Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Weathering intensity and lithium isotopes: A reactive transport perspective

Matthew J. Winnick, Jennifer L. Druhan and Kate Maher
American Journal of Science May 2022, 322 (5) 647-682; DOI: https://doi.org/10.2475/05.2022.01
Matthew J. Winnick
*Department of Geosciences, University of Massachusetts Amherst, Amherst, Massachusettes 01003, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mwinnick@umass.edu
Jennifer L. Druhan
**Department of Geology, University of Illinois Urbana Champaign, Urbana, Illinois 61801, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kate Maher
***Department of Earth System Science, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Anghel I.,
    2. Turin H. J.,
    3. Reimus P. W.
    , 2002, Lithium sorption to Yucca Mountain tuffs: Applied Geochemistry, v. 17, n. 6, p. 819–824, doi:https://doi.org/10.1016/S0883-2927(02)00041-0
    OpenUrlCrossRefGeoRef
  2. ↵
    1. Arnorsson S.,
    2. Stefansson A.
    , 1999, Assessment of feldspar solubility constants in water in the range 0 degrees to 350 degrees C at vapor saturation pressures: American Journal of Science, v. 299, n. 3, p. 173–209, doi:https://doi.org/10.2475/ajs.299.3.173
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Bernal N. F.,
    2. Gleeson S. A.,
    3. Dean A. S.,
    4. Liu X. M.,
    5. Hoskin P.
    , 2014, The source of halogens in geothermal fluids from the Taupo Volcanic Zone, North Island, New Zealand: Geochimica et Cosmochimica Acta, v. 126, p. 265–283, doi:https://doi.org/10.1016/j.gca.2013.11.003
    OpenUrlCrossRefGeoRef
  4. ↵
    1. Bohlin M. S.,
    2. Bickle M. J.
    , 2019, The reactive transport of Li as a monitor of weathering processes in kinetically limited weathering regimes: Earth and Planetary Science Letters, v. 511, p. 233–243, doi:https://doi.org/10.1016/j.epsl.2019.01.034
    OpenUrlCrossRef
  5. ↵
    1. Bouchez J.,
    2. von Blanckenburg F.,
    3. Schuessler J. A.
    , 2013, Modeling novel stable isotope ratios in the weathering zone: American Journal of Science, v. 313, n. 4, p. 267–308, doi:https://doi.org/10.2475/04.2013.01
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Caves Rugenstein J. K.,
    2. Ibarra D. E.,
    3. von Blanckenburg F.
    , 2019, Neogene cooling driven by land surface reactivity rather than increased weathering fluxes: Nature, v. 571, p. 99–102, doi:https://doi.org/10.1038/s41586-019-1332-y
    OpenUrlCrossRef
  7. ↵
    1. Chamberlain C. P.,
    2. Koons P. O.,
    3. Meltzer A. S.,
    4. Park S. K.,
    5. Craw D.,
    6. Zeitler P.,
    7. Poage M. A.
    , 2002, Overview of hydrothermal activity associated with active orogenesis and metamorphism: Nanga Parbat, Pakistan Himalaya: American Journal of Science, v, 302, n. 8, p. 726–748, doi:https://doi.org/10.2475/ajs.302.8.726
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Chamberlain C. P.,
    2. Waldbauer J. R.,
    3. Jacobson A. D.
    , 2005, Strontium, hydrothermal systems and steady-state chemical weathering in active mountain belts: Earth and Planetary Science Letters, v. 238, n. 3–4, p. 351–366, doi:https://doi.org/10.1016/j.epsl.2005.08.005
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Chan L. H.,
    2. Edmond J. M.,
    3. Thompson G.,
    4. Gillis K.
    , 1992, Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans: Earth and Planetary Science Letters, v. 108, n. 1–3, p. 151–160, doi:https://doi.org/10.1016/0012-821X(92)90067-6
    OpenUrlCrossRefGeoRefWeb of Science
  10. ↵
    1. Decarreau A.,
    2. Vigier N.,
    3. Pálková H.,
    4. Petit S.,
    5. Vieillard P.,
    6. Fontaine C.
    , 2012, Partitioning of lithium between smectite and solution: An experimental approach: Geochimica et Cosmochimica Acta, v. 85, p. 314–325, doi:https://doi.org/10.1016/j.gca.2012.02.018
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Dellinger M.,
    2. Gaillardet J.,
    3. Bouchez J.,
    4. Calmels D.,
    5. Galy V.,
    6. Hilton R. G.,
    7. Louvat P.,
    8. France-Lanord C.
    , 2014, Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion: Earth and Planetary Science Letters, v. 401, p. 359–372, doi:https://doi.org/10.1016/j.epsl.2014.05.061
    OpenUrlCrossRefGeoRef
  12. ↵
    1. Dellinger M.,
    2. Gaillardet J.,
    3. Bouchez J.,
    4. Calmels D.,
    5. Louvat P.,
    6. Dosseto A.,
    7. Gorge C.,
    8. Alanoca L.,
    9. Maurice L.
    , 2015, Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes: Geochimica et Cosmochimica Acta, v. 164, p. 71–93, doi:https://doi.org/10.1016/j.gca.2015.04.042
    OpenUrlCrossRefGeoRef
  13. ↵
    1. Dellinger M.,
    2. Bouchez J.,
    3. Gaillardet J.,
    4. Faure L.,
    5. Moureau J.
    , 2017, Tracing weathering regimes using the lithium isotope composition of detrital sediments: Geology, v. 45, n. 5, p. 411–414, doi:https://doi.org/10.1130/G38671.1
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Druhan J. L.,
    2. Maher K.
    , 2017, The influence of mixing on stable isotope ratios in porous media: A revised Rayleigh model: Water Resources Research, v. 53, n. 2, p. 1101–1124, doi:https://doi.org/10.1002/2016WR019666
    OpenUrlCrossRef
  15. ↵
    1. Druhan J. L.,
    2. Winnick M. J.
    , 2019, Reactive transport of stable isotopes: Elements, v. 15, n. 2, p. 107–110, doi:https://doi.org/10.2138/gselements.15.2.107
    OpenUrlCrossRef
  16. ↵
    1. Druhan J. L.,
    2. Steefel C. I.,
    3. Williams K. H.,
    4. DePaolo D. J.
    , 2013, Calcium isotope fractionation in groundwater: Molecular scale processes influencing field scale behavior: Geochimica et Cosmochimica Acta, v. 119, p. 93–116, doi:https://doi.org/10.1016/j.gca.2013.05.022
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Evans M. J.,
    2. Derry L. A.,
    3. Anderson S. P.,
    4. France-Lanord C.
    , 2001, Hydrothermal source of radiogenic Sr to Himalayan rivers: Geology, v. 29, n. 9, p. 803–806, doi:https://doi.org/10.1130/0091-7613(2001)029<0803:HSORST>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Ferrier K. L.,
    2. Kirchner J. W.
    , 2008, Effects of physical erosion on chemical denudation rates: A numerical modeling study of soil-mantled hillslopes: Earth and Planetary Science Letters, v. 272, n. 3–4, p. 591–599, doi:https://doi.org/10.1016/j.epsl.2008.05.024
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Flesch G. D.,
    2. Anderson A. R. Jr..,
    3. Svec H. J.
    , 1973, A secondary isotopic standard for 6Li/7Li determinations: International Journal of Mass Spectrometry Ion Physics, v. 12, n. 3, p. 265–272, doi:https://doi.org/10.1016/0020-7381(73)80043-9
    OpenUrlCrossRef
  20. ↵
    1. Gibbs R. J.
    , 1967, The geochemistry of the Amazon River system: Part I. The factors that control the salinity and the composition and concentration of the suspended solids: Geological Society of America Bulletin, v. 78, n. 10, p. 1203–1232, doi:https://doi.org/10.1130/0016-7606(1967)78[1203:TGOTAR]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Godfrey L.,
    2. Álvarez-Amado F.
    , 2020, Volcanic and saline lithium inputs to the Salar de Atacam: Minerals, v. 10, n. 2, 201, doi:https://doi.org/10.3390/min10020201
    OpenUrlCrossRef
  22. ↵
    1. Golla J. K.,
    2. Kuessner M. L.,
    3. Henehan M. J.,
    4. Bouchez J.,
    5. Rempe D. M.,
    6. Druhan J. L.
    , 2021, The evolution of lithium isotope signatures in fluids draining actively weathering hillslopes: Earth and Planetary Science Letters, v. 567, 116988, doi:https://doi.org/10.1016/j.epsl.2021.116988
    OpenUrlCrossRef
  23. ↵
    1. Gu X.,
    2. Rempe D. M.,
    3. Dietrich W. E.,
    4. West A. J.,
    5. Lin T.-C.,
    6. Jin L.,
    7. Brantley S. L.
    , 2020, Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate: Geochimica et Cosmochimica Acta, v. 269, p. 63–100, doi:https://doi.org/10.1016/j.gca.2019.09.044
    OpenUrlCrossRef
  24. ↵
    1. Heidari P.,
    2. Li L.,
    3. Jin L.,
    4. Williams J. Z.,
    5. Brantley S. L.
    , 2017, A reactive transport model for Marcellus shale weathering: Geochimica et Cosmochimica Acta, v. 217, p. 421–440, doi:https://doi.org/10.1016/j.gca.2017.08.011
    OpenUrlCrossRef
  25. ↵
    1. Hindshaw R. S.,
    2. Tosca R.,
    3. Goût T. L.,
    4. Farnan I.,
    5. Tosca N. J.,
    6. Tipper E. T.
    , 2019, Experimental constraints on Li isotope fractionation during clay formation: Geochimica et Cosmochimica Acta, v. 250, p. 219–237, doi:https://doi.org/10.1016/j.gca.2019.02.015
    OpenUrlCrossRef
  26. ↵
    1. Holland H.
    , 1984, The chemical evolution of the atmosphere and oceans: Princeton University Press, Princeton Series in Geochemistry, v. 2, 598 p.
  27. ↵
    1. Huh Y.,
    2. Chan L.-H.,
    3. Edmond J. M.
    , 2001, Lithium isotopes as a probe of weathering processes: Orinoco River: Earth and Planetary Science Letters, v. 194, n. 1–2, p. 189–199, doi:https://doi.org/10.1016/S0012-821X(01)00523-4
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Irion G.
    , 1983, Clay mineralogy of the suspended load of the Amazon and of rivers in the Papua-New Guinea mainland: Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, Transport of carbon and minerals in major world rivers, v. 55, p. 483–504.
    OpenUrl
  29. ↵
    1. Jasechko S.,
    2. Kirchner J. W.,
    3. Welker J. M.,
    4. McDonnell J. J.
    , 2016, Substantial proportion of global streamflow less than three months old: Nature Geoscience, v. 9, p. 126–129, doi:https://doi.org/10.1038/ngeo2636
    OpenUrlCrossRef
  30. ↵
    1. Jung H.,
    2. Navarre-Sitchler A.
    , 2018, Physical heterogeneity control on effective mineral dissolution rates: Geochimica et Cosmochimica Acta, v. 227, p. 246–263, doi:https://doi.org/10.1016/j.gca.2018.02.028
    OpenUrlCrossRef
  31. ↵
    1. Kirchner J. W.
    , 2016, Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments: Hydrology and Earth System Sciences, v. 20, n. 1, p. 279–297, doi:https://doi.org/10.5194/hess-20-279-2016
    OpenUrlCrossRef
  32. ↵
    1. Lara M. C.,
    2. Buss H. L.,
    3. Henehan M. J.,
    4. Schuessler J. A.,
    5. McDowell W. H.
    , 2022, Secondary minerals drive extreme lithium isotope fractionation during tropical weathering: Journal of Geophysical Research: Earth Surface, v. 127, n. 2, e2021JF006366, doi:https://doi.org/10.1029/2021JF006366
    OpenUrlCrossRef
  33. ↵
    1. Lasaga A. C.
    , 1998, Kinetic theory in the earth sciences: v. 811: Princeton, NJ, Princeton university press, Princeton Serises in Geochemistry, v. 402, 822 p.
  34. ↵
    1. Lawrence C. R.,
    2. Harden J.,
    3. Maher K.
    , 2014, Modeling the influence of organic acids on soil weathering: Geochimica et Cosmochimica Acta, v. 139, p. 487–507, doi:https://doi.org/10.1016/j.gca.2014.05.003
    OpenUrlCrossRefGeoRef
  35. ↵
    1. Lebedeva M. I.,
    2. Brantley S. L.
    , 2013, Exploring geochemical controls on weathering and erosion of convex hillslopes: beyond the empirical regolith production function: Earth Surface Processes and Landforms, v. 38, n. 15, p. 1793–1807, doi:https://doi.org/10.1002/esp.3424
    OpenUrlCrossRefGeoRef
  36. ↵
    1. Lebedeva M. I.,
    2. Fletcher R. C.,
    3. Brantley S. L.
    , 2010, A mathematical model for steady-state regolith production at constant erosion rate: Earth Surface Processes and Landforms, v. 35, n. 5, p. 508–524, doi:https://doi.org/10.1002/esp.1954
    OpenUrlCrossRefGeoRefWeb of Science
  37. ↵
    1. Lechler M.,
    2. Pogge von Strandmann P. A. E.,
    3. Jenkyns H. C.,
    4. Prosser G.,
    5. Parente M.
    , 2015, Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event): Earth and Planetary Science Letters, v. 432, p. 210–222, doi:https://doi.org/10.1016/j.epsl.2015.09.052
    OpenUrlCrossRef
  38. ↵
    1. Lemarchand E.,
    2. Chabaux F.,
    3. Vigier N.,
    4. Millot R.,
    5. Pierret M.-C.
    , 2010, Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France): Geochimica et Cosmochimica Acta, v. 74, n. 16, p. 4612–4628, doi:https://doi.org/10.1016/j.gca.2010.04.057
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Li G.,
    2. West J. A.
    , 2014, Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks: Earth and Planetary Science Letters, v. 401, p. 284–293, doi:https://doi.org/10.1016/j.epsl.2014.06.011
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Maffre P.,
    2. Goddéris Y.,
    3. Vigier N.,
    4. Moquet J.-S.,
    5. Carretier S.
    , 2020, Modelling the riverine δ7Li variability throughout the Amazon Basin: Chemical Geology, v. 532, 119336, doi:https://doi.org/10.1016/j.chemgeo.2019.119336
    OpenUrlCrossRef
  41. ↵
    1. Maher K.
    , 2010, The dependence of chemical weathering rates on fluid residence time: Earth and Planetary Science Letters, v. 294, n. 1–2, p. 101–110, doi:https://doi.org/10.1016/j.epsl.2010.03.010
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Maher K.
    2011, The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes: Earth and Planetary Science Letters, v. 312, n. 1–2, p. 48–58, doi:https://doi.org/10.1016/j.epsl.2011.09.040
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Maher K.,
    2. Chamberlain C. P.
    , 2014, Hydrologic regulation of chemical weathering and the geologic carbon cycle: Science, v. 343, n. 6178, p. 1502–1504, doi:https://doi.org/10.1126/science.1250770
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Maher K.,
    2. von Blanckenburg F.
    , 2016, Surface ages and weathering rates from 10Be, meteoric, and 10Be/9Be: Insights from differential mass balance and reactive transport modeling: Chemical Geology, v. 446, p. 70–86, doi:https://doi.org/10.1016/j.chemgeo.2016.07.016
    OpenUrlCrossRef
  45. ↵
    1. Maher K.,
    2. Steefel C. I.,
    3. DePaolo D. J.,
    4. Viani B. E.
    , 2006, The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments: Geochimica et Cosmochimica Acta, v. 70, n. 2, p. 337–363, doi:https://doi.org/10.1016/j.gca.2005.09.001
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Maher K.,
    2. Steefel C. I.,
    3. White A. F.,
    4. Stonestrom D. A.
    , 2009, The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Chronosequence, California: Geochimica et Cosmochimica Acta, v. 73, n. 10, p. 2804–2831, doi:https://doi.org/10.1016/j.gca.2009.01.030
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Manaka T.,
    2. Araoka D.,
    3. Yoshimura T.,
    4. Hossain H. M. Z.,
    5. Nishio Y.,
    6. Suzuki A.,
    7. Kawahata H.
    , 2017, Downstream and seasonal changes of lithium isotope ratios in the Ganges-Brahmaputra river system: Geochemistry, Geophysics, Geosystems, v. 18, n. 8, p. 3003–3015, doi:https://doi.org/10.1002/2016GC006738
    OpenUrlCrossRef
  48. ↵
    1. Millot R.,
    2. Girard J. P.
    , 2007, Lithium isotope fractionation during adsorption onto mineral surfaces: Clay in Natural and Engineered Barriers for Radioactive Waste Confinement, 3rd International Meeting, Lille, France. P. 307–308.
  49. ↵
    1. Millot R.,
    2. Négrel P.
    , 2007, Multi-isotopic tracing, δ7Li, δ11B, 87Sr/86Sr, and chemical geothermometry: evidence from hydro-geothermal systems in France: Chemical Geology, v. 244, n. 3–4, p. 664–678, doi:https://doi.org/10.1016/j.chemgeo.2007.07.015
    OpenUrlCrossRefGeoRef
  50. ↵
    1. Millot R.,
    2. Négrel P.,
    3. Petelet-Giraud E.
    , 2007, Multi-isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France): Applied Geochemistry, v. 22, n. 11, p. 2307–2335, doi:https://doi.org/10.1016/j.apgeochem.2007.04.022
    OpenUrlCrossRef
  51. ↵
    1. Millot R.,
    2. Vigier N.,
    3. Gaillardet J.
    , 2010a, Behavior of lithium and its isotopes during weathering in the Mackenzie Basin, Canada: Geochimica et Cosmochimica Acta, v. 74, n. 14, p. 3897–3912, doi:https://doi.org/10.1016/j.gca.2010.04.025
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Millot R.,
    2. Scaillet B.,
    3. Sanjuan B.
    , 2010b, Lithium isotopes in arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach: Geochimica et Cosmochimica Acta, v. 74, n. 6, p. 1852–1871, doi:https://doi.org/10.1016/j.gca.2009.12.007
    OpenUrlCrossRefGeoRef
  53. ↵
    1. Millot R.,
    2. Hegan A.,
    3. Négrel P.
    , 2012, Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B, and Sr isotopes characterization: Applied Geochemistry, v. 27, n. 3, p. 677–688, doi:https://doi.org/10.1016/j.apgeochem.2011.12.015
    OpenUrlCrossRefGeoRef
  54. ↵
    1. Misra S.,
    2. Froelich P. N.
    , 2012, Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering: Science, v. 335, n. 6070, p. 818–823, doi:https://doi.org/10.1126/science.1214697
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Moore J.,
    2. Lichtner P. C.,
    3. White A. F.,
    4. Brantley S. L.
    , 2012, Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith: Geochimica et Cosmochimica Acta, v. 93, p. 235–261, doi:https://doi.org/10.1016/j.gca.2012.03.021
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Murphy S. F.,
    2. Brantley S. L.,
    3. Blum A. E.,
    4. White A. F.,
    5. Dong H.
    , 1998, Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: II. Rate and mechanism of biotite weathering: Geochimica et Cosmochimica Acta, v. 62, n. 2, p. 227–243, doi:https://doi.org/10.1016/S0016-7037(97)00336-0
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Palandri J. L.,
    2. Kharaka Y. K.
    , 2004, A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling: US Geological Survey, Open File Report, 2004–1068, 64 p.
  58. ↵
    1. Pandey S.,
    2. Rajaram H.
    , 2016, Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates: Water Resources Research, v. 52, n. 12, p. 9344–9366, doi:https://doi.org/10.1002/2016WR019026
    OpenUrlCrossRef
  59. ↵
    1. Penniston-Dorland S.,
    2. Liu X.-M.,
    3. Rudnick R. L.
    , 2017, Lithium Isotope Geochemistry: Reviews in Mineralogy and Geochemistry, v. 82, n. 1, p. 165–217, doi:https://doi.org/10.2138/rmg.2017.82.6
    OpenUrlFREE Full Text
  60. ↵
    1. Perez-Fodich A.,
    2. Derry L.A.
    , 2020, A model for germanium-silicon equilibrium fractionation in kaolinite: Geochimica et Cosmochimica Acta, v. 288, p. 199–213, doi:https://doi.org/10.1016/j.gca.2020.07.046
    OpenUrlCrossRef
  61. ↵
    1. Pistiner J. S.,
    2. Henderson G. M.
    , 2003, Lithium-isotope fractionation during continental weathering process: Earth and Planetary Science Letters, v. 214, n. 1–2, p. 327–339, doi:https://doi.org/10.1016/S0012-821X(03)00348-0
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Pogge von Strandmann P. A. E.,
    2. Henderson G. M.
    , 2015, The Li isotope response to mountain uplift: Geology, v. 43, n. 1, p. 67–70, doi:https://doi.org/10.1130/G36162.1
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Pogge von Strandmann P. A. E.,
    2. Jenkyns H. C.,
    3. Woodfine R. G.
    , 2013, Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2: Nature Geoscience, v. 6, p. 668–672, doi:https://doi.org/10.1038/ngeo1875
    OpenUrlCrossRef
  64. ↵
    1. Pogge von Strandmann P. A. E,
    2. Burton K. W.,
    3. Opfergelt S.,
    4. Eiríksdóttir E. S.,
    5. Murphy M. J.,
    6. Einarsson A.,
    7. Gislason S. R.
    , 2016, The effect of hydrothermal spring weathering processes and primary productivity on lithium isotopes: Lake Myvatn, Iceland: Chemical Geology, v. 445, p. 4–13, doi:https://doi.org/10.1016/j.chemgeo.2016.02.026
    OpenUrlCrossRef
  65. ↵
    1. Pogge von Strandmann P. A. E.,
    2. Desrochers A.,
    3. Murphy M. J.,
    4. Finlay A. J.,
    5. Selby D.,
    6. Lenton T. M.
    , 2017, Global climate stabilisation by chemical weathering during the Hirnantian glaciation: Geochemical Perspectives Letters, v. 3, n. 2, p. 230–237, doi:https://doi.org/10.7185/geochemlet.1726
    OpenUrlCrossRef
  66. ↵
    1. Pogge von Strandmann P. A. E.,
    2. Kasemann S. A.,
    3. Wimpenny J. B.
    , 2020, Lithium and lithium isotopes in Earth's surface cycles: Elements, v. 16, n. 4, p. 253–258, doi:https://doi.org/10.2138/gselements.16.4.253
    OpenUrlCrossRef
  67. ↵
    1. Proust D.,
    2. Eymery J.-P.,
    3. Beaufort D.
    , 1986, Supergene vermiculitization of a magnesian chlorite: Iron and magnesium removal processes: Clays and Clay Minerals, v. 34, p. 572–580, doi:https://doi.org/10.1346/CCMN.1986.0340511
    OpenUrlAbstract
  68. ↵
    1. Steefel C. I.,
    2. Druhan J. L.,
    3. Maher K.
    , 2014, Modeling coupled chemical and isotopic equilibration rates: Procedia Earth and Planetary Science, v. 10, p. 208–217, doi:https://doi.org/10.1016/j.proeps.2014.08.022
    OpenUrlCrossRef
  69. ↵
    1. Steefel C. I.,
    2. Appelo C. A. J.,
    3. Arora B.,
    4. Jacques D.,
    5. Kalbacher T.,
    6. Kolditz O.,
    7. Lagneau V.,
    8. Lichtner P. C.,
    9. Mayer K. U.,
    10. Meeussen J. C. L.,
    11. Molins S.,
    12. Moulton D.,
    13. Shao H.,
    14. Šimůnek J.,
    15. Spycher N.,
    16. Yabusaki S. B.,
    17. Yeh G. T.
    , 2015, Reactive transport codes for subsurface environmental simulation: Computational Geosciences, v. 19, n. 3, p. 445–478, doi:https://doi.org/10.1007/s10596-014-9443-x
    OpenUrlCrossRef
  70. ↵
    1. Sullivan P. L.,
    2. Hynek S. A.,
    3. Gu X.,
    4. Singha K.,
    5. White T.,
    6. West N.,
    7. Kim H.,
    8. Clarke B.,
    9. Kirby E.,
    10. Duffy C.,
    11. Brantley S. L.
    , 2016, Oxidative dissolution under the channel leads geomorphological evolution at the Shale Hills catchment: American Journal of Science, v. 316, n. 10, p. 981–1026, doi:https://doi.org/10.2475/10.2016.02
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Sun H.,
    2. Xiao Y.,
    3. Gao Y.,
    4. Zhang G.,
    5. Casey J. F.,
    6. Shen Y.
    , 2018, Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary: Proceedings of the National Academy of Sciences of the United States of America, v. 115, n. 15, p. 3782–3787, doi:https://doi.org/10.1073/pnas.1711862115
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. Tardy Y.,
    2. Krempp G.,
    3. Trauth N.
    , 1972, Le lithium dans les minéraux argileux des sédiments et des sols: Geochmica et Cosmochimica Acta, v. 36, n. 4, p. 397–412, doi:https://doi.org/10.1016/0016-7037(72)90031-2
    OpenUrlCrossRef
  73. ↵
    1. Teng F. Z.,
    2. McDonough W. F.,
    3. Rudnick R. L.,
    4. Dalpé C.,
    5. Tomascak P. B.,
    6. Chappell B. W.,
    7. Gao S.
    , 2004, Lithium isotopic composition and concentration of the upper continental crust: Geochimica et Cosmochimica Acta, v. 68, n. 20, p. 4167–4178, doi:https://doi.org/10.1016/j.gca.2004.03.031
    OpenUrlCrossRefGeoRefWeb of Science
  74. ↵
    1. Tomascak P. B.
    , 2004, Developments in the understanding and application of lithium isotopes in the earth and planetary sciences: Reviews in Mineralogy and Geochemistry, v. 55, n. 1, p. 153–195, doi:https://doi.org/10.2138/gsrmg.55.1.153
    OpenUrlFREE Full Text
  75. ↵
    1. Verney-Carron A.,
    2. Vigier N.,
    3. Millot R.,
    4. Hardarson B. S.
    , 2015, Lithium isotopes in hydrothermally altered basalts from Hengill, SW Iceland: Earth and Planetary Science Letters, v. 411, p. 62–71, doi:https://doi.org/10.1016/j.epsl.2014.11.047
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Vigier N.,
    2. Decarreau A.,
    3. Millot R.,
    4. Carignan J.,
    5. Petit S.,
    6. France-Lanord C.
    , 2008, Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle: Geochimica et Cosmochimica Acta, v. 72, n. 3, p. 780–792, doi:https://doi.org/10.1016/j.gca.2007.11.011
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    1. Vigier N.,
    2. Gislason S. R.,
    3. Burton K. W.,
    4. Millot R.,
    5. Mokadem F.
    , 2009, The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland: Earth and Planetary Science Letters, v. 287, n. 3–4, p. 434–441, doi:https://doi.org/10.1016/j.epsl.2009.08.026
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. von Blanckenburg F.,
    2. Hewawasam T.,
    3. Kubik P. W.
    , 2004, Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka: Journal of Geophysical Research: Earth Surface, v. 109, n. F3, F03008, doi:https://doi.org/10.1029/2003JF000049
    OpenUrlCrossRef
  79. ↵
    1. Wang Y.,
    2. Xu H.
    , 2001, Prediction of trace metal partitioning between minerals and aqueous solutions: a linear free energy correlation approach: Geochimica et Cosmochimica Acta, v. 65, n. 10, p. 1529–1543, doi:https://doi.org/10.1016/S0016-7037(01)00551-8
    OpenUrlCrossRefGeoRef
  80. ↵
    1. Wanner C.,
    2. Sonnenthal E. L.,
    3. Liu X.-M.
    , 2014, Seawater δ7Li: A direct proxy for global CO2 consumption by continental silicate weathering?: Chemical Geology, v. 381, p. 154–167, doi:https://doi.org/10.1016/j.chemgeo.2014.05.005
    OpenUrlCrossRefGeoRefWeb of Science
  81. ↵
    1. Williams L. B.,
    2. Hervig R. L.
    , 2005, Lithium and boron isotopes in illite-smectite: the importance of crystal size: Geochimica et Cosmochimica Acta, v. 69, n. 24, p. 5705–5716, doi:https://doi.org/10.1016/j.gca.2005.08.005
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. Wimpenny J.,
    2. Gíslason S. R.,
    3. James R. H.,
    4. Gannoun A.,
    5. Pogge von Strandmann P. A. E.,
    6. Burton K. W.
    , 2010, The behavior of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt: Geochimica et Cosmochimica Acta, v. 74, n. 18, p. 5259–5279, doi:https://doi.org/10.1016/j.gca.2010.06.028
    OpenUrlCrossRefGeoRefWeb of Science
  83. ↵
    1. Winnick M. J.,
    2. Maher K.
    , 2018, Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback: Earth and Planetary Science Letters, v. 485, p. 111–120, doi:https://doi.org/10.1016/j.epsl.2018.01.005
    OpenUrlCrossRef
  84. ↵
    1. Melchior D. C.,
    2. Bassett R. L.
    1. Wolery T. J.,
    2. Jackson K. J.,
    3. Bourcier W. L.,
    4. Bruton C. J.,
    5. Viani B. E.,
    6. Knauss K. G.,
    7. Delany J. M.
    , 1990, Current status of the EQ3/6 software package for geochemical modeling, in Melchior D. C., Bassett R. L., editors, Chemical Modeling of Aqueous Systems II: ACS Symposium Series, v. 416, chapter 8, p. 104–116, doi:https://doi.org/10.1021/bk-1990-0416.ch008
    OpenUrlCrossRef
  85. ↵
    1. Zhang L.,
    2. Chan L. H.,
    3. Gieskes J. M.
    , 1998, Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin: Geochimica et Cosmochimica Acta v. 62, n. 14, p. 2437–2450, doi:https://doi.org/10.1016/S0016-7037(98)00178-1
    OpenUrlCrossRefGeoRefWeb of Science
  86. ↵
    1. Zhang X.,
    2. Saldi G. D.,
    3. Schott J.,
    4. Bouchez J.,
    5. Kuessner M,
    6. Montouillout V.,
    7. Henehan M.,
    8. Gailardet J.
    , 2021, Experimental constraints on Li isotope fractionation during the interaction between kaolinite and seawater: Geochimica et Cosmochimica Acta v. 292, p. 333–347, doi:https://doi.org/10.1016/j.gca.2020.09.029
    OpenUrlCrossRef
  87. ↵
    1. Zhu C.
    , 2005, In situ feldspar dissolution rates in an aquifer: Geochimica et Cosmochimica Acta, v. 69, n. 6, p. 1435–1453, doi:https://doi.org/10.1016/j.gca.2004.09.005
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (5)
American Journal of Science
Vol. 322, Issue 5
1 May 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Weathering intensity and lithium isotopes: A reactive transport perspective
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
20 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Weathering intensity and lithium isotopes: A reactive transport perspective
Matthew J. Winnick, Jennifer L. Druhan, Kate Maher
American Journal of Science May 2022, 322 (5) 647-682; DOI: 10.2475/05.2022.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Weathering intensity and lithium isotopes: A reactive transport perspective
Matthew J. Winnick, Jennifer L. Druhan, Kate Maher
American Journal of Science May 2022, 322 (5) 647-682; DOI: 10.2475/05.2022.01
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGEMENTS
    • APPENDICES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Partial molar volumes of metal oxides in silicate melts: Effects of Coulombic interactions
  • Proterozoic-Mesozoic development of the Quanji block from northern Tibet and the cratonic assembly of eastern Asia
Show more Article

Similar Articles

Keywords

  • Lithium isotopes
  • weathering regime
  • reactive transport model
  • chemical weathering
  • critical zone isotopes

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire