Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Effect of source compositions on adakitic features: A case study from the Buya granite, in western Kunlun, NW China

Peng Wang, Guochun Zhao, Qian Liu, Jinlong Yao, Yigui Han and Jianhua Li
American Journal of Science June 2022, 322 (6) 828-850; DOI: https://doi.org/10.2475/06.2022.03
Peng Wang
*Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guochun Zhao
*Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
**Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gzhao@hku.hk
Qian Liu
**Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jinlong Yao
**Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yigui Han
**Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianhua Li
***Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Acosta-Vigil A.,
    2. Buick I.,
    3. Hermann J.,
    4. Cesare B.,
    5. Rubatto D.,
    6. London D.,
    7. Morgan G. B.
    , 2010, Mechanisms of crustal anatexis: A geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain: Journal of Petrology, v. 51, n. 4, p. 785–821, doi:https://doi.org/10.1093/petrology/egp095
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Castillo P. R.,
    2. Janney P. E.,
    3. Solidum R. U.
    , 1999, Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting: Contributions to Mineralogy and Petrology, v. 134, n. 1, p. 33–51, doi:https://doi.org/10.1007/s004100050467
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Chappell B. W.,
    2. White A. J. R.,
    3. Wyborn D.
    , 1987, The importance of residual source material (restite) in granite petrogenesis: Journal of Petrology, v. 28, n. 6, p. 1111–1138, doi:https://doi.org/10.1093/petrology/28.6.1111
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Chung S. L.,
    2. Liu D. Y.,
    3. Ji J. Q.,
    4. Chu M. F.,
    5. Lee H. Y.,
    6. Wen D. J.,
    7. Lo C. H.,
    8. Lee T. Y.,
    9. Qian Q.,
    10. Zhang Q.
    , 2003, Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet: Geology, v. 31, n. 11, p. 1021–1024, doi:https://doi.org/10.1130/G19796.1
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Condie K. C.
    , 2005, TTGs and adakites: are they both slab melts: Lithos, v. 80, n. 1–4, p. 33–44, doi:https://doi.org/10.1016/j.lithos.2003.11.001
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Davidson J.,
    2. Turner S.,
    3. Handley H.,
    4. Macpherson C.,
    5. Dosseto A.
    , 2007, Amphibole “sponge” in arc crust: Geology, v. 35, n. 9, p. 787–790, doi:https://doi.org/10.1130/G23637A.1
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Defant M. J.,
    2. Drummond M. S.
    , 1990, Derivation of some modern arc magmas by melting of subducted lithosphere: Nature, v. 347, p. 662–665, doi:https://doi.org/10.1038/347662a0
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Deschamps F.,
    2. Duchêne S.,
    3. Sigoyer J.,
    4. Bosse V.,
    5. Benoit M.,
    6. Vanderhaeghe O.
    , 2017, Coeval Mantle-Derived and Crust-Derived Magmas Forming Two Neighbouring Plutons in the Songpan Ganze Accretionary Orogenic Wedge (SW China): Journal of Petrology, v. 58, n. 11, p. 2221–2256, doi:https://doi.org/10.1093/petrology/egy007
    OpenUrlCrossRef
  9. ↵
    1. Dong Y. P.,
    2. He D. F.,
    3. Sun S. S.,
    4. Liu X. M.,
    5. Zhou X. H.,
    6. Zhang F. F.,
    7. Yang Z.,
    8. Cheng B.,
    9. Zhao G. C.,
    10. Li J. H.
    , 2018, Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System: Earth-Science Reviews, v. 186, p. 231–261, doi:https://doi.org/10.1016/j.earscirev.2017.12.006
    OpenUrlCrossRef
  10. ↵
    1. Farner M. J.,
    2. Lee C. T. A.,
    3. Mikus M. L.
    , 2017, Geochemical signals of mafic-felsic mixing: Case study of enclave swarms in the Bernasconi Hills pluton, California: Geological Society of America Bulletin, v. 130, n. 3–4, p. 649–660, doi:https://doi.org/10.1130/B31760.1
    OpenUrlCrossRef
  11. ↵
    1. Foley S.,
    2. Tiepolo M.,
    3. Vannucci R.
    , 2002, Growth of early continental crust controlled by melting of amphibolite in subduction zones: Nature, v. 417, n. 6891, p. 837–840, doi:https://doi.org/10.1038/nature00799
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  12. ↵
    1. Gao S.,
    2. Rudnick R. L.,
    3. Yuan H. L.,
    4. Liu X. M.,
    5. Liu Y. S.,
    6. Xu W. L.,
    7. Ling W. L.,
    8. Ayers J.,
    9. Wang X. C.,
    10. Wang Q. H.
    , 2004, Recycling lower continental crust in the North China craton: Nature, v. 432, p. 892–897, doi:https://doi.org/10.1038/nature03162
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Grove T. L.,
    2. Parman S. W.,
    3. Bowring S. A.,
    4. Price R. C.,
    5. Baker M. B.
    , 2002, The role of an H2O-rich fluid component in the generation of primitive basaltic andesitesa and andesites: Contributions to Mineralogy and Petrology, v. 142, n. 4, p. 375–396, doi:https://doi.org/10.1007/s004100100299
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Hastie A. R.,
    2. Fitton J. G.,
    3. Mitchell S. F.,
    4. Neill I.,
    5. Nowell G. M.,
    6. Millar I. L.
    , 2015, Can fractional crystallization, mixing and assimilation processes be responsible for Jamaican-type adakites? implications for generating Eoarchaean continental crust: Journal of Petrology, v. 56, n. 7, p. 1251–1284, doi:https://doi.org/10.1093/petrology/egv029
    OpenUrlCrossRefGeoRef
  15. ↵
    1. Hermann J.
    , 2002, Allanite: thorium and light rare earth element carrier in subducted crust: Chemical Geology, v. 192, n. 3–4, p. 289–306, doi:https://doi.org/10.1016/S0009-2541(02)00222-X
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Hoskin P. W. O.,
    2. Schaltegger U.
    , 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in Mineralogy and Geochemistry, v. 53, n. 1, p. 27–62, doi:https://doi.org/10.2113/0530027
    OpenUrlFREE Full Text
  17. ↵
    1. Huang B. C.,
    2. Yan Y. G.,
    3. Piper J. D. A.,
    4. Zhang D. H.,
    5. Yi Z. Y.,
    6. Yu S.,
    7. Zhou T. H.
    , 2018, Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times: Earth-Science Reviews, v. 186, p. 8–36, doi:https://doi.org/10.1016/j.earscirev.2018.02.004
    OpenUrlCrossRef
  18. ↵
    1. Jeon H.,
    2. Williams I. S.
    , 2018, Trace inheritance–Clarifying the zircon O-Hf isotopic fingerprint of I-type granite sources: Implications for the restite model: Chemical Geology, v. 476, p. 456–468, doi:https://doi.org/10.1016/j.chemgeo.2017.11.041
    OpenUrlCrossRef
  19. ↵
    1. Jiang Y. H.,
    2. Liao S. Y.,
    3. Yang W. Z.,
    4. Shen W. Z.
    , 2008, An island arc origin of plagiogranites at Oytag, western Kunlun orogen, northwest China: SHRIMP zircon U-Pb chronology, elemental and Sr-Nd-Hf isotopic geochemistry and Paleozoic tectonic implications: Lithos, v. 106, n. 3–4, p. 323–335, doi:https://doi.org/10.1016/j.lithos.2008.08.004
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Johnson K. T. M.
    , 1994, Experimental cpx/and garnet/melt partitioning of REE and other trace elements at high pressures: Petrogenetic implications: Mineralogical Magazine, v. 58A, n. 1, p. 454–455, doi:https://doi.org/10.1180/minmag.1994.58A.1.236
    OpenUrlCrossRef
  21. ↵
    1. Kay R. W.
    , 1978, Aleutian magnesian andesites: melts from subducted Pacific Ocean crust: Journal of Volcanology and Geothermal Research, v. 4, n. 1–2, p. 117–132, doi:https://doi.org/10.1016/0377-0273(78)90032-X
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Lee C. T. A.,
    2. Bachmann O.
    , 2014, How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics: Earth and Planetary Science Letters, v. 393, p. 266–274, doi:https://doi.org/10.1016/j.epsl.2014.02.044
    OpenUrlCrossRefGeoRef
  23. ↵
    1. Li S. Z.,
    2. Zhao S. J.,
    3. Liu X.,
    4. Cao H. H.,
    5. Yu S.,
    6. Li X. Y.,
    7. Somerville I.,
    8. Yu S. Y,
    9. Suo Y. H.
    , 2018, Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia: Earth-Science Reviews, v. 186, p. 37–75, doi:https://doi.org/10.1016/j.earscirev.2017.01.011
    OpenUrlCrossRef
  24. ↵
    1. Li T. F.,
    2. Zhang J. X.
    , 2014, Zircon LA-ICP-MS U-Pb ages of websterite and basalt in Kudi ophiolite and the implication, West Kunlun: Acta Petrologica Sinica, v. 30, n. 8, p. 2393–2401.
    OpenUrl
  25. ↵
    1. Liao S. Y.,
    2. Jiang Y. H.,
    3. Jiang S.Y .,
    4. Yang W. Z.,
    5. Zhou Q.,
    6. Jin G. D.,
    7. Zhao P.
    , 2010, Subducting sediment-derived arc granitoids: Evidence from the Datong pluton and its quenched enclaves in the western Kunlun orogen, northwest China: Mineralogy and Petrology, v. 100, p. 55–74, doi:https://doi.org/10.1007/s00710-010-0122-x
    OpenUrlCrossRefGeoRef
  26. ↵
    1. Liu Z.,
    2. Jiang Y .H.,
    3. Jia R. Y.,
    4. Zhao P.,
    5. Zhou Q.,
    6. Wang G.C.,
    7. Ni C.Y.
    , 2014, Origin of Middle Cambrian and Late Silurian potassic granitoids from the western Kunlun orogen, northwest China: A magmatic response to the Proto-Tethys evolution: Mineralogy and Petrology, v. 108, n. 1, p. 91–110, doi:https://doi.org/10.1007/s00710-013-0288-0
    OpenUrlCrossRef
  27. ↵
    1. Long X. P.,
    2. Wilde S. A.,
    3. Wang Q.,
    4. Yuan C.,
    5. Wang X. C.,
    6. Li J.,
    7. Jiang Z.,
    8. Dan W.
    , 2015, Partial melting of thickened continental crust in central Tibet: evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane: Earth and Planetary Science Letters, v. 414, p. 30–44, doi:https://doi.org/10.1016/j.epsl.2015.01.007
    OpenUrlCrossRefGeoRef
  28. ↵
    1. Lu S. N.,
    2. Li H. K,
    3. Zhang C. L,
    4. Niu G. H.
    , 2008, Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments: Precambrian Research, v. 160, n. 1–2, p. 94–107, doi:https://doi.org/10.1016/j.precamres.2007.04.025
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Lu Y. J.,
    2. Loucks R. R.,
    3. Fiorentini M. L.,
    4. Yang Z. M.,
    5. Hou Z. Q.
    , 2015, Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet: Geology, v. 43, n. 7, p. 583–586, doi:https://doi.org/10.1130/G36734.1
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Ma L.,
    2. Wang B. D.,
    3. Jiang Z. Q.,
    4. Wang Q.,
    5. Li Z. X,
    6. Wyman D. A.,
    7. Zhao S. R.,
    8. Yang J. H.,
    9. Gou G. N.,
    10. Guo H. F.
    , 2014, Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet: Lithos, v. 196–197, p. 321–338, doi:https://doi.org/10.1016/j.lithos.2014.02.011
    OpenUrlCrossRef
  31. ↵
    1. Ma Q.,
    2. Zheng J. P.,
    3. Xu Y. G.,
    4. Griffin W. L.,
    5. Zhang R. S.
    , 2015, Are continental “adakites” derived from thickened or foundered lower crust: Earth and Planetary Science Letters, v. 419, p. 125–133, doi:https://doi.org/10.1016/j.epsl.2015.02.036
    OpenUrlCrossRefGeoRef
  32. ↵
    1. Macpherson C. G.,
    2. Dreher S. T.,
    3. Thirlwall M. F.
    , 2006, Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines: Earth and Planetary Science Letters, v. 243, n. 3–4, p. 581–593, doi:https://doi.org/10.1016/j.epsl.2005.12.034
    OpenUrlCrossRefGeoRefWeb of Science
  33. ↵
    1. Mahood G.,
    2. Hildreth W.
    , 1983, Large partition coefficients for trace elements in high-silica rhyolites: Geochimica et Cosmochimica Acta, v. 47, n. 1, p. 11–30, doi:https://doi.org/10.1016/0016-7037(83)90087-X
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Martin H.,
    2. Smithies R. H.,
    3. Rapp R.,
    4. Moyen J. F.,
    5. Champion D.
    , 2005, An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution: Lithos, v. 79, n. 1–2, p. 1–24, doi:https://doi.org/10.1016/j.lithos.2004.04.048
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Matte P.,
    2. Tapponnier P.,
    3. Arnaud N.,
    4. Bourjot L.,
    5. Avouac J. P.,
    6. Vidal P.,
    7. Liu Q.,
    8. Pan Y. S.,
    9. Wang Y.
    , 1996, Tectonics of Western Tibet, between the Tarim and the Indus: Earth and Planetary Science Letters, v. 142, n. 3–4, p. 311–330, doi:https://doi.org/10.1016/0012-821X(96)00086-6
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Mattern F.,
    2. Schneider W.
    , 2000, Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China): Journal of Asian Earth Sciences, v. 18, n. 6, p. 637–650, doi:https://doi.org/10.1016/S1367-9120(00)00011-0
    OpenUrlCrossRefGeoRefWeb of Science
  37. ↵
    1. Moyen J. F.
    , 2009, High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”: Lithos, v. 112, n. 3–4, p. 556–574, doi:https://doi.org/10.1016/j.lithos.2009.04.001
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Moyen J. F.,
    2. Martin H.
    , 2012, Forty years of TTG research: Lithos, v. 148, p. 312–336, doi:https://doi.org/10.1016/j.lithos.2012.06.010
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Niu Y. L.,
    2. Zhao Z. D.,
    3. Zhu D. C.,
    4. Mo X. X.
    , 2013, Continental collision zones are primary sites for net continental crust growth- A testable hypothesis: Earth-Science Reviews, v. 127, p. 96–110, doi:https://doi.org/10.1016/j.earscirev.2013.09.004
    OpenUrlCrossRefGeoRef
  40. ↵
    1. Patiño Douce A. E.,
    2. Johnston A. D.
    , 1991, Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites: Contributions to Mineralogy and Petrology, v. 107, n. 2, p. 202–218, doi:https://doi.org/10.1007/BF00310707
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Plank T.,
    2. Langmuir C .H.
    , 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle: Chemical Geology, v. 145, n. 3–4, p. 325–394, doi:https://doi.org/10.1016/S0009-2541(97)00150-2
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Qian Q.,
    2. Hermann J.
    , 2013, Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation: Contributions to Mineralogy and Petrology, v. 165, n. 6, p. 1195–1224, doi:https://doi.org/10.1007/s00410-013-0854-9
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Rapp R. P.,
    2. Watson E. B.
    , 1995, Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling: Journal of Petrology, v. 36, n. 4, p. 891–931, doi:https://doi.org/10.1093/petrology/36.4.891
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Rapp R. P.,
    2. Shimizu N.,
    3. Norman M. D.,
    4. Applegate G. S.
    , 1999, Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa: Chemical Geology, v. 160, n. 4, p. 335–356, doi:https://doi.org/10.1016/S0009-2541(99)00106-0
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Rapp R. P.,
    2. Shimizu N.,
    3. Norman M. D.
    , 2003, Growth of early continental crust by partial melting of eclogite: Nature, v. 524, n. 6958, p. 605–609, doi:https://doi.org/10.1038/nature02031
    OpenUrlCrossRef
  46. ↵
    1. Richards J. P.,
    2. Kerrich B.
    , 2007, Special Paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis: Economic Geology, v. 102, n. 4, p. 537–576, doi:https://doi.org/10.2113/gsecongeo.102.4.537
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Rollinson H. R.
    1993, Using Geochemical Data: Evaluation, Presentation, Interpretation: Harlow, England, Longman Scientific and Technical, Geochemistry Series, 352 p.
  48. ↵
    1. Holland H. D.,
    2. Turekian K. K.
    1. Rudnick R. L.,
    2. Gao S.
    , 2003, Composition of the Continental Crust, in Holland H. D., Turekian K. K., editors, Treatise on Geochemical: Elsevier Science, v. 3, p. 1–64, doi:https://doi.org/10.1016/B0-08-043751-6/03016-4
    OpenUrlCrossRef
  49. ↵
    1. Sarjoughian F.,
    2. Kananian A.,
    3. Haschke M.,
    4. Ahmadian J.,
    5. Ling W. L.,
    6. Zong K. Q.
    , 2012, Magma mingling and hybridization in the Kuh-e Dom pluton, Central Iran: Journal of Asian Earth Sciences, v. 54–55, p. 49–63, doi:https://doi.org/10.1016/j.jseaes.2012.03.013
    OpenUrlCrossRef
  50. ↵
    1. Shellnutt J. G.,
    2. Jahn B. M.,
    3. Dostal J.
    , 2010, Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China: Lithos, v. 119, n. 1–2, p. 34–46, doi:https://doi.org/10.1016/j.lithos.2010.07.011
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Sisson T. W.,
    2. Ratajeski K.,
    3. Hankins W. B.,
    4. Glazner A. F.
    , 2005, Voluminous granitic magmas from common basaltic sources: Contributions to Mineralogy and Petrology, v. 148, n. 6, p. 635–661, doi:https://doi.org/10.1007/s00410-004-0632-9
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    SPCSIT (Tibetan Plateau comprehensive scientific investigation team, Chinese Academy of Sciences), 2000, Geological evolution of the Karakorum-Kunlun Mountians: Science Press, 176 p.
  53. ↵
    1. Stepanov A. S.,
    2. Hermann J.
    , 2013, Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”: Geology, v. 41, n. 3, p. 303–306, doi:https://doi.org/10.1130/G33781.1
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Stern C. R.,
    2. Kilian R.
    , 1996, Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone: Contributions to Mineralogy and Petrology, v. 123, n. 3, p. 263–281, doi:https://doi.org/10.1007/s004100050155
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Streck M. J.,
    2. Leeman W. P.,
    3. Chesley J.
    , 2007, High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt: Geology, v. 35, n. 4, p. 351–354, doi:https://doi.org/10.1130/G23286A.1
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Saunders A. D.,
    2. Norry M. J.
    1. Sun S. S.,
    2. McDonough W. F.
    , 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders A. D., Norry M. J., editors, Magmatism in Ocean Basins: Geological Society, London, Special Publications, v. 42, p. 313–345, doi:https://doi.org/10.1144/GSL.SP.1989.042.01.19
    OpenUrlCrossRef
  57. ↵
    1. Sun X.,
    2. Lu Y. J.,
    3. McCuaig T. C.,
    4. Zheng Y. Y.,
    5. Chang H. F.,
    6. Guo F.,
    7. Xu L. J.
    , 2018, Miocene Ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: Implications for mantle metasomatism and porphyry copper mineralization in collisional Orogens: Journal of Petrology, v. 59, n. 3, p. 341–386, doi:https://doi.org/10.1093/petrology/egy028
    OpenUrlCrossRef
  58. ↵
    1. Sylvester P. J.
    , 1998. Post-collisional strongly peraluminous granites: Lithos, v. 45, n. 1–4, p. 29–44, doi:https://doi.org/10.1016/S0024-4937(98)00024-3
    OpenUrlCrossRefGeoRefWeb of Science
  59. ↵
    1. Tang M.,
    2. Lee C. T. A.,
    3. Chen K.,
    4. Erdman M.,
    5. Costin G.,
    6. Jiang H. H.
    , 2019, Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation: Nature Communications, v. 10, n. 1, 235, doi:https://doi.org/10.1038/s41467-018-08198-3
    OpenUrlCrossRef
  60. ↵
    1. Wang C.,
    2. Wang Y. H.,
    3. Liu L.,
    4. He S. P.,
    5. Li R. S.,
    6. Li M.,
    7. Yang W. Q.,
    8. Cao Y. T.,
    9. Meert J. G.,
    10. Shi C.
    , 2014, The Paleoproterozoic magmatic-metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China: Precambrian Research, v. 254, p. 210–225, doi:https://doi.org/10.1016/j.precamres.2014.08.018
    OpenUrlCrossRefGeoRef
  61. ↵
    1. Wang J.,
    2. Hattori K.,
    3. Liu J.,
    4. Song Y.,
    5. Gao Y.,
    6. Zhang H.
    , 2017b, Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau: Lithos, v. 286–287, p. 345–362, doi:https://doi.org/10.1016/j.lithos.2017.06.013
    OpenUrlCrossRef
  62. ↵
    1. Wang P.,
    2. Dong G. C.,
    3. Dong M. L.,
    4. Li L. P.,
    5. Pan Y. N,
    6. Chen W.,
    7. Wu Z. C.
    , 2017a, Magma mixing of the Cuojiaoma batholiths in the Yidun Arc: Evidence from mafic microgranular enclaves: Acta Petrologica Sinica, v. 33, n. 8, p. 2535–2547.
    OpenUrl
  63. ↵
    1. Wang P.,
    2. Dong G. C.,
    3. Zhao G. C.,
    4. Han Y. G.,
    5. Li Y. P.
    , 2018, Petrogenesis of the Pulang porphyry complex, southwestern China: Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys Oceanic lithosphere: Lithos, v. 304–307, p. 280–297, doi:https://doi.org/10.1016/j.lithos.2018.02.009
    OpenUrlCrossRef
  64. ↵
    1. Wang P.,
    2. Zhao G. C.,
    3. Han Y. G.,
    4. Li Q,
    5. Zhou N. C.,
    6. Yao J. L.,
    7. Li J. H.
    , 2021, Petrogenesis of Ordovician granitoids in Western Kunlun, NW Tibet Plateau: insights into the evolution of the Proto-Tethys Ocean: Geological Society of America Bulletin, v. 133, n. 1, p. 1071–1089, doi:https://doi.org/10.1130/B35740.1
    OpenUrlCrossRef
  65. ↵
    1. Wang Q.,
    2. Xu J. F.,
    3. Jian P.,
    4. Zhao Z. H.,
    5. Li C .F.,
    6. Xiong X. L.,
    7. Ma J. L.
    , 2006, Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization: Journal of Petrology, v. 47, n. 1, p. 119–144, doi:https://doi.org/10.1093/petrology/egi070
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    1. Wang Q.,
    2. Wyman D. A.,
    3. Xu J. F.,
    4. Dong Y. H.,
    5. Vasconcelos P. M.,
    6. Pearson N.,
    7. Wan Y. S.,
    8. Dong H.,
    9. Li C. F.,
    10. Yu Y. S.,
    11. Zhu T. X.,
    12. Feng X. T.,
    13. Zhang Q. Y.,
    14. Zi F.,
    15. Chu Z. Y.
    , 2008, Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites: Earth and Planetary Science Letters, v. 272, n. 1–2, p. 158–171, doi:https://doi.org/10.1016/j.epsl.2008.04.034
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Chen H. L.,
    4. Zhang G. C.,
    5. Li J. L.
    , 2002, Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan Plateau: Geology, v. 30, n. 4, p. 295–298, doi:https://doi.org/10.1130/0091-7613(2002)030<0295:CTSAAI>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Liu D. Y.,
    4. Jian P.,
    5. Liu C. Z.,
    6. Yuan C.,
    7. Sun M.
    , 2005, Accretionary tectonics of the Western Kunlun Orogen, China: A Paleozoic-Early Mesozoic, long-lived active continental margin with implications for the growth of Southern Eurasia: The Journal of Geology, v. 113, n. 6, p. 687–705, doi:https://doi.org/10.1086/449326
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Ye H. M.,
    2. Li X. H.,
    3. Li Z. X.,
    4. Zhang C. L.
    , 2008, Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau: Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt: Gondwana Research, v. 13, n. 1, p. 126–138, doi:https://doi.org/10.1016/j.gr.2007.08.005
    OpenUrlCrossRefGeoRefWeb of Science
  70. ↵
    1. Yu K. Z.,
    2. Liu Y. S.,
    3. Hu Q. H.,
    4. Ducea M. N.,
    5. Hu Z. C.,
    6. Zong K. Q,
    7. Chen H. H.
    , 2018, Magma recharge and reactive bulk assimilation in enclave-bearing granitoids, Tonglu, South China: Journal of Petrology, v. 59, n. 5, p. 795–824, doi:https://doi.org/10.1093/petrology/egy044
    OpenUrlCrossRef
  71. ↵
    1. Zhang C. L.,
    2. Yu H. F.,
    3. Shen J. L.,
    4. Dong Y. G.,
    5. Ye H. M.,
    6. Guo K. Y.
    , 2004, Zircon SHRIMP age determination of the giant-crystal gabbro and basalt in Kudi, west Kunlun: Dismembering of the Kudi ophiolite: Geological Review, v. 50, n. 6, p. 639–643.
    OpenUrl
  72. ↵
    1. Zhang C. L.,
    2. Lu S. N.,
    3. Yu H. F.,
    4. Ye H. M.
    , 2007, Tectonic evolution of the Western Kunlun orogenic belt in northern Qinghai-Tibet Plateau: Evidence from zircon SHRIMP and LA-ICP-MS U-Pb geochronology: Science in China Series D: Earth Sciences, v. 50, n. 6, p. 825–835, doi:https://doi.org/10.1007/s11430-007-2051-z
    OpenUrlCrossRef
  73. ↵
    1. Zhang C. L.,
    2. Zou H. B.,
    3. Ye X. T.,
    4. Chen X. Y.
    , 2018, Timing of subduction initiation in the Proto-Tethys Ocean: Evidence from the Cambrian gabbros from the NE Pamir Plateau: Lithos, v. 314–315, p. 40–51, doi:https://doi.org/10.1016/j.lithos.2018.05.021
    OpenUrlCrossRef
  74. ↵
    1. Zhao G. C.,
    2. Cawood P. A.
    , 2012, Precambrian Geology of China: Precambrian Research, v. 222–223, p. 13–54, doi:https://doi.org/10.1016/j.precamres.2012.09.017
    OpenUrlCrossRef
  75. ↵
    1. Zhao G. C.,
    2. Wang Y. J.,
    3. Huang B. C.,
    4. Dong Y. P.,
    5. Li S. Z.,
    6. Zhang G. W.,
    7. Yu S.
    , 2018, Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea: Earth-Science Reviews, v. 186, p. 262–286, doi:https://doi.org/10.1016/j.earscirev.2018.10.003
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (6)
American Journal of Science
Vol. 322, Issue 6
1 Jun 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Effect of source compositions on adakitic features: A case study from the Buya granite, in western Kunlun, NW China
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Effect of source compositions on adakitic features: A case study from the Buya granite, in western Kunlun, NW China
Peng Wang, Guochun Zhao, Qian Liu, Jinlong Yao, Yigui Han, Jianhua Li
American Journal of Science Jun 2022, 322 (6) 828-850; DOI: 10.2475/06.2022.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Effect of source compositions on adakitic features: A case study from the Buya granite, in western Kunlun, NW China
Peng Wang, Guochun Zhao, Qian Liu, Jinlong Yao, Yigui Han, Jianhua Li
American Journal of Science Jun 2022, 322 (6) 828-850; DOI: 10.2475/06.2022.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL SETTING AND SAMPLE DESCRIPTIONS
    • ANALYTICAL METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • SUPPLEMENTARY DATA
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Adakitic feature
  • granite
  • fractional crystallization
  • MME
  • Buya
  • Western Kunlun

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire