Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

New Idria serpentinite protrusion, Diablo Range, California: From upper mantle to the surface

Robert G. Coleman, Jared T. Gooley, Robert T. Gregory and Stephan A. Graham
American Journal of Science April 2022, 322 (4) 533-560; DOI: https://doi.org/10.2475/04.2022.01
Robert G. Coleman
*Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jared T. Gooley
**Geology, Energy & Minerals Science Center, U.S. Geological Survey, Reston, Virginia 20192, USA
***Previously Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jgooley@usgs.gov
Robert T. Gregory
§Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephan A. Graham
*Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Adegoke G. S.
    , 1969, Stratigraphy and paleontology of the marine Neogene formations of the Coalinga region, California: University of California Publications in Geological Sciences, v. 80, 269 p.
    OpenUrl
  2. ↵
    1. Amiguet E.,
    2. Reynard B.,
    3. Caracas R.,
    4. Van de Moortèle B.,
    5. Hilairet N.,
    6. Wang Y.
    , 2012, Creep of phyllosilicates at the onset of plate tectonics: Earth and Planetary Science Letters, v. 345–348, p. 142–150, doi:https://doi.org/10.1016/j.epsl.2012.06.033
    OpenUrlCrossRef
  3. ↵
    1. Anderson J. Q.
    , 1952, Coalinga oil fields, in Guidebook Field Trip Routes, Oil Fields, Geology: American Association of Petroleum Geologists-Society of Economic Paleontologists and Mineralogists-Society of Exploration Geophysicists Annual Meeting, p. 177–188.
  4. ↵
    1. Abbott P. L.,
    2. Cooper J. D.
    1. Anderson K. S.
    , 1996, The Paleogene Cantua Sandstone, southern Diablo Range, California: Facies architecture of a sand-rich, structural controlled, deep-sea depositional system, in Abbott P. L., Cooper J. D., editors, Field Conference Guide 1996: The Pacific Section American Association of Petroleum Geologists, v. 73, p. 5–18, doi:https://doi.org/10.32375/1996-GB73.2
    OpenUrlCrossRef
  5. ↵
    1. Anderson R.,
    2. Pack R. W.
    , 1915, Geology and oil resources of the west border of the San Joaquin Valley north of Coalinga, California: United States Geological Survey Bulletin, v. 603, 220 p.
    OpenUrl
  6. ↵
    1. Andreani M.,
    2. Mével C.,
    3. Boullier A.-M.,
    4. Escartín J.
    , 2007, Dynamic control on serpentine crystallization in veins; Constraints on hydration processes in oceanic peridotites: Geochemistry, Geophysics, Geochemistry, v. 8, n. 2, Q02012, doi:https://doi.org/10.1029/2006GC001373
    OpenUrlCrossRef
  7. ↵
    1. Arnold R.,
    2. Anderson R.
    , 1910, Geology and oil resources of the Coalinga district, California: United States Geological Survey Bulletin, v. 398, 354 p.
  8. ↵
    1. Rymer M. J.,
    2. Ellsworth W. L.
    1. Atwater B. F.,
    2. Trumm D. A.,
    3. Tinsley J. C. III.,
    4. Stein R. S.,
    5. Tucker A. B.,
    6. Donahue D. J.,
    7. Jull A. J. T.,
    8. Payen L. A.
    , 1990, Alluvial Plains and Earthquake Recurrence at the Coalinga Anticline, in Rymer M. J., Ellsworth W. L., editors, The Coalinga, California, Earthquake of May 2, 1983: United States Geological Survey Professional Paper, 1487, p. 273–298.
    OpenUrl
  9. ↵
    1. Atwater T.
    , 1970, Implications of plate tectonics for the Cenozoic tectonic evolution of western North America: Geological Society of America Bulletin, v. 81, n. 12, p. 3513–3536, doi:https://doi.org/10.1130/0016-7606(1970)81[3513:IOPTFT]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Hussong D. M.,
    2. Decker R. W.
    1. Atwater T.
    , 1989, Plate tectonic history of the Northeast Pacific and western North America, in Hussong D. M., Decker R. W., editors, The Geology of North America—The Eastern Pacific Ocean and Hawaii: Boulder, Colorado, Geological Society of America, v. N, p. 21–72, doi:https://doi.org/10.1130/DNAG-GNA-N.21
    OpenUrlCrossRef
  11. ↵
    1. Kovach R. L.,
    2. Nur A.
    1. Atwater T.,
    2. Molnar P.
    , 1973, Relative motion of the Pacific and North American plates deduced from sea-floor spreading in the Atlantic, Indian, and South Pacific oceans, in Kovach R. L., Nur A., editors, Proceedings of the Conference on Tectonic Problems of the San Andreas Fault System: Stanford University Publications in Geological Science, v. 12, p. 136–148.
  12. ↵
    1. Atwater T.,
    2. Stock J.
    , 1998, Pacific-North America plate tectonics of the Neogene southwestern United States: an update: International Geological Review, v. 40, n. 5, p. 375–402, doi:https://doi.org/10.1080/00206819809465216
    OpenUrlCrossRef
  13. ↵
    1. Harlov D. E.,
    2. Austrheim H.
    1. Bach W.,
    2. Jöns N.,
    3. Klein F.
    , 2012, Metasomatism within the ocean crust: in Harlov D. E., Austrheim H., editors, Metasomatism and the Chemical Transformation of Rock, Lecture notes in Earth Systems, Chapter 5: Springer, Berlin Heidelberg, p. 253–288, doi:https://doi.org/10.1007/978-3-642-28394-9_8
    OpenUrlCrossRef
  14. ↵
    1. Bailey E. H.,
    2. Irwin P. I.,
    3. Jones D. L.
    , 1964, Franciscan and related rocks, and their significance in the geology of western California: California Division of Mines and Geology Bulletin, v. 183, p. 1–177.
    OpenUrl
  15. ↵
    1. Ballotti D. M.,
    2. Christensen N. I.,
    3. Becker K.
    , 1992, Seismic properties of Serpentinized Peridotite from the Mariana Forearc: Proceedings Ocean Drilling Program Initial scientific Results, v. 125, p.581–584, doi:https://doi.org/10.2973/odp.proc.sr.125.161.1992
  16. ↵
    1. Barnes I.,
    2. Rapp J. B.,
    3. O'Neil J. R.,
    4. Sheppard R. A.,
    5. Gude A. J. III
    , 1972, Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization: Contributions to Mineralogy and Petrology, v. 35, p. 263–276, doi:https://doi.org/10.1007/BF00371220
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Bate M. A.
    , ms, 1984, Temblor and Big Blue formations; interpretation of depositional environment sequence on Coalinga Anticline, Fresno County, California: Master’s thesis, Stanford University, Stanford, 123 p.
  18. ↵
    1. Graham S. A.
    1. Bate M. A.
    , 1985, Depositional sequence of Temblor and Big Blue Formations, Coalinga Anticline, California, in Graham S. A., editor, Geology of the Temblor Formation, western San Joaquin basin, California: Pacific Section, Society Economic Paleontologists and Mineralogists, v. 44, p. 69–86.
    OpenUrl
  19. ↵
    1. Bayrakci G.,
    2. Minshull T. A.,
    3. Sawyer D. S.,
    4. Reston T. J.,
    5. Klaeschen D.,
    6. Papenberg C.,
    7. Ranero C.,
    8. Bull J. M.,
    9. Davy R. G.,
    10. Shillington D. J.,
    11. Perez-Gussinye M.,
    12. Morgan J. K.
    , 2016, Fault-controlled hydration of the upper mantle during continental rifting: Nature Geoscience, v. 9, p. 384–388, doi:https://doi.org/10.1038/ngeo2671
    OpenUrlCrossRef
  20. ↵
    1. Beery J.
    , ms, 1988, Depositional history and paleo-environments of the lower and middle Miocene Temblor Formation, northern San Joaquin basin, California: Master’s thesis, Stanford University, Stanford, 132 p.
  21. ↵
    1. Graham S. A.
    1. Bent J.
    , 1985, Provenance of upper Oligocene-middle Miocene sandstones of the San Joaquin basin, California, in Graham S. A., editor, 1985, Geology of the Temblor Formation, western San Joaquin basin, California: Pacific Section, Society Economic Paleontologists and Mineralogists, v. 44, p. 97–120.
    OpenUrl
  22. ↵
    1. Berry F. A. F.
    , 1973, High fluid potentials in California Coast Ranges and their tectonic significance: American Association of Petroleum Geologists Bulletin, v. 57, n. 7, p. 1219–1249, doi:https://doi.org/10.1306/83D90E8A-16C7-11D7-8645000102C1865D
    OpenUrlAbstract
  23. ↵
    1. Bezacier L.,
    2. Reynard B.,
    3. Cardon H.,
    4. Montagnac G.,
    5. Bass J. D.
    , 2013, High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge: Journal of Geophysical Research: Solid Earth, v. 118, n. 2, p. 527–535, doi:https://doi.org/10.1002/jgrb.50076
    OpenUrlCrossRef
  24. ↵
    1. Blake M. C. Jr..,
    2. Bailey E. H.,
    3. Wentworth C. M.
    , 2012, The Cedars ultramafic mass, Sonoma County: U.S. Geological Survey, Open-File Report, 2012–1164, 13 p., doi:https://doi.org/10.3133/ofr20121164
  25. ↵
    1. Blakely R. J.,
    2. Brocher T. M.,
    3. Wells R. E.
    , 2005, Subduction-zone magnetic anomalies implications for hydrated forearc mantle: Geology, v. 33, n. 6, 445–448, doi:https://doi.org/10.1130/G21447.1
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Bloch R. B.,
    2. von Huene R.,
    3. Hart P. E.,
    4. Wentworth C. M.
    , 1993, Style and magnitude of tectonic shortening normal to the San Andreas fault across Pyramid Hills and Kettleman Hills South Dome, California: Geological Society of America Bulletin, v. 105, n. 4, p. 464–478, doi:https://doi.org/10.1130/0016-7606(1993)105<0464:SAMOTS>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Bonatti E.
    , 1976, Serpentinite protrusions in the oceanic crust: Earth and Planetary Science Letters, v. 32, n. 2, p. 107-113, doi:https://doi.org/10.1016/0012-821X(76)90048-0
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Bonnin M.,
    2. Barruol G.,
    3. Bokelmann G. H. R.
    , 2010, Upper mantle deformation beneath the north American-Pacific plate boundary in California from SKS splitting: Journal of Geophysical Research: Solid Earth, v. 115, n. B4, doi:https://doi.org/10.1029/2009JB006438
    OpenUrlCrossRef
  29. ↵
    1. Boudier F.,
    2. Coleman R. G.
    , 1981, Cross section through the peridotite in the Semail ophiolite, southeastern Oman Mountains: Journal of Geophysical Research: Solid Earth, v. 86, p. 2573–2592, doi:https://doi.org/10.1029/JB086iB04p02573
    OpenUrlCrossRef
  30. ↵
    1. Bramlette M. N.
    , 1946, The Monterey Formation of California and its origin of its siliceous rocks: U.S. Geological Survey Professional Paper, v. 212, p.1–60, doi:https://doi.org/10.3133/pp212
    OpenUrlCrossRef
  31. ↵
    1. Brocher T.
    , 2005, Compressional and shear wave velocity versus depth in the San Francisco Bay Area, California: Rules for USGS Bay Area Velocity Model 05.0.0: US Geological Survey, Open File Report 2005-1317, doi:https://doi.org/10.3133/ofr20051317
    OpenUrlCrossRef
  32. ↵
    1. Carlson C. L.,
    2. Bate M. A.,
    3. Casey T. A. L.,
    4. Dickinson W. R.
    , 1984, Depositional facies of sedimentary serpentine: Selected Examples from the Coast Ranges, California: Society of Economic Paleontologists and Mineralogists Field Trip Guidebook No. 3, 1984 Midyear Meeting, San Jose, California, p. 73–101.
  33. ↵
    1. Carlson R. L.,
    2. Miller D.J.
    , 2003, Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites, Geophysical Research Letters, v. 50, no. 5, doi:https://doi.org/10.1029/2002GL016600
    OpenUrlCrossRef
  34. ↵
    1. Casey T. A.
    , 1984, Sedimentary serpentinite of the Miocene Big Blue Formation near Cantua Creek: Society of Economic Paleontologists and Mineralogists Guidebook, v. 3, p. 92–97.
    OpenUrl
  35. ↵
    1. Fritsche A. E.,
    2. Ter Best H. J.,
    3. Wornardt W. W.
    1. Casey T. A.,
    2. Dickinson W. R.
    , 1976, Sedimentary serpentinite of the Miocene Big Blue Formation near Cantua Creek, California, in Fritsche A. E., Ter Best H. J., Wornardt W. W., editors, The Neogene Symposium; Selected Technical Papers on Paleontology, Sedimentology, Petrology, Tectonics and Geologic History of the Pacific Coast of North America: Pacific Section, Society of Economic Paleontologists and Mineralogists, p. 65–74.
  36. ↵
    1. Christensen N. I.
    , 2004, Serpentinites, peridotites, and seismology: International Geology Review, v. 46, n. 9, p. 795–816, doi:https://doi.org/10.2747/0020-6814.46.9.795
    OpenUrlCrossRefGeoRefWeb of Science
  37. ↵
    1. Christensen N. I.,
    2. Smewing J. D.
    , 1981, Geology and seismic structure of the northern section of the Oman ophiolite: Journal of Geophysical Research: Solid Earth, v. 86, n. B4, p. 2545–2555, doi:https://doi.org/10.1029/JB086iB04p02545
    OpenUrlCrossRef
  38. ↵
    1. Coleman R. G.
    , 1957, Mineralogy and petrology of the New Idria district, California: PhD thesis, Stanford University, Stanford, 165 p.
  39. ↵
    1. Coleman R. G.
    , 1961, Jadeite deposits of the Clear Creek area, New Idria district, San Benito County, California: Journal of Petrology, v. 2, n. 2, p. 209–247, doi:https://doi.org/10.1093/petrology/2.2.209
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Coleman R. G.
    , 1971, Petrologic and geophysical nature of serpentinites: Geological Society of America Bulletin, v. 82, n. 4, p. 897–918, doi:https://doi.org/10.1130/0016-7606(1971)82[897:PAGNOS]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Coleman R. G.
    , 1980a, Tectonic inclusions in serpentinites: Archives des Sciences de Geneve, v. 33, p. 89–102.
    OpenUrl
  42. ↵
    1. Coleman R. G.
    , 1980b, Ophiolite tectonics and metamorphism: Colloques Internatilonaux du CNRS No. 272, Orogenic mafic-ultramafic association, p.167–184.
  43. ↵
    1. Coleman R. G.
    , 1986, Ophiolites and accretion of the North American Cordillera: Bulletin de la Société Géologique de France, v. 2, n. 6, p. 961–968, doi:https://doi.org/10.2113/gssgfbull.II.6.961
    OpenUrlCrossRefGeoRef
  44. ↵
    1. Coleman R. G.
    , 1996, New Idria serpentinite: A land management dilemma: Environmental & Engineering Geoscience, v. 2, n. 1, p. 9–22, doi:https://doi.org/10.2113/gseegeosci.II.1.9
    OpenUrlCrossRefGeoRef
  45. ↵
    1. Coleman R. G.,
    2. Keith T. E.
    , 1971, A chemical study of serpentinization – Burro Mountain, California: Journal of Petrology, v. 12, n. 2, p. 311–328, doi:https://doi.org/10.1093/petrology/12.2.311
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Coleman R. G.,
    2. Lanphere M. A.
    , 1971, Distribution and age of high-grade blueschists associated eclogites, and amphibolites from Oregon and California: Geological Society of America Bulletin, v. 82, n. 9, p. 2397–2412, doi:https://doi.org/10.1130/0016-7606(1971)82[2397:DAAOHB]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Graham S. A.
    1. Cooley S. A.
    , 1985, Depositional environments of the lower and middle Miocene Temblor Formation of Reef Ridge, Fresno and Kings Counties, California in Graham S. A., editor, Geology of the Temblor Formation, western San Joaquin basin, California: Pacific Section, Society Economic Paleontologists and Mineralogists, v. 44, p. 35–52.
    OpenUrl
  48. ↵
    1. Cowan D. S.,
    2. Mansfield C. F.
    , 1970, Serpentinite flows on Joaquin Ridge, Southern Coast Ranges, California: Geological Society of America Bulletin, v. 81, n. 9, p. 2615–2628, doi:https://doi.org/10.1130/0016-7606(1970)81[2615:SFOJRS]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Dibblee T. W. Jr..
    1971, Geologic maps of seventeen 15-minute quadrangles (1:62,500) along the San Andreas fault in the vicinity of King City, Coalinga, Panoche Valley, and Paso Robles, California, with index map: U.S. Geological Survey Open-File Report, v. 71-0087, 17 sheets, scale 1:62,500, doi:https://doi.org/10.3133/ofr7187
    OpenUrlCrossRef
  50. ↵
    1. Dibblee T. W. Jr..
    1972, Preliminary geologic map of the San Jose East quadrangle, Santa Clara County, California: U. S. Geological Survey Open File Report, v. 72–92, scale 1:24,000, doi:https://doi.org/10.3133/ofr7292
    OpenUrlCrossRef
  51. ↵
    1. Dibblee T. W. Jr..
    2007, Geologic map of the Idria Quadrangle: Santa Barbara Museum of Natural History, Santa Barbara, California: Scale 1:24,000.
  52. ↵
    1. Dibblee T. W. Jr..,
    2. Graham S. E.,
    3. Mahoney T. M.,
    4. Blissenbach J. L.,
    5. Marinant J. J.,
    6. Wentworth C. M.
    , 1999, Regional geological map of San Andreas and related faults in Carrizo Plain, Temblor, Caliente, and La Panza Ranges and vicinity, California: A digital database, U.S. Geological Survey Open File Report, v. 99–14, doi:https://doi.org/10.3133/ofr9914
    OpenUrlCrossRef
  53. ↵
    1. Dickinson W. R.
    , 1966, Table Mountain serpentine extrusion in California Coast Ranges: Geological Society of America Bulletin, v. 77, n. 5, p. 451–472, doi:https://doi.org/10.1130/0016-7606(1966)77[451:TMSEIC]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Dickinson W. R.
    , 1997, Overview: Tectonic implciations of Cenozoic volcanism in coastal California: Geological Society of America Bulletin, v. 109, n. 8, p.936–954, doi:https://doi.org/10.1130/0016-7606(1997)109<0936:OTIOCV>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Dickinson W. R.,
    2. Snyder W. S.
    , 1979, Geometry of triple junctions related to San Andreas transform: Journal of Geophysical Research: Solid Earth, v. 84, n. B2, p. 561–572, doi:https://doi.org/10.1029/JB084iB02p00561
    OpenUrlCrossRef
  56. ↵
    1. Eckel E. B.,
    2. Myers W. B.
    , 1946, Quicksilver deposits of the New Idria district, San Benito and Fresno Counties, California: California Journal of Mines and Geology, v. 42, n. 2, p. 81–124.
    OpenUrlGeoRef
  57. ↵
    1. Ernst W. G.
    , 1970, Tectonic contact between the Franciscan Mélange and the Great Valley Sequence, Crustal expression of a Late Mesozoic Benioff zone: Journal of Geophysical Research, v. 75, n. 5, p. 886–901, doi:https://doi.org/10.1029/JB075i005p00886
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. Escartín J.,
    2. Hirth G.,
    3. Evans B.
    , 2001, Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere: Geology, v. 29, n. 11, p.1023–1026, doi:https://doi.org/10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Evans B. W.,
    2. Hattori K.,
    3. Barronet A.
    , 2013, Serpentinite: what, why, and where?: Elements, v. 9, n. 2, p. 99–106, doi:https://doi.org/10.2113/gselements.9.2.99
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Flanagan F. J.
    , 1969, U.S. Geol. Survey Standards, II. First compilation of data for the new U.S.G.S. rocks: Geochimica Cosmochimica Acta, v. 33, n. 1, p. 81–120, doi:https://doi.org/10.1016/0016-7037(69)90094-5
    OpenUrlCrossRef
  61. ↵
    1. Furlong K. P.,
    2. Schwartz S. Y.
    , 2004, Influence of the Mendocino triple junction on the tectonics of Coastal California: Annual Reviews of Earth and Planetary Science, v. 32, p. 405–433, doi:https://doi.org/10.1146/annurev.earth.32.101802.120252
    OpenUrlCrossRef
  62. ↵
    1. Emiliani C.
    1. Fyfe W. S.,
    2. Lonsdale P.
    , 1981, Ocean floor hydrothermal activity, in Emiliani C., editor, The Oceanic Lithosphere: New York, Wiley, p. 589–638.
  63. ↵
    1. Germanovich L. N.,
    2. Gene G.,
    3. Lowell R. P.,
    4. Rona P. A.
    , 2012, Deformation and surface uplift associated with serpentinization at mid-ocean ridges and subduction zones: Journal of Geophysical Research: Solid Earth, v. 117, n. B7, B07103, doi:https://doi.org/10.1029/2012JB009372
    OpenUrlCrossRef
  64. ↵
    1. Gerya T. V.,
    2. Stöchert B.,
    3. Perchuk A. I.
    , 2002, Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation: Tectonics, v. 21, n. 6, p. 6-1–6-19, doi:https://doi.org/10.1029/2002TC001406
    OpenUrlCrossRef
  65. ↵
    1. Ghent E. D.,
    2. Coleman R. G.
    , 1973, Eclogites from southwestern Oregon: Geological Society of America Bulletin, v. 84, n. 8, p. 2471–2488, doi:https://doi.org/10.1130/0016-7606(1973)84<2471:EFSO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Ghent E. D.,
    2. Coleman R. G.,
    3. Hadley D. G.
    , 1980, Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Saudi Arabia: American Journal of Science, v. 280-A, The Jackson Volume, Part 2, p. 499–527.
    OpenUrl
  67. ↵
    1. Sullivan R.,
    2. Sloan D.,
    3. Unrah J. R.,
    4. Schwartz D. P.
    1. Gooley J. T.,
    2. Grove M.,
    3. Graham S. A.
    , 2021a, Tectonic evolution of the central California margin as reflected by detrital zircon composition in the Mount Diablo region, in Sullivan R., Sloan D., Unrah J. R., Schwartz D. P., editors, Regional Geology of Mount Diablo, California: Its Tectonic Evolution on the North America Plate Boundary: Geological Society of America Memoir, v. 217, p. 305–329, doi:https://doi.org/10.1130/2021.1217(14)
    OpenUrlCrossRef
  68. ↵
    1. Gooley J. T.,
    2. Sharman G. R.,
    3. Graham S. A.
    , 2021b, Reconciling along-strike disparity in slip displacement of the San Andreas fault, central California, USA: Geological Society of America Bulletin, v. 133, n. 7–8, p. 1441–1464, doi:https://doi.org/10.1130/B35681.1
    OpenUrlCrossRef
  69. ↵
    1. Ingersoll R. V.,
    2. Ernst W. G.
    1. Graham S. A.
    , 1987, Tectonic controls on petroleum occurrence in central California, in Ingersoll R. V., Ernst W. G., editors, Cenozoic basin development of coastal California: Englewood Cliffs, New Jersey, Prentice‐Hall, p. 47–63.
  70. ↵
    1. Graham S. A.,
    2. Berry K. D.
    , 1979, Early Eocene paleogeography of the central San Joaquin Valley: Origin of the Cantua Sandstone: Tertiary Symposium Volume, Pacific Section, Society Economic Paleontologists and Mineralogists, p. 119–127.
  71. ↵
    1. Graham S. A.,
    2. Williams L. A.
    , 1985, Tectonic, depositional, and diagenetic history of Monterey Formation (Miocene), central San Joaquin basin, California: American Association Petroleum Geologists Bulletin, v. 69, n. 3, p. 385–411, doi:https://doi.org/10.1306/AD4624F7-16F7-11D7-8645000102C1865D
    OpenUrlAbstract
  72. ↵
    1. Graham S. A.,
    2. McCloy C.,
    3. Hitzman M.,
    4. Ward R.,
    5. Turner R.
    , 1984, Basin evolution during change from convergent to transform continental margin in central California: American Association of Petroleum Geologists Bulletin, v. 68, n. 3, p. 233–249, doi:https://doi.org/10.1306/AD460A03-16F7-11D7-8645000102C1865D
    OpenUrlAbstract
  73. ↵
    1. Graham S. A.,
    2. Stanley R. G.,
    3. Bent J. V.,
    4. Carter J. B.
    , 1989, Oligocene and Miocene paleogeography of central California and displacement along the San Andreas fault: Geological Society of America Bulletin, v. 101, n. 5, p. 711–730, doi:https://doi.org/10.1130/0016-7606(1989)101<0711:OAMPOC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Graymer R. W.,
    2. Langenheim W. E.,
    3. Roberts M. A.,
    4. McDougall K.
    , 2014, Geological and geophysical maps of the eastern three-fourths of the Cambria 30’x60’ Quadrangle, central California Coast Ranges: U.S. Geological Survey, Scientific Investigation Map 3287, scale 1:100,000, doi:https://doi.org/10.3133/sim3287
    OpenUrlCrossRef
  75. ↵
    1. Griscom A.,
    2. Jachens R. C.
    , 1990, Tectonic implications of gravity and magnetic models along east-west seismic profiles across the Great Valley near Coalingaz: U.S. Geological Survey, Professional Paper, v. 1487, p. 69–78.
    OpenUrl
  76. ↵
    1. Guzofski C. A.,
    2. Shaw J. H.,
    3. Lin G.,
    4. Shearer P. M.
    , 2007, Seismically active wedge structure beneath the Coalinga anticline, San Joaquin basin, California: Journal of Geophysical Research: Solid Earth, v. 112, n. B3, B03S05, doi:https://doi.org/10.1029/2006JB004465
    OpenUrlCrossRef
  77. ↵
    1. Harding T. P.
    , 1976, Tectonic significance and hydrocarbon trapping consequences of sequential folding synchronous with San Andreas faulting, San Joaquin Valley, California: American Association of Petroleum Geologists Bulletin v. 60, n. 3, p. 356–378, doi:https://doi.org/10.1306/83D923C0-16C7-11D7-8645000102C1865D
    OpenUrlAbstract
  78. ↵
    1. Jackson M. P. A.,
    2. Roberts D. G.,
    3. Snelson S.
    1. Harrison J. C.
    , 1995, Tectonics, kinematics of foreland folded belt influenced by salt, Arctic Canada, in Jackson M. P. A., Roberts D. G., Snelson S., editors, Salt tectonics: A global perspective: American Association of Petroleum Geologists, Memoir, v. 65, p. 379–412, doi:https://doi.org/10.1306/M65604C19
    OpenUrlCrossRef
  79. ↵
    1. Herzberg C.
    , 2004, Geodynamic information in peridotite petrology: Journal of Petrology v. 45, n. 12, p. 2507–2530, doi:https://doi.org/10.1093/petrology/egh039
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Hickman S.,
    2. Langbein J.
    , 2004, The Parkfield Experiment–Capturing what happens in an Earthquake: US Geological Survey, Fact Sheet 049-02, doi:https://doi.org/10.3133/fs04902
    OpenUrlCrossRef
  81. ↵
    1. Hopson C. A.,
    2. Mattinson J. M.,
    3. Pessagno E. A.
    , 1981, Coast Range ophiolite, western California: Englewood Cliffs, New Jersey, Prentice-Hall, p. 418–510.
  82. ↵
    1. Horodyskyj U.,
    2. Lee C. A.,
    3. Luffi P.
    , 2009, Geochemical evidence for exhumation of eclogite via serpentinite channels in ocean-continent subduction zones: Geosphere, v. 5, n. 5, p. 426–438, doi:https://doi.org/10.1130/GES00502.1
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. Roberts D. G.,
    2. Bally A. W.
    1. Hudec M. R.,
    2. Jackson M. P. A.
    , 2012, De Re Salsa: Fundamental principles of salt tectonics, in Roberts D. G., Bally A. W., editors, Regional Geology and Tectonics: Phanerozoic Passive Margins,Cratonic Basins and Global Tectonic Map: Elsevier, p. 18–41, doi:https://doi.org/10.1016/B978-0-444-56357-6.00001-9
    OpenUrlCrossRef
  84. ↵
    1. Leggett J. K.
    1. Ingersoll R. V.
    , 1982, Initiation and evolution of the Great Valley forearc basin of northern and central California, U.S.A., in Leggett J. K., editor, Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins: Geological Society, London, Special Publication, v. 10, p. 459–467, doi:https://doi.org/10.1144/GSL.SP.1982.010.01.31
    OpenUrlCrossRef
  85. ↵
    1. Irwin W. P.
    , 1977, Ophiolitic terranes of California, Oregon, and Nevada: State of Oregon Department of Geology and Mineral Industry Bulletin, v. 95, p. 75–92.
    OpenUrl
  86. ↵
    1. Jachens R. C.,
    2. Griscom A.,
    3. Roberts C. W.
    , 1995, Regional extent of Great Valley basement west of the Great Valley, California: Implications for extensive tectonic wedging in the California Coast Ranges: Journal of Geophysical Research: Solid Earth, v. 100, n. B7, p. 12769–12790, doi:https://doi.org/10.1029/95JB00718
    OpenUrlCrossRef
  87. ↵
    1. Jackson M. P. A,
    2. Cornelius R. R.,
    3. Craig C. H.,
    4. Gansser A.,
    5. Stöcklin J.,
    6. Talbot C. J.
    , 1990, Salt diapirs of the Great Kavit, central Iran: Geological Society of America, Memoir, v. 177, 139 p., doi:https://doi.org/10.1130/MEM177-p1
    OpenUrlCrossRef
  88. ↵
    1. Johnson C. J.,
    2. Bloch R. B.,
    3. Graham S. A.
    , 2005, Tertiary sequences of the central San Joaquin Basin, California: Age control and eustatic versus tectonic forcing factors: Pacific Section American Association of Petroleum Geologists, Miscellaneous Publications Series 49.
  89. ↵
    1. Scheirer H. A.
    1. Johnson C. L.,
    2. Graham S. A.
    , 2007, Middle Tertiary stratigraphic sequences of the San Joaquin basin, California, in Scheirer H. A., editor, Petroleum Systems and Geologic Assessment of Oil and Gas in the San Joaquin Basin Province, California: U.S. Geological Survey, Professional Paper 1713-6, doi:https://doi.org/10.3133/pp17136
    OpenUrlCrossRef
  90. ↵
    1. Johnson P. A.,
    2. McEvilly T. V.
    , 1995, Parkfield seismicity: Fluid-driven?: Journal of Geophysical Research: Solid Earth, v. 100, n. B7, p. 12,937–12,950, doi:https://doi.org/10.1029/95JB00474
    OpenUrlCrossRef
  91. ↵
    1. Graham S. A.
    1. Kuespert J.
    , 1985, Depositional environments and sedimentary history of the Miocene Temblor Formation and associated Oligo-Miocene units in the vicinity of Kettleman North Dome, San Joaquin Valley, California, in Graham S. A., editor, Geology of the Temblor Formation, western San Joaquin basin, California: Pacific Section, Society Economic Paleontologists and Mineralogists, v. 44, p. 53–68
    OpenUrl
  92. ↵
    1. Laurs B. M.,
    2. Rohtert W. R.,
    3. Gary M.
    , 1997, Benitoite from the New Idria District, San Benito County, California: Gems and Gemology, v. 33, n. 3, p. 166–187, doi:https://doi.org/10.5741/GEMS.33.3.166
    OpenUrlCrossRefGeoRef
  93. ↵
    1. Lazar C.,
    2. Cooperdock E. H. G.,
    3. Seymour B. H. T.
    , 2021, A contininental forearc serpentinite diapir with deep origins: Elemental signatures of a mantle wedge protolith and slab-derived fluids at New Idria, California: Lithos, v. 389–399, doi:https://doi.org/10.1016/j.lithos.2021.106252
    OpenUrlCrossRef
  94. ↵
    1. Jackson M. P. A.,
    2. Roberts D. G.,
    3. Snelson S.
    1. Letouzey J.,
    2. Colletta B.,
    3. Vially R.,
    4. Chermette J. C.
    , 1995, Evolution of salt-related structures in compressional settings, in Jackson M. P. A., Roberts D. G., Snelson S., editors, Salt tectonics: A global perspective: American Association of Petroleum Geologists, Memoir, v. 65, p.41–60, doi:https://doi.org/10.1306/M65604C3
    OpenUrlCrossRefWeb of Science
  95. ↵
    1. Lockwood J. P.
    , 1971, Sedimentary and gravity-slide emplacement of serpentinite: Geological Society of America Bulletin, v. 82, n. 4, p. 919–936, doi:https://doi.org/10.1130/0016-7606(1971)82[919:SAGEOS]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  96. ↵
    1. Loney R. A.,
    2. Himmelberg G. R.,
    3. Coleman R. G.
    , 1971, Structure and petrology of the Alpine-type peridotite at Burro Mountain, California, U.S.A.: Journal of Petrology, v. 12, n. 2, p. 245–309, doi:https://doi.org/10.1093/petrology/12.2.245
    OpenUrlCrossRefGeoRefWeb of Science
  97. ↵
    1. Lowell R. P.,
    2. Rona P. A.
    , 2002, Seafloor hydrothermal systems driven by the serpentinization of peridotite: Geophysical Research Letters, v. 29, n. 11, p. 26-1–26-4, doi:https://doi.org/10.1029/2001GL014411
    OpenUrlCrossRef
  98. ↵
    1. Martin B.,
    2. Fyfe W. S.
    , 1970, Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization: Chemical Geology, v. 6, p. 185–202, doi:https://doi.org/10.1016/0009-2541(70)90018-5
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Evans B. W.,
    2. Brown E. H.
    1. Mattinson J. M.
    , 1986, Geochronology of high-pressure-low-temperature Franciscan metabasites: A new approach using the U-Pb system, in Evans B. W., Brown E. H. editors, Blueschist and eclogites: Geological Society of America, Memoirs, v. 164, p. 95–105, doi:https://doi.org/10.1130/MEM164-p95
    OpenUrlCrossRef
  100. ↵
    1. Ernst W. G.
    1. Mattinson J. M.
    1988, Constraints on the timing of Franciscan metamorphism: Geochronlogical approaches and their limitations, in Ernst W. G., editor, Metamorphism and crustal evolution of the western United States: Prentice-Hall, Englewood Cliffs, New Jersey, Rubey, v. 7, p. 1023–1034.
    OpenUrl
  101. ↵
    1. Mattinson J. M.,
    2. Echeverria L. M.
    , 1980, Ortigalita Peak gabbro, Franciscan complex-U-Pb ages of intrusion and high pressure-low temperature metamorphism: Geology, v. 8, n. 12, p. 589–593, doi:https://doi.org/10.1130/0091-7613(1980)8<589:OPGFCU>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  102. ↵
    1. Mattinson J. M.,
    2. Hopson C.A.
    , 1992, U/Pb ages of the Coast Range ophiolite: A critical revaluation based on new high-precision Pb/Pb ages: American Association of Petroleum Geologists Bulletin, v. 76, p. 425.
    OpenUrlGeoRef
  103. ↵
    1. McDougall K.
    , 2007, California Cenozoic biostratigraphy: Paleogene, in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin, California: US Geological Survey, Professional Paper 1713, Ch. 4, p. 1–56.
  104. ↵
    1. McGuire D.
    , 1988a, Stratigraphy, depositional history, and hydrocarbon source-rock potential of the Upper Cretaceous-lower Tertiary Moreno Formation, central San Joaquin basin, California: PhD thesis, Stanford University, Stanford, 309 p.
  105. ↵
    1. Graham S. A.,
    2. Olson H. C.
    1. McGuire D. J.
    , 1988b, Depositional framework of the Upper Cretaceous-lower Tertiary Moreno Formation, central San Joaquin Basin, California, in Graham S. A., Olson H. C., editors, Studies of the geology of the San Joaquin Basin: Pacific Section, Society of Economic Paleontologists and Mineralogists, Book 60, p. 173–188.
  106. ↵
    1. McLaughlin R. J.,
    2. Sliter W. V.,
    3. Sorg D. H.,
    4. Russell P. C.,
    5. Sarna-Wojcicki A. M.
    1996, Large-scale slip displacement on the East San Francisco Bay Region fault system, California: Implications for location of the late Miocene to Pliocene Pacific Plate Boundary: Tectonics, v. 15, n. 1, p. 1–15, doi:https://doi.org/10.1029/95TC02347
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. McPhee D. K.,
    2. Jachens R. C.,
    3. Wentworth C. M.
    , 2004, Crustal structure across the San Andreas Fault at the SAFOD site from potential field and geologic studies: Geophysical Research Letters, v. 31, n. 12, L12S03, doi:https://doi.org/10.1029/2003GL019363
    OpenUrlCrossRef
  108. ↵
    1. Melson W. G.,
    2. Hart S. R.,
    3. Thompson G.
    , 1972, St Paul’s Rocks Equatorial Atlantic: petrogenesis, radiometric ages, and implications on sea-floor spreading. Geological Society of America, Memoir, v. 132, p. 241–272, doi:https://doi.org/10.1130/MEM132-p241
    OpenUrlAbstract/FREE Full Text
  109. ↵
    1. Mevel C.
    , 2003, Serpentinization of abyssal peridotites at mid-ocean ridges: Comptes Rendus Geosciences, v. 335, n. 10–11, p. 825–852, doi:https://doi.org/10.1016/j.crte.2003.08.006
    OpenUrlCrossRef
  110. ↵
    1. Ingersoll,
    2. Lawton R. V. T. F.,
    3. Graham S. A.
    1. Miller D. D.,
    2. Graham S. A.
    , 2018, Late Cenozoic uplift and shortening in the central California coast ranges and development of the San Joaquin basin foreland, in Ingersoll, Lawton R. V. T. F., Graham S. A., editors, Tectonics, Sedimentary Basins, and Provenance: A Celebration of the Career of William R. Dickinson: Geological Society of America, Special Paper, v. 540, p. 425–4450, doi:https://doi.org/10.1130/2018.2540(19)
    OpenUrlCrossRef
  111. ↵
    1. Mitchell C.,
    2. Graham S. A.,
    3. Suek D. H.
    , 2010, Subduction complex uplift and exhumation and its influence on Maastrichtian forearc stratigraphy in the Great Valley basin, northern San Joaquin Valley, California: Geological Society of America Bulletin, v. 122, n. 11–12, p. 2063–2078, doi:https://doi.org/10.1130/B30180.1
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Moody J. B.
    , 1976, Serpentinization: a review: Lithos 9, n. 2, p. 125–138, doi:https://doi.org/10.1016/0024-4937(76)90030-X
    OpenUrlCrossRefGeoRefWeb of Science
  113. ↵
    1. Moore D. E.,
    2. Blake M. C. Jr.
    1989, New evidence of polyphase metamorphism of glaucophane schist and eclogite exotic blocks and the Franciscan Complex, California and Oregon: Journal of Metamorphic Geology, v. 7, n. 2, p. 211–226, doi:https://doi.org/10.1111/j.1525-1314.1989.tb00585.x
    OpenUrlCrossRefGeoRefWeb of Science
  114. ↵
    1. Moore D. E.,
    2. Lockner D. A.
    , 2013, Chemical controls on fault behavior: Weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system: Journal of Geophysical Research: Solid Earth, v. 118, n. 5, p. 2558–2570, doi:https://doi.org/10.1002/jgrb.50140
    OpenUrlCrossRef
  115. ↵
    1. Moore D. E.,
    2. Rymer M. J.
    , 2007, Talc–bearing serpentinite and the creeping section of the San Andreas fault: Nature, v. 448, p.795–797, doi:https://doi.org/10.1038/nature06064
    OpenUrlCrossRefGeoRefPubMed
  116. ↵
    1. Mumpton F. A.,
    2. Thompson C. S.
    , 1975, Mineralogy and origin of the Coalinga asbestos deposit: Clays and Clay Minerals, v. 23, p. 131–143, doi:https://doi.org/10.1346/CCMN.1975.0230209
    OpenUrlAbstract
  117. ↵
    1. Murata K. J.,
    2. Dibble T. W. Jr..,
    3. Drinkwater J. L.
    , 1979, Thermal effects of large bodies of intrusive serpentinite on overlying Monterey shale, southern Diablo Range, Cholame area, California: Geological Survey, Professional Paper, 1082, p. 1–8, doi:https://doi.org/10.3133/pp1082
    OpenUrlCrossRef
  118. ↵
    1. Namson J. S.,
    2. Davis T. L.
    , 1988, Seismically active fold and thrust belt in the San Joaquin Valley, central California: Geological Society of America Bulletin, v. 100, n. 2, p. 257–273, doi:https://doi.org/10.1130/0016-7606(1988)100<0257:SAFATB>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  119. ↵
    1. Namson J. S.,
    2. Davis T. L.,
    3. Lagoe M. B.
    , 1990, Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga: U.S. Geological Survey, Professional Paper, v. 1487, p. 79–96.
    OpenUrl
  120. ↵
    1. Nilsen T. H.,
    2. Dibblee T. W. Jr..
    1979, Geology of the central Diablo Range between Hollister and New Idria, California: Cordilleran Section, Geological Society of America, 106 p.
  121. ↵
    1. Knauer L. C.
    1. Nilsen T. H.,
    2. Moore D. W.
    , 1997, Regional Upper Cretaceous stratigraphy and depositional systems of the northern San Joaquin Basin, California, in Knauer L. C., editor, Geology of the northern San Joaquin Basin gas province: Bakersfield, California., Pacific Section American Association of Petroleum Geologists, MP 43, p. 1–12, doi:https://doi.org/10.32375/1997-MP43.1
    OpenUrlCrossRef
  122. ↵
    1. Nilsen T. H.,
    2. Dibblee T. W. Jr..,
    3. Simoni T. R. Jr..
    1974, Stratigraphy and sedimentology of the Cantua Sandstone Member of the Lodo Formation, Vallecitos Area, California: Pacific Section SEPM, p. 38–68.
  123. ↵
    1. Normand C.,
    2. Williams-Jones A. E.
    , 2007, Physicochemical conditions and timing of rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM asbestos mine, Asbestos, Quebec: Geochemical Transactions, v. 8, 11, doi:https://doi.org/10.1186/1467-4866-8-11
    OpenUrlCrossRefPubMed
  124. ↵
    1. Obradovich J. D.,
    2. Kunk M. J.,
    3. Lanphere M. A.
    , 2000, Age and paragenesis of the unique mineral Benitoite: Geological Society of America Absract with Programs, Annual Meeting 2000, v. 32, n. 7, p. 440.
  125. ↵
    1. Ingersoll R. V.,
    2. Lawton T. F.,
    3. Graham S. A.
    1. Orme D. A.,
    2. Graham S. A.
    , 2018, Four-dimensional model of Cretaceous depositional geometry and sediment flux in the northern Great Valley forearc, California, in Ingersoll R. V., Lawton T. F., Graham S. A., editors, Tectonics Sedimentary Basins, and Provenance: A Celebration of the Career of William R. Dickinson: Geological Society of America, Special Paper, v. 540, p. 409–424, doi:https://doi.org/10.1130/2018.2540(18)
    OpenUrlCrossRef
  126. ↵
    1. Page B. M.,
    2. Brocher T. M.
    , 1993, Thrusting of the central California margin over the edge of the Pacific plate during the transform regime: Geology, v. 21, n. 7, p. 635–638, doi:https://doi.org/10.1130/0091-7613(1993)021<0635:TOTCCM>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  127. ↵
    1. Page B. M.,
    2. Coleman R. G.,
    3. Thompson G. A.
    , 1998, Overview: Cenozoic tectonics of the central and southern Coast Ranges, California: Geological Society of America Bulletin, v. 110, n. 7, p. 846–876, doi:https://doi.org/10.1130/0016-7606(1998)110<0846:OLCTOT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  128. ↵
    1. Platt J. P.,
    2. Xia H.,
    3. Schmidt W. L.
    , 2018, Rheology and stress in subduction zones around the aseismic/seismic transition: Progress in Earth and Planetary Science, v. 5, 24, doi:https://doi.org/10.1186/s40645-018-0183-8
    OpenUrlCrossRef
  129. ↵
    1. Graham S. A.
    1. Rentschler M. S.
    , 1985, Structurally controlled Neogene sedimentation in the Vallecitos syncline, in Graham S. A., editor, Geology of the Temblor Formation, western San Joaquin basin, California: Pacific Section, Society Economic Paleontologists and Mineralogists, v. 44, p. 97–120.
    OpenUrl
  130. ↵
    1. Rentschler M. S.,
    2. Bloch R. B.
    , 1988, Flexural subsidence modeling of the Tertiary San Joaquin Basin, California: Pacific Section SEPM, p. 29–52.
  131. ↵
    1. Reynard B.,
    2. Hilariet N.,
    3. Balan E.,
    4. Lazzeri M.
    , 2007, Elasticity of serpentines and extensive serpentinization in subduction zones: Geophysical Research Letters. v. 34, n. 13, L13307, doi:https://doi.org/10.1029/2007GL030176
    OpenUrlCrossRef
  132. ↵
    1. Robertson A. H. F.
    , 1989, Paleoceanography and tectonic setting of the Jurassic Coast Range ophiolite, central California: evidence from extrusive rocks and the volcano clastic sediment cover: Marine and Petroleum Geology, v. 6, n. 3, p. 194–219, doi:https://doi.org/10.1016/0264-8172(89)90001-9
    OpenUrlCrossRefGeoRefWeb of Science
  133. ↵
    1. Roland E.,
    2. Behn M. D.,
    3. Hirth G.
    , 2010, Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity: Geochemistry, Geophysics, Geosystems. v. 11, n. 7, Q07001, doi:https://doi.org/10.1029/2010GC003034
    OpenUrlCrossRef
  134. ↵
    1. Dilek Y.,
    2. Newcomb S.
    1. Ross M.,
    2. Nolan R. P.
    , 2003, History of asbestos discovery and use and asbestos-related disease in context with the occurrence of asbestos within ophiolite complexes, in Dilek Y., Newcomb S., editors, Ophiolite concept and the evolution of geological thought: Geological Society of America, Special Paper, v. 373, p. 447–470, doi:https://doi.org/10.1130/0-8137-2373-6.447
    OpenUrlCrossRef
  135. ↵
    1. Rouméjon S.,
    2. Cannat M.
    , 2014, Serpentinization of mantle-derived peridotites at mid-ocean ridges: Mesh texture development in the context of tectonic exhumation: Geochemistry, Geophysics, Geosystems, v.15, n. 6, p. 2354–2379, doi:https://doi.org/10.1002/2013GC005148
    OpenUrlCrossRefGeoRefWeb of Science
  136. ↵
    1. Ryder I.,
    2. Bürgmann R.
    , 2008, Spatial variations in slip deficit on the central San Andreas fault from InSAR: Geophysical Journal International, v. 175, p. 837–852, doi:https://doi.org/10.1111/j.1365-246X.2008.03938.x
    OpenUrlCrossRefWeb of Science
  137. ↵
    1. Rymer M. J.,
    2. Ellsworth W. L.
    , 1990, The Coalinga, California, earthquake of May 2, 1983: U.S. Geological Survey, Professional Paper, v. 1487, 417 p., doi:https://doi.org/10.3133/pp1487
    OpenUrlCrossRef
  138. ↵
    1. Jackson M. P. A.,
    2. Roberts D. G.,
    3. Snelson S.
    1. Sans M.,
    2. Vergés J.
    , 1995, Fold development related to contractional salt tectonics, southeastern Pyrenean thrust front, Spain, in Jackson M. P. A., Roberts D. G., Snelson S., editors, Salt tectonics: A global perspective: American Association of Petroleum Geologists, Memoir, v. 65, p.369–378, doi:https://doi.org/10.1306/M65604C18
    OpenUrlCrossRef
  139. ↵
    1. Scheirer A. H.
    1. Scheirer A. S.,
    2. Magoon L. B.
    , 2006, Age, distribution, and stratigraphic relationship of rock units in the San Joaquin basin province, California, in Scheirer A. H., editor, Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin, California: US Geological Survey, Professional Paper, v. 1713, Ch. 5, p. 1–107.
    OpenUrl
  140. ↵
    1. Schulein B. J.
    , ms, 1993, Sedimentation and tectonics of the upper lower to lower middle Eocene Domengine Formation, Vallecitos syncline, California: M.S. thesis, Stanford University, Stanford, 343 p.
  141. ↵
    1. Sharman G. R.,
    2. Graham S. A.,
    3. Grove M.,
    4. Hourigan J. K.
    , 2013, A reappraisal of the early slip history of the San Andreas fault, central California, USA: Geology, v. 41, n. 7, p. 727–730, doi:https://doi.org/10.1130/G34214.1
    OpenUrlAbstract/FREE Full Text
  142. ↵
    1. Sharman G. R.,
    2. Schwartz T. M.,
    3. Shumaker L. E.,
    4. Trigg C. R.,
    5. Nieminski N. M.,
    6. Sickmann Z. T.,
    7. Malkowski M. A.,
    8. Hourig. J. K.,
    9. Schulein B. J.,
    10. Graham S. A.
    , 2017, Submarine mass failure within the deltaic Domengine Formation (Eocene), California (USA): Geosphere, v. 13, n. 3, p. 950–973, doi:https://doi.org/10.1130/GES01442.1
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Shibakusa H.,
    2. Maekawa H.
    , 1997, Lawsonite-bearing eclogite metabasite in the Cazadero area, California: Mineralogy and Petrology v. 61, p. 163–180, doi:https://doi.org/10.1007/BF01172482
    OpenUrlCrossRefGeoRefWeb of Science
  144. ↵
    1. Stein R. S.,
    2. King G. C. P.
    , 1984, Seismic potential revealed by surface folding: 1983 Coalinga, California, earthquake: Science, v. 224, n. 4651, p. 869–871, doi:https://doi.org/10.1126/science.224.4651.869
    OpenUrlAbstract/FREE Full Text
  145. ↵
    1. Stock J.,
    2. Molnar P.
    , 1988, Uncertainties and implications of the Late Cretaceous and Tertiary position of North America relative to the Farallón, Kula, and Pacific plates: Tectonics, v. 7, n. 6, p. 1339–1384, doi:https://doi.org/10.1029/TC007i006p01339
    OpenUrlCrossRefGeoRefWeb of Science
  146. ↵
    1. Suzuki Y.
    , 1986, Melange problem of convergent plate margins in the Circum Pacific Regions: Kochi, Japan, Memoirs of the Faculty of Science, Kochi University, Series E, Geology v. 7, p. 23–48.
    OpenUrl
  147. ↵
    1. ten Brink U. S.,
    2. Shimizu N.,
    3. Molzer P. C.
    , 1999, Plate deformation at depth undernorthern California: Slab gap or stretched slab?: Tectonics, v. 18, n. 6, p. 1084–1098, doi:https://doi.org/10.1029/1999TC900050
    OpenUrlCrossRefGeoRefWeb of Science
  148. ↵
    1. Titus S. J.,
    2. Medaris L. G. Jr..,
    3. Wang H. F.,
    4. Tikof B.
    , 2007, Continuation of the San Andreas fault system into the upper mantle: Evidence from spinel peridotite xenoliths in the Coyote Lake basalt, central California: Tectonophysics, v. 429, n. 1–2, p. 1–20, doi:https://doi.org/10.1016/j.tecto.2006.07.004
    OpenUrlCrossRefGeoRefWeb of Science
  149. ↵
    1. Titus S. J.,
    2. Dyson M.,
    3. DeMets C.,
    4. Tikoff B.,
    5. Rolandone F.,
    6. Bürgmann R.
    , 2011, Geologic versus geodetic deformation adjacent to the San Andreas fault, central California: Geological Society of America Bulletin, v. 12, n. 5–6, p. 790–820, doi:https://doi.org/10.1130/B30150.1
    OpenUrlCrossRef
  150. ↵
    1. Tsujimori T.,
    2. Liou J. G.,
    3. Coleman R. G.
    , 2007a, Finding of high-grade tectonic blocks from the New Idria serpentine body, Diablo Range, California: Petrologic constraints on the tectonic evolution of an active serpentine diapir: Geological Society of America, Special Paper, v. 419, p. 67–80, doi:https://doi.org/10.1130/2007.2419(03)
    OpenUrlCrossRef
  151. ↵
    1. Tsujimori T.,
    2. Moriguti T.,
    3. Kunihiro K.,
    4. Kobayashi K.,
    5. Nakkamura E.
    , 2007b, Large-scale fluid flow in a cold subduction-zone: STMS Li-isotope study of jadeite veins in Franciscan metagraywacke: Goldschmidt Conference Abstract 2007, p. A1040.
  152. ↵
    1. Ukar E.,
    2. Cloos M.,
    3. Vasconcelos P.
    , 2012, First 40Ar-39Ar ages from low-T mafic blueschist blocks in a Franciscan melange near San Simeon: Implications for initiation of subduction: Journal of Geology, v. 120, n. 5, p. 543–556, doi:https://doi.org/10.1086/666745
    OpenUrlCrossRefGeoRefWeb of Science
  153. ↵
    1. Van Baalen M. R.
    , 1993, Titanium mobility in metamorphic systems: a review: Chemical Geology, v. 110, n. 1–3, p. 233–249, doi:https://doi.org/10.1016/0009-2541(93)90256-I
    OpenUrlCrossRefGeoRefWeb of Science
  154. ↵
    1. Vermeesch P.,
    2. Millar D. D.,
    3. Graham S. A.,
    4. De Grave J.
    , 2006, Multimethod detrital thermochronology of the Great Valley Group near New Idria, California: Geological Society of America Bulletin, v. 118, n. 1–2, p. 210–218, doi:https://doi.org/10.1130/B25797.1
    OpenUrlAbstract/FREE Full Text
  155. ↵
    1. Wakabayashi J.
    , 2015, Anatomy of a subduction complex: Architecture of the Franciscan complex, California, at multiple length and time scales: International Geology Review, v 57, n. 5–8, p. 609–746, doi:https://doi.org/10.1080/00206814.2014.998728
    OpenUrlCrossRef
  156. ↵
    1. Wakabayashi J.,
    2. Ghatak A.,
    3. Basu A. R.
    , 2010, Suprasubduction-zone ophiolite generation, emplacement, and initiation of subduction: A perspective from geochemistry, metamorphism, geochronology, and regional geology: Geological Society of America Bulletin, v. 122, n. 9–10, p. 1548–1568, doi:https://doi.org/10.1130/B30017.1
    OpenUrlAbstract/FREE Full Text
  157. ↵
    1. Walter A. W.
    , 1990, Upper-crustal velocity structure near Coalinga, as determined from seismic-refraction data: U.S. Geological Survey, Professional Paper, v. 1487, p. 23–40.
    OpenUrl
  158. ↵
    1. Warren J. M.
    , 2016, Global variations in abyssal peridotites compositions: Lithos, v. 248–251, p. 191–219, doi:https://doi.org/10.1016/j.lithos.2015.12.023
    OpenUrlCrossRef
  159. ↵
    1. Watt J. T.,
    2. Ponce D. A.,
    3. Graymer R. W.,
    4. Jachens R. C.,
    5. Simpson R. W.
    , 2014, Subsurface geometry of the San Andreas-Calaveras fault junction: Influence of serpentinite and the Coast Range Ophiolite: Tectonics, v. 33, n. 10, p. 2025–2044, doi:https://doi.org/10.1002/2014TC003561
    OpenUrlCrossRefGeoRef
  160. ↵
    1. Wentworth C. M.
    , 1990, Structure of the Coalinga region and thrust origin of the earthquake: U.S. Geological Survey, Professional Paper, v. 1487, p. 41–68.
    OpenUrl
  161. ↵
    1. Wentworth C. M.,
    2. Zoback M. D.
    , 1989, The style of late Cenozoic deformation in the eastern front of the California Coast Ranges: Tectonics, v. 8, n. 2, p. 237–246, doi:https://doi.org/10.1029/TC008i002p00237
    OpenUrlCrossRefGeoRefWeb of Science
  162. ↵
    1. Wentworth C. M.,
    2. Zoback M. D.
    , 1990, Structure of the Coalinga area and thrust origin of the earthquake: U. S. Geological Survey, Professional Paper, v. 1487, p. 47–68
    OpenUrl
  163. ↵
    1. Blake M. C. J.
    1. Wentworth C. M.,
    2. Blake M. C. Jr..,
    3. Jones D. L.,
    4. Walter A. W.,
    5. Zoback M. D.
    , 1984, Tectonic wedging associated with emplacement of the Franciscan assemblage, California Coast Ranges, in Blake M. C. J., editor, Franciscan geology of northern California: Pacific Section, Society of Economic Paleontologists and Mineralogists, v. 43, p. 163–173.
    OpenUrl
  164. ↵
    1. Wentworth C. M.,
    2. Jachens R. C.,
    3. Simpson R. W.,
    4. Michael A. J.
    1992, Structure of the Parkfield region, CA, from geology and geophysics compiled in a Geographic Information system: American Geophysical Union, 1992 Fall Meeting abstracts, supplement to Eos, v. 73, n. 43, p. 396.
    OpenUrl
  165. ↵
    1. Wentworth C. M.,
    2. Jachens R.C.,
    3. Simpson R.W.,
    4. Michael A.J.
    , 1993, Structure of the Parkfield region, CA, from geology and geophysics compiled in a Geographic Information System (1:250,000 scale maps): US Geological Survey Open File.
  166. ↵
    1. Woodring W. P.,
    2. Stewart R. B.,
    3. Richards R. W.
    , 1940, Geology of the Kettleman Hills: U.S. Geological Survey, Professional Paper, v. 195, 170 p.
    OpenUrl
  167. ↵
    1. Rymer M. J.,
    2. Ellsworth W. L.
    1. Yerkes R. F.,
    2. Levine P.,
    3. Wentworth C. M.
    , 1990, Abnormally high fluid pressures in the region of the Coalinga earthquake sequence and their significance, in Rymer M. J., Ellsworth W. L., editors, The Coalinga Earthquake of May 2, 1983: U.S. Geological Survey, Professional Paper, v. 1487, p. 35–257.
    OpenUrl
  168. ↵
    1. Fettes D.,
    2. Desmons J.
    1. Zharikov V. A.,
    2. Pertsev N. N.,
    3. Rusinov V. L.,
    4. Callegari E.,
    5. Fettes D. J.
    , 2007, Metasomatism and metasomatic rocks, in Fettes D., Desmons J., editors, Metamorphic Rocks–A classification and glossary of terms: IUGS Subcommission on Systematics of Metamorphic Rocks: Cambridge University Press, p. 58–68.
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (4)
American Journal of Science
Vol. 322, Issue 4
1 Apr 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
New Idria serpentinite protrusion, Diablo Range, California: From upper mantle to the surface
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
New Idria serpentinite protrusion, Diablo Range, California: From upper mantle to the surface
Robert G. Coleman, Jared T. Gooley, Robert T. Gregory, Stephan A. Graham
American Journal of Science Apr 2022, 322 (4) 533-560; DOI: 10.2475/04.2022.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
New Idria serpentinite protrusion, Diablo Range, California: From upper mantle to the surface
Robert G. Coleman, Jared T. Gooley, Robert T. Gregory, Stephan A. Graham
American Journal of Science Apr 2022, 322 (4) 533-560; DOI: 10.2475/04.2022.01
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • TECTONIC HISTORY OF CENTRAL CALIFORNIA
    • NEW IDRIA SERPENTINITE BODY: PETROLOGIC CONSTRAINTS
    • HYDRATION OF PERIDOTITE
    • EMPLACEMENT OF THE NEW IDRIA SERPENTINITE BODY
    • EVOLUTION AND UPLIFT OF THE NEW IDRIA DIAPIR
    • SYNTHESIS AND DISCUSSION
    • CONCLUSION
    • ACKNOWEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Weathering intensity and lithium isotopes: A reactive transport perspective
  • Partial molar volumes of metal oxides in silicate melts: Effects of Coulombic interactions
  • Proterozoic-Mesozoic development of the Quanji block from northern Tibet and the cratonic assembly of eastern Asia
Show more Article

Similar Articles

Keywords

  • Serpentinite Protrusion
  • Peridotite
  • Metasomatism
  • San Andreas Fault
  • Mendocino Triple Junction

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire