Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Solubility product constants for natural dolomite (0–200 °C) through a groundwater-based approach using the USGS produced water database

Hamish A. Robertson, Hilary Corlett, Cathy Hollis and Fiona F. Whitaker
American Journal of Science April 2022, 322 (4) 593-645; DOI: https://doi.org/10.2475/04.2022.03
Hamish A. Robertson
*University of Bristol, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hilary Corlett
**Memorial University, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cathy Hollis
***University of Manchester, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fiona F. Whitaker
*University of Bristol, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: fiona.whitaker@bristol.ac.uk
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Agemar T.,
    2. Schellschmidt R.,
    3. Schulz R.
    , 2012, Subsurface temperature distribution in Germany: Geothermics, v. 44, p. 65–77, doi:https://doi.org/10.1016/j.geothermics.2012.07.002
    OpenUrlCrossRefGeoRef
  2. ↵
    1. Aines R. D.,
    2. Wolery T. J.,
    3. Bourcier W. L.,
    4. Wolfe T.,
    5. Hausmann C.
    , 2011, Fresh water generation from aquifer-pressured carbon storage: feasibility of treating saline formation waters: Energy Procedia, v. 4, p. 2269–2276, doi:https://doi.org/10.1016/j.egypro.2011.02.116
    OpenUrlCrossRef
  3. ↵
    1. Al-Helal A. B.,
    2. Whitaker F. F.,
    3. Xiao Y.
    , 2012, Reactive transport modeling of brine reflux: dolomitization, anhydrite precipitation, and porosity evolution. Journal of Sedimentary Research, v. 82, n. 3, p. 196–215, doi:https://doi.org/10.2110/jsr.2012.14
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Althoff P. L.
    , 1977, Structural refinements of dolomite and a magnesian calcite and implications for dolomite formation in the marine environment: American Mineralogist, v. 62, n. 7–8, p. 772–783.
    OpenUrlAbstract
  5. ↵
    1. Ambrose W. A.,
    2. Grigsby J. D.,
    3. Hardage B. A.,
    4. Langford R. P.,
    5. Jirik L. A.,
    6. Levey R. A.,
    7. Collins R. E.,
    8. Sippel M.,
    9. Howard W. E.,
    10. Vidal J.
    , 1992, Secondary gas recovery: targeted technology applications for infield reserve growth in fluvial reservoirs in the Frio Formation, Seeligson field, South Texas: The University of Texas at Austin, Bureau of Economic Geology, Topical Report GRI-92/0244, Gas Research Institute, Chicago, Illinois.
  6. ↵
    1. André L.,
    2. Audigane P.,
    3. Azaroual M.,
    4. Menjoz A.
    , 2007, Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France): Energy Conversion and Management, v. 48, n. 6, p. 1782–1797, doi:https://doi.org/10.1016/j.enconman.2007.01.006
    OpenUrlCrossRefWeb of Science
  7. ↵
    1. Antao S. M.,
    2. Mulder W. H.,
    3. Hassan I.,
    4. Crichton W. A.,
    5. Parise J. B.
    , 2004, Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite↔ dolomite reaction boundary: American Mineralogist, v. 89, n. 7, p. 1142–1147, doi:https://doi.org/10.2138/am-2004-0728
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Baker P. A.,
    2. Kastner M.
    , 1981, Constraints on the formation of sedimentary dolomite: Science, v. 213, n. 4504, p. 214–216, doi:https://doi.org/10.1126/science.213.4504.214
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Barnes I.,
    2. Back W.
    , 1964, Dolomite solubility in ground water: U.S. Geological Survey Professional Paper, 475-D, v. 160, p. 179–180.
    OpenUrl
  10. ↵
    1. Bates D.,
    2. Maechler M.,
    3. Bolker B.,
    4. Walker S.
    , 2014, lme4: Linear mixed-effects models using Eigen and S4: R package version 1.1-7, p. 1–23.
  11. ↵
    1. Bechtel B.
    , 2015, A new global climatology of annual land surface temperature: Remote Sensing, v. 7, n. 3, p. 2850–2870, doi:https://doi.org/10.3390/rs70302850
    OpenUrlCrossRef
  12. ↵
    1. Beckman J. D.,
    2. Williamson A. K.
    , 1990, Salt-dome locations in the Gulf Coastal Plain, south-central United States: US Geological Survey, v. 90, n. 4060, 44 p., doi:https://doi.org/10.3133/wri904060
    OpenUrlCrossRef
  13. ↵
    1. Bell B. A.,
    2. Morgan G. B.,
    3. Schoeneberger J. A.,
    4. Loudermilk B. L.,
    5. Kromrey J. D.,
    6. Ferron J. M.
    , 2010, April, Dancing the sample size limbo with mixed models: How low can you go: SAS Global Forum, v. 4, p. 11–14.
    OpenUrl
  14. ↵
    1. Bénézeth P.,
    2. Berninger U. N.,
    3. Bovet N.,
    4. Schott J.,
    5. Oelkers E. H.
    , 2018, Experimental determination of the solubility product of dolomite at 50–253 °C: Geochimica et Cosmochimica Acta, v. 224, p. 262–275, doi:https://doi.org/10.1016/j.gca.2018.01.016
    OpenUrlCrossRef
  15. ↵
    1. Benjakul R.,
    2. Hollis C.,
    3. Robertson H. A.,
    4. Sonnenthal E. L.,
    5. Whitaker F. F.
    , 2020, Understanding controls on hydrothermal dolomitisation: insights from 3D reactive transport modelling of geothermal convection: Solid Earth, v. 11, n. 6, p. 2439–2461, doi:https://doi.org/10.5194/se-11-2439-2020
    OpenUrlCrossRef
  16. ↵
    1. Bischoff W. D.,
    2. Bertram M. A.,
    3. Mackenzie F. T.,
    4. Bishop F. C.
    , 1993, Diagenetic stabilization pathways of magnesian calcites: Carbonates and Evaporites, v. 8, n. 1, p. 82–89, doi:https://doi.org/10.1007/BF03175165
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Blackwell D.,
    2. Richards M.,
    3. Frone Z.,
    4. Batir J.,
    5. Ruzo A.,
    6. Dingwall R.,
    7. Williams M.
    , 2011, Temperature-at-depth maps for the conterminous US and geothermal resource estimates: GRC Transactions 35, GRC1029452: Southern Methodist University Geothermal Laboratory, Dallas, TX, United States.
  18. ↵
    1. Blanc P.,
    2. Lassin A.,
    3. Piantone P.,
    4. Azaroual M.,
    5. Jacquemet N.,
    6. Fabbri A.,
    7. Gaucher E.C.
    , 2012, Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials: Applied Geochemistry, v. 27, n. 10, p. 2107–2116, doi:https://doi.org/10.1016/j.apgeochem.2012.06.002
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Blasco M.,
    2. Gimeno M. J.,
    3. Auqué L. F.
    , 2017, Comparison of different thermodynamic databases used in a geothermometrical modelling calculation: Procedia Earth and Planetary Science, v. 17, p. 120–123, doi:https://doi.org/10.1016/j.proeps.2016.12.023
    OpenUrlCrossRef
  20. ↵
    1. Blasco M.,
    2. Gimeno M. J.,
    3. Auqué L. F.
    , 2018, Low temperature geothermal systems in carbonate-evaporitic rocks: Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain): Science of The Total Environment, v. 615, p. 526–539, doi:https://doi.org/10.1016/j.scitotenv.2017.09.269
    OpenUrlCrossRef
  21. ↵
    1. Blondes M. S.,
    2. Gans K. D.,
    3. Rowan E. L.,
    4. Thordsen J. J.,
    5. Reidy M. E.,
    6. Engle M. A.,
    7. Kharaka Y. K.,
    8. Thomas B.
    , 2016, U.S. Geological Survey National Produced Waters Geochemical Database v2. 2 (PROVISIONAL) Documentation: United States Geological Survey Energy Resources Program: Produced Waters, USGS, 16.
  22. ↵
    1. Bradley W. F.,
    2. Burst J. F.,
    3. Graf D. L.
    , 1953, Crystal chemistry and differential thermal effects of dolomite: American Mineralogist: Journal of Earth and Planetary Materials, v. 38, n. 3–4, p. 207–217.
    OpenUrl
  23. ↵
    1. Bragg W. L.,
    2. Williams E. J.
    , 1934, The effect of thermal agitation on atomic arrangement in alloys: Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, v. 145, n. 855, p. 699–730, doi:https://doi.org/10.1098/rspa.1934.0132
  24. ↵
    1. Bucher K.,
    2. Grapes R.
    , 2011, Metamorphism of dolomites and limestones Petrogenesis of Metamorphic Rocks: Springer, Berlin, Heidelberg, p. 225–255, doi:https://doi.org/10.1007/978-3-540-74169-5_6
  25. ↵
    1. Bulmer M. G.
    , 1979, Principles of statistics: Courier Corporation, 252 p.
  26. ↵
    1. Burnham K. P.,
    2. Anderson D. R.
    , 2002, A practical information-theoretic approach, Model selection and multimodel inference: New York, Springer, 488 p. [Database]
  27. ↵
    1. Busenberg E.,
    2. Plummer N.
    , 1982, The kinetics of dissolution of dolomite in CO-H2O systems at 1.5 to 65 °C and 0 to 1 atm PCO2: American Journal of Science, v. 282, n. 1, p. 45–78, doi:https://doi.org/10.2475/ajs.282.1.45
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Carpenter A. B.,
    2. Trout M.
    , 1978, Geochemistry of bromide-rich brines of the Dead Sea and Southern Arkansas: Oklahoma Geological Survey, Circular 79, p. 78–88.
    OpenUrl
  29. ↵
    1. Chai L.,
    2. Navrotsky A.
    , 1993, Thermochemistry of carbonate-pyroxene equilibria: Contributions to Mineralogy and Petrology, v. 114, n. 2, p. 139–147, doi:https://doi.org/10.1007/BF00307751
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Chai L.,
    2. Navrotsky A.,
    3. Reeder R. J.
    , 1995, Energetics of calcium-rich dolomite: Geochimica et Cosmochimica Acta, v. 59, n. 5, p. 939–944 doi:10.1016/0016-7037(95)00011-9
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Chaikin P. M.,
    2. Lubensky T. C.,
    3. Witten T. A.
    , 1995, Principles of condensed matter physics: Cambridge University Press, v. 1, 699 p., doi:https://doi.org/10.1017/CBO9780511813467
    OpenUrlCrossRef
  32. ↵
    1. Chiodini G.,
    2. Frondini F.,
    3. Marini L.
    , 1995, Theoretical geothermometers and PCO2 indicators for aqueous solutions coming from hydrothermal systems of medium-low temperature hosted in carbonate-evaporite rocks. Application to the thermal springs of the Etruscan Swell, Italy: Applied Geochemistry, v. 10, n. 3, p. 337–346, doi:https://doi.org/10.1016/0883-2927(95)00006-6
    OpenUrlCrossRefGeoRefWeb of Science
  33. ↵
    1. Chou L.,
    2. Garrels R. M.,
    3. Wollast R.
    , 1989, Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals: Chemical Geology, v. 78, n. 3–4, p. 269–282, doi:https://doi.org/10.1016/0009-2541(89)90063-6
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Daniilidis A.,
    2. Herber R.
    , 2017, Salt intrusions providing a new geothermal exploration target for higher energy recovery at shallower depths: Energy, v. 118, p. 658–670, doi:https://doi.org/10.1016/j.energy.2016.10.094
    OpenUrlCrossRef
  35. ↵
    1. Deelman J.C.
    , 2003, Low-temperature formation of dolomite and magnesite: Eindhoven: Compact disc publications.
  36. ↵
    1. Derkani M. H.,
    2. Fletcher A. J.,
    3. Fedorov M.,
    4. Abdallah W.,
    5. Sauerer B.,
    6. Anderson J.,
    7. Zhang Z. J.
    , 2019, Mechanisms of surface charge modification of carbonates in aqueous electrolyte solutions: Colloids and Interfaces, v. 3, n. 4, p. 62, doi:https://doi.org/10.3390/colloids3040062
    OpenUrlCrossRef
  37. ↵
    1. Dickson J. A. D.
    , 1995, Paleozoic Mg calcite preserved: Implications for the Carboniferous ocean: Geology, v. 23, n. 6, p. 535–538, doi:https://doi.org/10.1130/0091-7613(1995)023<0535:PMCPIF>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Dutton A. R.
    , 1987, Origin of brine in the San Andres Formation, evaporite confining system, Texas Panhandle and eastern New Mexico: Geological Society of America Bulletin, v. 99, n. 1, p. 103–112, doi:https://doi.org/10.1130/0016-7606(1987)99<103:OOBITS>2.0.CO;2
    OpenUrlCrossRef
  39. ↵
    1. Engle M. A.,
    2. Blondes M. S.
    , 2014, Linking compositional data analysis with thermodynamic geochemical modeling: oilfield brines from the Permian Basin, USA: Journal of Geochemical Exploration, v. 141, p. 61–70, doi:https://doi.org/10.1016/j.gexplo.2014.02.025
    OpenUrlCrossRefGeoRef
  40. ↵
    1. Fang Y.,
    2. Xu H.
    , 2018, Study of an Ordovician carbonate with alternating dolomite–calcite laminations and its implication for catalytic effects of microbes on the formation of sedimentary dolomite: Journal of Sedimentary Research, v. 88, n. 6, p. 679–695, doi:https://doi.org/10.2110/jsr.2018.35
    OpenUrlCrossRef
  41. ↵
    1. Fang Y.,
    2. Xu H.
    , 2019, A new approach to quantify the ordering state of protodolomite using XRD, TEM, and Z-contrast imaging: Journal of Sedimentary Research, v. 89, n. 6, p. 537–551, doi:https://doi.org/10.2110/jsr.2019.29
    OpenUrlCrossRef
  42. ↵
    1. Gamsjäger H.,
    2. Königsberger E.,
    3. Preis W.
    , 2000, Lippmann diagrams: theory and application to carbonate systems: Aquatic Geochemistry, v. 6, n. 2, p. 119–132, doi:https://doi.org/10.1023/A:1009690502299
    OpenUrlCrossRefGeoRef
  43. ↵
    1. Garrels R. M.,
    2. Drever R. M.
    , 1952, Mechanism of limestone replacement at low temperatures and pressures: Geological Society of America Bulletin, v. 63, n. 4, p. 325–380, doi:https://doi.org/10.1130/0016-7606(1952)63[325:MOLRAL]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Garrels R. M.,
    2. Thompson M. E.,
    3. Siever R.
    , 1960, Stability of some carbonates at 25 degrees C and one atmosphere total pressure: American Journal of Science, v. 258, n. 6, p. 402–418, doi:https://doi.org/10.2475/ajs.258.6.402
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Gautelier M.,
    2. Schott J.,
    3. Oelkers E. H.
    , 2007, An experimental study of dolomite dissolution rates at 80 °C as a function of chemical affinity and solution composition: Chemical Geology, v. 242, n. 3–4, p. 509–517, doi:https://doi.org/10.1016/j.chemgeo.2007.05.008
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Gelman A.,
    2. Hill J.
    , 2006, Data analysis using regression and multilevel/hierarchical models: Cambridge University Press, 648 p., doi:https://doi.org/10.1017/CBO9780511790942
    OpenUrlCrossRef
  46. ↵
    1. Goldsmith J. R.
    , 1983, Phase relations of rhombohedral carbonates: Reviews in Mineralogy and Geochemistry, v. 11, n. 1, p. 49–76.
    OpenUrlAbstract
  47. ↵
    1. Goldsmith J. R.,
    2. Graf D. L.
    , 1958, Structural and compositional variations in some natural dolomites: The Journal of Geology, v. 66, n. 6, p. 678–693, doi:https://doi.org/10.1086/626547
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Goldsmith J. R.,
    2. Heard H. C.
    , 1961, Subsolidus phase relations in the system CaCO3-MgCO3: The Journal of Geology, v. 69, n. 1, p. 45–74, doi:https://doi.org/10.1086/626715
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Gomez-Rivas E.,
    2. Corbella M.,
    3. Martín-Martín J. D.,
    4. Stafford S. L.,
    5. Teixell A.,
    6. Bons P. D.,
    7. Griera A.,
    8. Cardellach E.
    , 2014, Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the Benicassim outcrop analogue (Maestrat Basin, E Spain): Marine and Petroleum Geology, v. 55, p. 26–42, doi:https://doi.org/10.1016/j.marpetgeo.2013.12.015
    OpenUrlCrossRefGeoRef
  50. ↵
    1. Graf D. L.,
    2. Goldsmith J. R.
    , 1956, Some hydrothermal syntheses of dolomite and protodolomite: The Journal of Geology, v. 64, n. 2, p. 173–186, doi:https://doi.org/10.1086/626332
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Gregg J. M.,
    2. Howard S. A.,
    3. Mazzullo S. J.
    , 1992, Early diagenetic recrystallization of Holocene (< 3000 years old) peritidal dolomites, Ambergris Cay, Belize: Sedimentology, v. 39, n. 1, p. 143–160, doi:https://doi.org/10.1111/j.1365-3091.1992.tb01027.x
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Gregg J. M.,
    2. Bish D. L.,
    3. Kaczmarek S. E.,
    4. Machel H. G.
    , 2015, Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review: Sedimentology, v. 62, n. 6, p. 1749–1769, doi:https://doi.org/10.1111/sed.12202
    OpenUrlCrossRefGeoRef
  53. ↵
    1. Gresens R. L.
    , 1981a, The aqueous solubility product of solid solutions: 1. Stoichiometric saturation; partial and total solubility product: Chemical Geology, v. 32, n. 1–4, p. 59–72, doi:https://doi.org/10.1016/0009-2541(81)90128-5
    OpenUrlCrossRefGeoRef
  54. ↵
    1. Gresens R. L.
    , 1981b, The aqueous solubility product of solid solutions: 2. Extension to binary solutions with stoichiometric coefficients greater than unity; analogy with vapor pressure of a binary liquid solution: Chemical Geology, v. 32, n. 1–4, p. 73–86, doi:https://doi.org/10.1016/0009-2541(81)90129-7
    OpenUrlCrossRefGeoRef
  55. ↵
    1. Grove T. L.
    , 1982, Use of exsolution lamellae in lunar clinopyroxenes as cooling rate speedometers: an experimental calibration: American Mineralogist, v. 67, n. 3–4, p. 251–268.
    OpenUrlAbstract
  56. ↵
    1. Han W. S.,
    2. McPherson B. J.,
    3. Lichtner P. C.,
    4. Wang F. P.
    , 2010, Evaluation of trapping mechanisms in geologic CO2 sequestration: Case study of SACROC northern platform, a 35-year CO2 injection site: American Journal of Science, v. 310, n. 4, p. 282–324, doi:https://doi.org/10.2475/04.2010.03
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Harrison W. E.,
    2. Luza K. V.,
    3. Prater M. L.,
    4. Cheung P. K.
    , 1983, Geothermal resource assessment in Oklahoma: Oklahoma Geological Survey Special Publication, v. 83, n. 1, p. 42.
    OpenUrl
  58. ↵
    1. Hefter G. T.,
    2. Tomkins R. P.
    , editors, 2003, The experimental determination of solubilities: John Wiley & Sons, v. 6, doi:https://doi.org/10.1002/0470867833
    OpenUrlCrossRef
  59. ↵
    1. Helgeson H. C.,
    2. Delany J. M.,
    3. Nesbitt H. W.,
    4. Bird D. K.
    , 1978, Summary and critique of the thermodynamic properties of rock-forming minerals: American Journal of Science, v. 287-A, p. 1–229.
    OpenUrl
  60. ↵
    1. Hirani J.,
    2. Bastesen E.,
    3. Boyce A.,
    4. Corlett H.,
    5. Gawthorpe R.,
    6. Hollis C.,
    7. John C. M.,
    8. Robertson H.,
    9. Rotevatn A.,
    10. Whitaker F.
    , 2018, Controls on the formation of stratabound dolostone bodies, Hammam Faraun Fault block, Gulf of Suez: Sedimentology, v. 65, n. 6, p. 1973–2002, doi:https://doi.org/10.1111/sed.12454
    OpenUrlCrossRef
  61. ↵
    1. Hitchon B.,
    2. Brulotte M.
    , 1994, Culling criteria for “standard” formation water analyses: Applied Geochemistry, v. 9, n. 6, p. 637–645, doi:https://doi.org/10.1016/0883-2927(94)90024-8
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Holland T. J. B.,
    2. Powell R.
    , 1990, An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2: Journal of Metamorphic Geology, v. 8, n. 1, p. 89–124, doi:https://doi.org/10.1111/j.1525-1314.1990.tb00458.x
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Holland T. J. B.,
    2. Powell R.
    , 1998, An internally consistent thermodynamic data set for phases of petrological interest: Journal of Metamorphic Geology, v. 16, n. 3, p. 309–343, doi:https://doi.org/10.1111/j.1525-1314.1998.00140.x
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Hox J. J.,
    2. Moerbeek M.,
    3. van de Schoot R.
    , 2017, Multilevel analysis: Techniques and applications: New York, Routledge, 364 p., doi:https://doi.org/10.4324/9781315650982
    OpenUrlCrossRef
  65. ↵
    1. Hsu K. J.
    , 1963, Solubility of dolomite and composition of Florida ground waters: Journal of Hydrology, v. 1, n. 4, p. 288–310, doi:https://doi.org/10.1016/0022-1694(63)90020-9
    OpenUrlCrossRefGeoRef
  66. ↵
    1. Huang Y.,
    2. Fairchild I. J.
    , 2001, Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions: Geochimica et Cosmochimica Acta, v. 65, n. 1, p. 47–62, doi:https://doi.org/10.1016/S0016-7037(00)00513-5
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Hyeong K.,
    2. Capuano R. M.
    , 2001, Ca/Mg of brines in Miocene/Oligocene clastic sediments of the Texas Gulf Coast: buffering by calcite/disordered dolomite equilibria: Geochimica et Cosmochimica Acta, v. 65, n. 18, p. 3065–3080, doi:https://doi.org/10.1016/S0016-7037(01)00659-7
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    1. Inbar N.,
    2. Rosenthal E.,
    3. Magri F.,
    4. Alraggad M.,
    5. Möller P.,
    6. Flexer A.,
    7. Guttman J.,
    8. Siebert C.
    , 2019, Faulting patterns in the Lower Yarmouk Gorge potentially influence groundwater flow paths: Hydrology and Earth System Sciences, v. 23, p. 763–771, doi:https://doi.org/10.5194/hess-23-763-2019
    OpenUrlCrossRef
  69. ↵
    1. Johnson J. W.,
    2. Oelkers E. H.,
    3. Helgeson H. C.
    , 1992, SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C: Computers & Geosciences, v. 18, n. 7, p. 899–947, doi:https://doi.org/10.1016/0098-3004(92)90029-Q
    OpenUrlCrossRef
  70. ↵
    1. Kaczmarek S. E.,
    2. Sibley D. F.
    , 2007, A comparison of nanometer-scale growth and dissolution features on natural and synthetic dolomite crystals: implications for the origin of dolomite: Journal of Sedimentary Research, v. 77, n. 5, p. 424–432, doi:https://doi.org/10.2110/jsr.2007.035
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Kaczmarek S. E.,
    2. Sibley D. F.
    , 2011, On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: an alternative model for the geochemical evolution of natural dolomites: Sedimentary Geology, v. 240, n. 1–2), p. 30–40, doi:https://doi.org/10.1016/j.sedgeo.2011.07.003
    OpenUrlCrossRefGeoRef
  72. ↵
    1. Kaczmarek S. E.,
    2. Thornton B. P.
    , 2017, The effect of temperature on stoichiometry, cation ordering, and reaction rate in high-temperature dolomitization experiments: Chemical Geology, v. 468, p. 32–41, doi:https://doi.org/10.1016/j.chemgeo.2017.08.004
    OpenUrlCrossRef
  73. ↵
    1. Kell-Duivestein I. J.,
    2. Baldermann A.,
    3. Mavromatis V.,
    4. Dietzel M.
    , 2019, Controls of temperature, alkalinity and calcium carbonate reactant on the evolution of dolomite and magnesite stoichiometry and dolomite cation ordering degree-An experimental approach: Chemical Geology, v. 529, p. 119292, doi:https://doi.org/10.1016/j.chemgeo.2019.119292
    OpenUrlCrossRef
  74. ↵
    1. Khalaf F. I.
    , 2007, Occurrences and genesis of calcrete and dolocrete in the Mio-Pleistocene fluviatile sequence in Kuwait, northeast Arabian Peninsula: Sedimentary Geology, v. 199, n. 3–4, p. 129–139, doi:https://doi.org/10.1016/j.sedgeo.2007.01.021
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Khalifa M. K.,
    2. Abed A. M.
    , 2010, Lithostratigraphy and Microfacies Analysis of the Ajlun Group (Cenomanian to Turonian) in Wadi Sirhan Basin, SE Jordan: Jordan Journal of Earth and Environmental Sciences, v. 3, n. 1, p. 1–16.
    OpenUrl
  76. ↵
    1. Kharaka Y. K.,
    2. Maest A. S.,
    3. Carothers W. W.,
    4. Law L. M.,
    5. Lamothe P. J.,
    6. Fries T. L.
    , 1987, Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, USA: Applied Geochemistry, v. 2, n. 5–6, p. 543–561, doi:https://doi.org/10.1016/0883-2927(87)90008-4
    OpenUrlCrossRefGeoRef
  77. ↵
    1. Königsberger E.,
    2. Gamsjäger H.
    , 1992, Solid-solute phase equilibria in aqueous solution: VII. A re-interpretation of magnesian calcite stabilities: Geochimica et Cosmochimica Acta, v. 56, n. 11, p. 4095–4098, doi:https://doi.org/10.1016/0016-7037(92)90020-J
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Land L. S.
    , 1980, The isotopic and trace element geochemistry of dolomite: the state of the art: Society of Economic Paleontologists and Mineralogists Special Publication, n. 28, p. 87–110, doi:https://doi.org/10.2110/pec.80.28.0087
    OpenUrlCrossRef
  79. ↵
    1. Land L. S.
    , 1984, Frio Sandstone Diagenesis, Texas Gulf Coast: A Regional Isotopic Study: Part 1. Concepts and Principles: American Association of Petroleum Geologists Special Volumes, v. 37, p. 47–62, doi:https://doi.org/10.1306/M37435C3
    OpenUrlCrossRef
  80. ↵
    1. Land L. S.
    , 1985, The origin of massive dolomite: Journal of Geological Education, v. 33, n. 2, p. 112–125. doi:10.5408/0022-1368-33.2.112
    OpenUrlCrossRefGeoRefWeb of Science
  81. ↵
    1. Land L. S.
    , 1998, Failure to Precipitate Dolomite at 25 °C from Dilute Solution Despite 1000-Fold Oversaturation after 32 Years: Aquatic Geochemistry, v. 4, n. 3–4, p. 361–368, doi:https://doi.org/10.1023/A:1009688315854
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. Land L. S.,
    2. Prezbindowski D. R.
    , 1981, The origin and evolution of saline formation water, Lower Cretaceous carbonates, south-central Texas, USA: Journal of Hydrology, v. 54, n. 1–3, p. 51–74, doi:https://doi.org/10.1016/0022-1694(81)90152-9
    OpenUrlCrossRefGeoRefWeb of Science
  83. ↵
    1. Laya J. C.,
    2. Teoh C. P.,
    3. Whitaker F. F.,
    4. Manche C.,
    5. Kaczmarek S.,
    6. Tucker M.,
    7. Gabellone T.,
    8. Hasiuk F.
    , 2021, Dolomitization of a Miocene-Pliocene progradational carbonate platform by mesohaline brine: testing the reflux model on Bonaire Island: Marine and Petroleum Geology, v. 126, 104895, doi:https://doi.org/10.1016/j.marpetgeo.2020.104895
    OpenUrlCrossRef
  84. ↵
    1. Lippmann F.
    , 1977, The solubility products of complex minerals, mixed crystals, and three-layer clay minerals: Neues Jahrbuch für Mineralogie Abhandlungen, v. 130, p. 243–263.
    OpenUrlGeoRef
  85. ↵
    1. Lippmann F.
    , 1980, Phase diagrams depicting aqueous solubility of binary mineral systems: Neues Jahrbuch für Mineralogie Abhandlungen, v. 139, n. 1, p. 1–25.
    OpenUrlGeoRef
  86. ↵
    1. Loucks R. G.,
    2. Richmann D. L.,
    3. Milliken K. L.
    , 1980, Factors controlling porosity and permeability in geopressured Frio sandstone reservoirs, General Crude Oil/Department of Energy Pleasant Bayou test wells, Brazoria County, Texas: In Proceedings of the Fourth Geopressured Geothermal Energy Conference, v. 1, p. 46–82.
  87. ↵
    1. Loucks R. G.,
    2. Dodge M. M.,
    3. Galloway W. E.
    , 1984, Regional controls on diagenesis and reservoir quality in lower Tertiary sandstones along the Texas Gulf Coast: Part 1. Concepts and principles: American Association of Petroleum Geologists Special Volumes, v. 59, p. 14–45, doi:https://doi.org/10.1306/M37435C2
    OpenUrlCrossRef
  88. ↵
    1. Lumsden D. N.,
    2. Chimahusky J. S.
    , 1980, Relationship between dolomite nonstoichiometry and carbonate facies parameters: Society of Economic Paleontologists and Mineralogists Special Publication, v. 28, p. 123–137, doi:https://doi.org/10.2110/pec.80.28.0123
    OpenUrlCrossRef
  89. ↵
    1. Luth R. W.
    , 2001, Experimental determination of the reaction aragonite+ magnesite= dolomite at 5 to 9 GPa: Contributions to Mineralogy and Petrology, v. 141, n. 2, p. 222–232, doi:https://doi.org/10.1007/s004100100238
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Maier C. G.,
    2. Kelley K. K.
    , 1932, An equation for the representation of high-temperature heat content data1: Journal of the American Chemical Society, v. 54, n. 8, p. 3243–3246, doi:https://doi.org/10.1021/ja01347a029
    OpenUrlCrossRef
  91. ↵
    1. Manche C. J.,
    2. Kaczmarek S. E.
    , 2019, Evaluating reflux dolomitization using a novel high-resolution record of dolomite stoichiometry: A case study from the Cretaceous of central Texas, USA: Geology, v. 47, n. 6, p. 586–590, doi:https://doi.org/10.1130/G46218.1
    OpenUrlCrossRef
  92. ↵
    1. McNaught A. D.,
    2. Wilkinson A.
    , 1997, Compendium of chemical terminology, v. 1669: Oxford, United Kingdom, Blackwell Science.
  93. ↵
    1. Miron G. D.,
    2. Wagner T.,
    3. Kulik D. A.,
    4. Lothenbach B.
    , 2017, An internally consistent thermodynamic dataset for aqueous species in the system Ca-Mg-Na-K-Al-Si-OHC-Cl to 800 °C and 5 kbar: American Journal of Science, v. 317, n. 7, p. 755–806, doi:https://doi.org/10.2475/07.2017.01
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Miser D. E.,
    2. Swinnea J. S.,
    3. Steinfink H.
    , 1987, TEM observations and X-ray crystal-structure refinement of a twinned dolomite with a modulated microstructure: American Mineralogist, v. 72, n. 1–2, p. 188–193.
    OpenUrlAbstract
  95. ↵
    1. Möller P.
    , 1973, Determination of the composition of surface layers of calcite in solutions containing Mg2+: Journal of Inorganic and Nuclear Chemistry, v. 35, n. 2, p. 395–401, doi:https://doi.org/10.1016/0022-1902(73)80550-0
    OpenUrlCrossRef
  96. ↵
    1. Möller P.,
    2. De Lucia M.
    , 2020, The impact of Mg2+ ions on equilibration of Mg-Ca carbonates in groundwater and brines: Geochemistry, v. 80, n. 2, p. 125611, doi:https://doi.org/10.1016/j.chemer.2020.125611
    OpenUrlCrossRef
  97. ↵
    1. Möller P.,
    2. Sastri C. S.
    , 1974, Estimation of the number of surface layers of calcite involved in Ca-45Ca isotopic exchange with solution: Zeitschrift für Physikalische Chemie, v. 89, n. 1–4, p. 80–87, doi:https://doi.org/10.1524/zpch.1974.89.1-4.080
    OpenUrlCrossRef
  98. ↵
    1. Morrow D. W.,
    2. Gorham B. L.,
    3. Wong J. N.
    , 1994, Dolomite-calcite equilibrium at 220 to 240 °C at saturation vapour pressure: experimental data: Geochimica et Cosmochimica Acta, v. 58, n. 1, p. 169–177, doi:https://doi.org/10.1016/0016-7037(94)90454-5
    OpenUrlCrossRefGeoRef
  99. ↵
    1. Morton R. A.,
    2. Land L. S.
    , 1987, Regional variations in formation water chemistry Frio Formation (Oligocene), Texas Gulf Coast: American Association of Petroleum Geologists Bulletin, v. 71, n. 2, p. 191–206, doi:https://doi.org/10.1306/94886D6C-1704-11D7-8645000102C1865D
  100. ↵
    1. Nakagawa S.,
    2. Johnson P. C.,
    3. Schielzeth H.
    , 2017, The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded: Journal of the Royal Society Interface, v. 14, n. 134, p. 20170213, doi:https://doi.org/10.1098/rsif.2017.0213
    OpenUrlCrossRef
  101. ↵
    1. Navrotsky A.,
    2. Capobianco C.
    , 1987, Enthalpies of formation of dolomite and of magnesian calcites: American Mineralogist, v. 72, n. 7–8, p. 782–787.
    OpenUrlAbstract
  102. ↵
    1. Navrotsky A.,
    2. Loucks D.
    , 1977, Calculation of subsolidus phase relations in carbonates and pyroxenes: Physics and Chemistry of Minerals, v. 1, n. 1, p. 109–127, doi:https://doi.org/10.1007/BF00307983
    OpenUrlCrossRefGeoRef
  103. ↵
    1. Navrotsky A.,
    2. Dooley D.,
    3. Reeder R.,
    4. Brady P.
    , 1999, Calorimetric studies of the energetics of order-disorder in the system Mg1-x FexCa (CO3)2: American Mineralogist, v. 84, n. 10, p. 1622–1626, doi:https://doi.org/10.2138/am-1999-1016
    OpenUrlAbstract/FREE Full Text
  104. ↵
    1. Nordeng S. H.,
    2. Sibley D. F.
    , 1994, Dolomite stoichiometry and Ostwald's step rule: Geochimica et Cosmochimica Acta, v. 58, n. 1, p. 191–196, doi:https://doi.org/10.1016/0016-7037(94)90456-1
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Parkhurst D. L.,
    2. Appelo C. A. J.
    , 1999, User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: US Geological Survey Water-Resources Investigations Report, v. 99, n. 4259, 312 p.
    OpenUrl
  106. ↵
    1. Pina C. M.,
    2. Pimentel C.,
    3. Crespo Á.
    , 2020, Dolomite cation order in the geological record: Chemical Geology, v. 547, p. 119667, doi:https://doi.org/10.1016/j.chemgeo.2020.119667
    OpenUrlCrossRef
  107. ↵
    1. Plummer L. N.,
    2. Mackenzie F. T.
    , 1974, Predicting mineral solubility from rate data; application to the dissolution of magnesian calcites: American Journal of Science, v. 274, n. 1, p. 61–83, doi:https://doi.org/10.2475/ajs.274.1.61
    OpenUrlAbstract
  108. ↵
    1. Plummer L. N.,
    2. Parkhurst D. L.,
    3. Fleming G. W.,
    4. Dunkle S.
    , 1988, PHRQPITZ, a computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines: Department of the Interior, US Geological Survey, Water Resources Investigation Report, v. 88, n. 4153, 310 p.
    OpenUrl
  109. ↵
    1. Pokrovsky O. S.,
    2. Schott J.
    , 2001, Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited: American Journal of Science, v. 301, n. 7, p. 597–626, doi:https://doi.org/10.2475/ajs.301.7.597
    OpenUrlAbstract/FREE Full Text
  110. ↵
    1. Pokrovsky O. S.,
    2. Golubev S. V.,
    3. Schott J.,
    4. Castillo A.
    , 2009, Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins: Chemical Geology, v. 265, n. 1–2, p. 20–32, doi:https://doi.org/10.1016/j.chemgeo.2009.01.013
    OpenUrlCrossRefWeb of Science
  111. ↵
    1. Prédali J. J.,
    2. Cases J. M.
    , 1973, Zeta potential of magnesian carbonates in inorganic electrolytes: Journal of Colloid and Interface Science, v. 45, n. 3, p. 449–458, doi:https://doi.org/10.1016/0021-9797(73)90160-4
    OpenUrlCrossRef
  112. ↵
    1. Ray S.
    ms, 2016, National evaluation for development and exploration potential of mineral commodities in produced waters: Ph.D. thesis, The University of Texas at El Paso.
  113. ↵
    1. Reeder R. J.
    , 1992, Carbonates: growth and alteration microstructures: Reviews in Mineralogy and Geochemistry, v. 27, n. 1, p. 380–424, doi:https://doi.org/10.1515/9781501509735-014
    OpenUrlAbstract
  114. ↵
    1. Reeder R. J.
    , 2000, Constraints on cation order in calcium-rich sedimentary dolomite: Aquatic Geochemistry, v. 6, n. 2, p. 213–226, doi:https://doi.org/10.1023/A:1009659122772
    OpenUrlCrossRefGeoRefWeb of Science
  115. ↵
    1. Reeder R. J.,
    2. Wenk H. R.
    , 1983, Structure refinements of some thermally disordered dolomites: American Mineralogist, v. 68, n. 7–8, p. 769–776.
    OpenUrlAbstract
  116. ↵
    1. Robie R. A.,
    2. Hemingway B. S.
    , 1995, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures: US Geological Survey Bulletin, v. 2131, US Government Printing Office.
  117. ↵
    1. Rock P. A.,
    2. Mandell G. K.,
    3. Casey W. H.,
    4. Walling E. M.
    , 2001, Gibbs energy of formation of dolomite from electrochemical cell measurements and theoretical calculations: American Journal of Science, v. 301, n. 2, p. 103–111, doi:https://doi.org/10.2475/ajs.301.2.103
    OpenUrlAbstract/FREE Full Text
  118. ↵
    1. Rodriguez-Blanco J. D.,
    2. Shaw S.,
    3. Benning L. G.
    , 2015, A route for the direct crystallization of dolomite: American Mineralogist, v. 100, n. 5–6, p. 1172–1181, doi:https://doi.org/10.2138/am-2015-4963
    OpenUrlAbstract/FREE Full Text
  119. ↵
    1. Rosenberg P. E.,
    2. Holland H. D.
    , 1964, Calcite-dolomite-magnesite stability relations in solutions at elevated temperatures: Science, v. 145, n. 3633, p. 700–701, doi:https://doi.org/10.1126/science.145.3633.700
    OpenUrlAbstract/FREE Full Text
  120. ↵
    1. Rosner B.
    , 2015, Fundamentals of biostatistics: Nelson Education.
  121. ↵
    1. Shen Z.,
    2. Konishi H.,
    3. Brown P. E.,
    4. Xu H.
    , 2013, STEM investigation of exsolution lamellae and “c” reflections in Ca-rich dolomite from the Platteville Formation, western Wisconsin: American Mineralogist, v. 98, n. 4, p. 760–766, doi:https://doi.org/10.2138/am.2013.4184
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Sherman L. A.,
    2. Barak P.
    , 2000, Solubility and dissolution kinetics of dolomite in Ca–Mg–HCO3/CO3 solutions at 25 °C and 0.1 MPa carbon dioxide: Soil Science Society of America Journal, v. 64, n. 6, p. 1959–1968, doi:https://doi.org/10.2136/sssaj2000.6461959x
    OpenUrlCrossRefGeoRefWeb of Science
  123. ↵
    1. Shock E. L.,
    2. Helgeson H. C.
    , 1988, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C: Geochimica et Cosmochimica Acta, v. 52, n. 8, p. 2009–2036, doi:https://doi.org/10.1016/0016-7037(88)90181-0
    OpenUrlCrossRefGeoRefWeb of Science
  124. ↵
    1. Shope E. N.,
    2. Reber T. J.,
    3. Stutz G. R.,
    4. Aguirre G. A.,
    5. Jordan T. E.,
    6. Tester J. W.
    , 2012, February. Geothermal resource assessment: A detailed approach to low-grade resources in the states of New York and Pennsylvania: In Proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford, California: Stanford University, p. 885–893.
  125. ↵
    1. Sinclair D. J.
    , 2011, Two mathematical models of Mg and Sr partitioning into solution during incongruent calcite dissolution: implications for dripwater and speleothem studies: Chemical Geology, v. 283, n. 3–4, p. 119–133, doi:https://doi.org/10.1016/j.chemgeo.2010.05.022
    OpenUrlCrossRefGeoRef
  126. ↵
    1. Sinclair D. J.,
    2. Banner J. L.,
    3. Taylor F. W.,
    4. Partin J.,
    5. Jenson J.,
    6. Mylroie J.,
    7. Goddard E.,
    8. Quinn T.,
    9. Jocson J.,
    10. Miklavič B.
    , 2012, Magnesium and strontium systematics in tropical speleothems from the Western Pacific: Chemical Geology, v. 294, p. 1–17, doi:https://doi.org/10.1016/j.chemgeo.2011.10.008
    OpenUrlCrossRef
  127. ↵
    1. Siebert C.,
    2. Möller P.,
    3. Geyer S.,
    4. Kraushaar S.,
    5. Dulski P.,
    6. Guttman J.,
    7. Subah A.,
    8. Rödiger T.
    , 2014, Thermal waters in the Lower Yarmouk Gorge and their relation to surrounding aquifers: Geochemistry, v. 74, n. 3, p. 425–441, doi:https://doi.org/10.1016/j.chemer.2014.04.002
    OpenUrlCrossRef
  128. ↵
    1. Sperber C. M.,
    2. Wilkinson B. H.,
    3. Peacor D. R.
    , 1984, Rock composition, dolomite stoichiometry, and rock/water reactions in dolomitic carbonate rocks: The Journal of Geology, v. 92, n. 6, p. 609–622, doi:https://doi.org/10.1086/628901
    OpenUrlCrossRefGeoRefWeb of Science
  129. ↵
    1. Spötl C.,
    2. Pitman J. K.
    , 1998, Saddle (baroque) dolomite in carbonates and sandstones: a reappraisal of a burial-diagenetic concept: Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution, v. 26, p. 437–460, doi:https://doi.org/10.1002/9781444304893.ch19
    OpenUrlCrossRef
  130. ↵
    1. Strand S.,
    2. Høgnesen E. J.,
    3. Austad T.
    , 2006, Wettability alteration of carbonates—Effects of potential determining ions (Ca2+ and SO42−) and temperature: Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 275, n. 1–), p. 1–10, doi:https://doi.org/10.1016/j.colsurfa.2005.10.061
    OpenUrlCrossRef
  131. ↵
    1. Team R. C.
    , 2000, R language definition: Vienna, Austria, R foundation for statistical computing.
  132. ↵
    1. Tesmer M.,
    2. Möller P.,
    3. Wieland S.,
    4. Jahnke C.,
    5. Voigt H.,
    6. Pekdeger A.
    , 2007, Deep reaching fluid flow in the North East German Basin: origin and processes of groundwater salinization: Hydrogeology Journal, v. 15, n. 7, p. 1291–1306, doi:https://doi.org/10.1007/s10040-007-0176-y
    OpenUrlCrossRefGeoRef
  133. ↵
    1. Thieling S. C.,
    2. Moody J. S.
    , 1997, Atlas of shallow Mississippi salt domes : Jackson, Mississippi, Mississippi Department of Environmental Quality Office of Geology, 328 p.
  134. ↵
    1. Thorstenson D. C.,
    2. Plummer L. N.
    , 1977, Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase; example, the magnesian calcites: American Journal of Science, v. 277, n. 9, p. 1203–1223, doi:https://doi.org/10.2475/ajs.277.9.1203
    OpenUrlAbstract/FREE Full Text
  135. ↵
    1. Ulfsbo A.,
    2. Abbas Z.,
    3. Turner D. R.
    , 2015, Activity coefficients of a simplified seawater electrolyte at varying salinity (5–40) and temperature (0 and 25° C) using Monte Carlo simulations: Marine Chemistry, v. 171, p. 78–86, doi:https://doi.org/10.1016/j.marchem.2015.02.006
    OpenUrlCrossRef
  136. ↵
    1. Underwood T.,
    2. Erastova V.,
    3. Greenwell H. C.
    , 2016, Ion adsorption at clay-mineral surfaces: the Hofmeister series for hydrated smectite mierals: Clays and Clay Minerals, v. 64, n. 4, p. 472–487, doi:https://doi.org/10.1346/CCMN.2016.0640310
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Tucker M. E.,
    2. Purser B. H.,
    3. Zenger D. H.
    1. Usdowski E.
    , 1994, Synthesis of dolomite and geochemical implications, in Tucker M. E., Purser B. H., Zenger D. H., editors, Dolomites: A Volume in Honour of Dolomieu: Oxford, United Kingdom, Blackwell Scientific Publications, v. 21, p. 345–360.
    OpenUrl
  138. ↵
    1. Van Tendeloo G.,
    2. Wenk H. R.,
    3. Gronsky R.
    , 1985, Modulated structures in calcian dolomite: A study by electron microscopy: Physics and Chemistry of Minerals, v. 12, n. 6, p. 333–341, doi:https://doi.org/10.1007/BF00654343
    OpenUrlCrossRefGeoRefWeb of Science
  139. ↵
    1. Vespasiano G.,
    2. Apollaro C.,
    3. Muto F.,
    4. Dotsika E.,
    5. De Rosa R.,
    6. Marini L.
    , 2014, Chemical and isotopic characteristics of the warm and cold waters of the Luigiane Spa near Guardia Piemontese (Calabria, Italy) in a complex faulted geological framework: Applied Geochemistry, v. 41, p. 73–88, doi:https://doi.org/10.1016/j.apgeochem.2013.11.014
    OpenUrlCrossRefGeoRef
  140. ↵
    1. Warren J.
    , 2000., Dolomite: occurrence, evolution and economically important associations: Earth-Science Reviews, v. 52, n. 1–3, p. 1–81, doi:https://doi.org/10.1016/S0012-8252(00)00022-2
    OpenUrlCrossRefGeoRef
  141. ↵
    1. Westfall P. H.
    , 2014, Kurtosis as peakedness, 1905–2014. RIP.: The American Statistician, v. 68, n. 3, p. 191–195, doi:https://doi.org/10.1080/00031305.2014.917055
    OpenUrlCrossRefPubMed
  142. ↵
    1. Whitaker F. F.,
    2. Xiao Y.
    , 2010, Reactive transport modeling of early burial dolomitization of carbonate platforms by geothermal convection: American Association of Petroleum Geologists Bulletin, v. 94, n. 6, p. 889–917, doi:https://doi.org/10.1306/12090909075
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Melchior D. C.,
    2. Bassett R. L.
    1. Wolery T. J.,
    2. Jackson K. J.,
    3. Bourcier W. L.,
    4. Bruton C. J.,
    5. Viani B. E.,
    6. Knauss K. G.,
    7. Delany J. M.
    , 1990: Current status of the EQ3/6 software package for geochemical modelling, in Melchior D. C., Bassett R. L., editors, Chemical Modeling of Aqueous System II: ACS Symposium Series, v. 416, Chapter 8, p. 104–116, doi:https://doi.org/10.1021/bk-1990-0416.ch008
    OpenUrlCrossRef
  144. ↵
    1. Wright K.,
    2. Cygan R. T.,
    3. Slater B.
    , 2002, Impurities and nonstoichiometry in the bulk and on the (1014) surface of dolomite: Geochimica et Cosmochimica Acta, v. 66, n. 14, p. 2541–2546, doi:https://doi.org/10.1016/S0016-7037(02)00846-3
    OpenUrlCrossRefGeoRefWeb of Science
  145. ↵
    1. Xu T.
    , 2008, TOUGHREACT testing in high ionic strength brine sandstone systems: Lawrence Berkeley National Laboratory, n. LBNL–1051E, doi:https://doi.org/10.2172/941168
    OpenUrlCrossRef
  146. ↵
    1. Zhang S.,
    2. Yang L.,
    3. DePaolo D. J.,
    4. Steefel C. I.
    , 2015, Chemical affinity and pH effects on chlorite dissolution kinetics under geological CO2 sequestration related conditions: Chemical Geology, v. 396, p. 208–217, doi:https://doi.org/10.1016/j.chemgeo.2015.01.001
    OpenUrlCrossRefGeoRef
Previous
Back to top

In this issue

American Journal of Science: 322 (4)
American Journal of Science
Vol. 322, Issue 4
1 Apr 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Solubility product constants for natural dolomite (0–200 °C) through a groundwater-based approach using the USGS produced water database
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 9 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Solubility product constants for natural dolomite (0–200 °C) through a groundwater-based approach using the USGS produced water database
Hamish A. Robertson, Hilary Corlett, Cathy Hollis, Fiona F. Whitaker
American Journal of Science Apr 2022, 322 (4) 593-645; DOI: 10.2475/04.2022.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Solubility product constants for natural dolomite (0–200 °C) through a groundwater-based approach using the USGS produced water database
Hamish A. Robertson, Hilary Corlett, Cathy Hollis, Fiona F. Whitaker
American Journal of Science Apr 2022, 322 (4) 593-645; DOI: 10.2475/04.2022.03
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • SUMMARY OF PAST WORK
    • METHODOLOGY
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • SUPPLEMENTARY DATA
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Weathering intensity and lithium isotopes: A reactive transport perspective
  • Partial molar volumes of metal oxides in silicate melts: Effects of Coulombic interactions
  • Proterozoic-Mesozoic development of the Quanji block from northern Tibet and the cratonic assembly of eastern Asia
Show more Article

Similar Articles

Keywords

  • Dolomite
  • thermodynamics
  • solubility
  • mixed modeling
  • produced water
  • Calcite

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire