American Journal of Science Sep 2022, 322 (7) 851-897; DOI: 10.2475/07.2022.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL SETTING
    • METHODS
    • DISTRIBUTION OF SHEAR ZONES
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • SUPPLEMENTARY DATA
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Central Asian Orogenic Belt (CAOB)
  • dextral shearing
  • latest Paleozoic
  • Pangea
  • intracontinental transform system
  • Intra-Pangean Megashear

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire