Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Partial molar volumes of metal oxides in silicate melts: Effects of Coulombic interactions

H. Wayne Nesbitt, Pascal Richet, G. Michael Bancroft and Grant S. Henderson
American Journal of Science May 2022, 322 (5) 683-704; DOI: https://doi.org/10.2475/05.2022.02
H. Wayne Nesbitt
*Dept. of Earth Sciences, Univ. of Western Ontario, London, Ontario N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: hwn@uwo.ca
Pascal Richet
**Institut de Physique du Globe de Paris, 1 Rue Jussieu, F-75252 Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Michael Bancroft
***Dept. of Chemistry, Univ. of Western Ontario, London, Ontario N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grant S. Henderson
§Dept. of Earth Science, University of Toronto, Toronto, Ontario M5S 3B1, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Alkaline, alkaline earth, many 3d and most 4f modifier oxides dissolved in siliceous melts mix non-ideally with SiO2 to produce linear, density-compositional mixing trends from which partial molar volumes of modifier oxides (V*) are determined. An analysis of these experimental data reveals that the partial molar volumes of alkali, alkaline earths, most 4f and many 3d modifier oxides partial molar volumes are accurately reproduced by: Embedded Image where FC = (z+•z−)/d2 (Coulomb's Law) and z indicates charge. The bond length ‘d’ is the sum of the radii of the cation (M+, M2+, M3+ or M4+) and oxide ion (O2−) observed in ionic crystals. The coefficients ‘m’ and ‘b’ are 0.325 and 1.38 Å/atom respectively. Partial molar volumes of network-forming oxides also conform to the above equation where ‘m’ = ∼3.25 and ‘b’ is 1.68 Å/atom.

Coulomb's force of attraction (FC) is the product of the cationic field strength (z+/d2) and the charge on an anion, where ‘d’ is the distance separating the centers of the two charges. In silicate melts containing modifier cations, apical O atoms of Si tetrahedra are negatively charged and are displaced toward the cations due to Coulombic attraction. The resulting collapse around the cations is referred to as ‘electrostriction’. Partial molar volumes (V*) of modifier oxides are thus composed of two terms, the volume of the polyhedron of the modifier cation (VPoly) and a volume associated with collapse of tetrahedra around the cation (VCol): Embedded Image VCol is negative for all modifier oxides and becomes increasingly negative with increased charge on the cation and with increased coordination number (CN). VPoly is itself composed of two terms, an intrinsic volume (VInt) and an excluded volume (VEx). The intrinsic volume can be calculated using cationic and O2− radii evaluated from ionic crystals. VEx reflects the state of packing around cationic polyhedra. It is equal to 6.83 Å3/atom for all modifier oxides so that the expression for VPoly is: Embedded Image A linear relationship exists between VPoly and VCol which results in the observed linear density-composition trends from which partial molar volumes are determined. In spite of their linearity, these trends are the result of non-ideal mixing of modifier oxide and SiO2 components in siliceous melts. Our finding that tetrahedra collapse around modifier cations differs from the traditional perspective where modifier cations were considered to occupy voids within the silicate network but otherwise had limited effect on melt structure. These results demonstrate that modifier cations affect the network substantially by causing surrounding tetrahedra to rotate, twist, tilt and flex during their collapse toward modifier cations.

  • Partial molar volumes
  • silicate melts
  • Electrostriction in melts
  • Partial molar volumes of modifier oxides
  • Volumetric collapse in silicate melts
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (5)
American Journal of Science
Vol. 322, Issue 5
1 May 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Partial molar volumes of metal oxides in silicate melts: Effects of Coulombic interactions
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Partial molar volumes of metal oxides in silicate melts: Effects of Coulombic interactions
H. Wayne Nesbitt, Pascal Richet, G. Michael Bancroft, Grant S. Henderson
American Journal of Science May 2022, 322 (5) 683-704; DOI: 10.2475/05.2022.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Partial molar volumes of metal oxides in silicate melts: Effects of Coulombic interactions
H. Wayne Nesbitt, Pascal Richet, G. Michael Bancroft, Grant S. Henderson
American Journal of Science May 2022, 322 (5) 683-704; DOI: 10.2475/05.2022.02
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • BACKGROUND
    • PARTIAL MOLAR VOLUMES AND COULOMB'S LAW
    • RESIDUAL VOLUMES
    • VOLUMETRIC COLLAPSE AROUND CATIONS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGEMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Partial molar volumes
  • silicate melts
  • Electrostriction in melts
  • Partial molar volumes of modifier oxides
  • Volumetric collapse in silicate melts

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire