Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

The petrogenesis and tectonic setting of the New Hampshire Plutonic Suite: Towards a more comprehensive model for the magmatism of the Acadian Orogeny

Michael J. Dorais
American Journal of Science March 2022, 322 (3) 493-531; DOI: https://doi.org/10.2475/03.2022.03
Michael J. Dorais
*Department of Geological Sciences, Brigham Young University, Provo, Utah 84602, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dorais@byu.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Anders E.,
    2. Ebihara M.
    , 1982, Solar-system abundances of the elements: Geochimica et Cosmochimica Acta, v. 46, n. 11, p. 2363–2380, doi:https://doi.org/10.1016/0016-7037(82)90208-3
    OpenUrlCrossRef
  2. ↵
    1. Sinha A.K.,
    2. Whalen J.B.,
    3. Hogan J.P.
    1. Arth J. G.,
    2. Ayuso R. A.
    , 1997, The Northeast Kingdom Batholith, Vermont; geochronology and Nd, O, Pb, and Sr isotopic constraints on the origin of Acadian granitic rocks, in Sinha A.K., Whalen J.B., Hogan J.P., editors, The Nature of Magmatism in the Appalachian Orogen: Geological Society of America Memoir, v. 191, p. 1–18, doi:https://doi.org/10.1130/0-8137-1191-6.1
    OpenUrlCrossRef
  3. ↵
    1. Ayuso R. A.,
    2. Arth J. G.
    , 1985, Origin and evolution of calc-alkaline plutons in the Northeast Kingdom Batholith: Geological Society of America Abstracts with Programs, v. 17, n. 7, p. 516.
    OpenUrl
  4. ↵
    1. Ayuso R. A.,
    2. Arth J. G.
    , 1992, The Northeast Kingdom Batholith, Vermont: Magmatic evolution and geochemical constraints on the origin of Acadian granitic rocks: Contributions to Mineralogy and Petrology, v. 111, p. 1–23, doi:https://doi.org/10.1007/BF00296574
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Azizi H.,
    2. Stern R. J.,
    3. Topuz G.,
    4. Asahara Y.,
    5. Moghadam H. S.
    , 2019, Late Paleocene adakitic granitoid from NW Iran and comparison with adakites in the NE Turkey: Adakite melt generation in normal continental crust: Lithos, v. 346–347, 105151, doi:https://doi.org/10.1016/j.lithos.2019.105151
    OpenUrlCrossRef
  6. ↵
    1. Béziat D.,
    2. Bourges F.,
    3. Debat P.,
    4. Lompo M.,
    5. Martin F.,
    6. Tollon F.
    , 2000, A Paleoproterozoic untramafic-mafic assemblage and associated volcanic rocks of the Boromo greenstone best: fractionates originating from island-arc volcanic activity in the West African craton: Precambrian Research, v. 101, n. 1, p. 25–47, doi:https://doi.org/10.1016/S0301-9268(99)00085-6
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Billings M. P.
    , 1956, The Geology of New Hampshire Part II – Bedrock Geology: The New Hampshire Department of Resources and Economic Development, 1:250000, https://ngmdb.usgs.gov/Prode-sc/proddesc_42596.htm
  8. ↵
    1. Billings M. P.,
    2. Fowler-Billings K.
    , 1975, Geology of the Gorham Quadrangle: New Hampshire-Maine: State of New Hampshire, Department of Resources and Economic Development, Bulletin, n. 6, 120 p.
  9. ↵
    1. Bothner W. A.,
    2. Blackburn T.,
    3. Bowring S. A.,
    4. Buchwaldt R.,
    5. Hussey A. M.
    , 2009, Temporal constraints on Paleozoic plutonism in southwestern Maine and southeastern New Hampshire; revisions and implications: Geological Society of America Abstracts with Programs, v. 41, p. 32.
    OpenUrl
  10. ↵
    1. Bowes D. R.,
    2. Wright A. E.
    , 1967, The explosion-breccia popes near Kentallen, Scotland, and their geological setting: Transactions of the Royal Society of Edinburgh, v. 67, n. 5, p. 110–143, doi:https://doi.org/10.1017/S0080456800023954
    OpenUrlCrossRef
  11. ↵
    1. Bradley D. C.
    , 1983, Tectonics of the Acadian Orogeny in New England and adjacent Canada: Journal of Geology, v. 91, n. 4, p. 381–400, doi:https://doi.org/10.1086/628785
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Bradley D.,
    2. Tucker R.
    , 2002, Emsian synorogenic paleography of the Maine Appalachians: Journal of Geology, v. 110, n. 4, p. 483–492, doi:https://doi.org/10.1086/340634
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Bradley D. C.,
    2. Tucker R. D.,
    3. Lux D. R.,
    4. Harris A. G.,
    5. McGregor D. C.
    , 2000, Migration of the Acadian Orogen and foreland basin across the northern Appalachians of Maine and adjacent areas: United States Geological Survey, Professional Paper, n. 1624, 55 p., doi:https://doi.org/10.3133/pp1624
    OpenUrlCrossRef
  14. ↵
    1. Castillo P. R.
    , 2012, Adakite petrogenesis: Lithos, v. 134–135, p. 304–316, doi:https://doi.org/10.1016/j.lithos.2011.09.013
    OpenUrlCrossRef
  15. ↵
    1. Centorbi T.
    , ms, 2002, The Mooselookmeguntic Igneous Complex, Maine: A Pb isotopic study to clarify basement sources: Senior Thesis, University of Maryland, College Park, MD, 31 p.
  16. ↵
    1. Chamberlain C. P.,
    2. England P. C.
    , 1985, The Acadian thermal history of the Merrimack synclinorium in New Hampshire: Journal of Geology, v. 93, n. 5, p. 593–602, doi:https://doi.org/10.1086/628983
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Chamberlain C. P.,
    2. Sonder L. J.
    , 1990, Heat-producing elements and the thermal and baric patterns of metamorphic belts: Science, v. 250, n. 4982, p. 763–769, doi:https://doi.org/10.1126/science.250.4982.763
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Blevin P.,
    2. Jones M.,
    3. Chappell B.
    1. Champion D. C.,
    2. Smithies R. H.
    , 2003, Archaean granites: in Blevin P., Jones M., Chappell B., editors, Magmas to Mineralization: The Ishihara Symposium, Geoscience, Australia, p. 19–24.
  19. ↵
    1. Chapman J. B.,
    2. Ducea M. N.,
    3. DeCelles P. G.,
    4. Profeta L.
    , 2015, Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology: v. 43, n. 10, p. 919–922, doi:https://doi.org/10.1130/G36996.1
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Chappell B. W.,
    2. White A. J. R.
    , 1974: Two contrasting granite types: Pacific Geology, v. 8, p. 173–174.
    OpenUrlGeoRef
  21. ↵
    1. Clark R. G.,
    2. Lyons J. B.
    , 1986, Petrogenesis of the Kinsman intrusive suite: Peraluminous granitoids of western New Hampshire: Journal of Petrology, v. 27, n. 6, p. 1365–1393, doi:https://doi.org/10.1093/petrology/27.6.1365
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Clemens J. D.,
    2. Stevens G.
    , 2012, What controls chemical variation in granitic magmas?: Lithos, v. 134–135, p. 317–329, doi:https://doi.org/10.1016/j.lithos.2012.01.001
    OpenUrlCrossRef
  23. ↵
    1. Clemens J. D.,
    2. Stevens G.,
    3. Farina F.
    , 2011, The enigmatic sources of I-type granites: The peritectic connection: Lithos, v. 126, n. 3–4, p. 174–181, doi:https://doi.org/10.1016/j.lithos.2011.07.004
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Tollo R. P.,
    2. Bartholomew M. J.,
    3. Hibbard J. P.,
    4. Karabinos P. M.
    1. Coish R. A.
    , 2010, Magmatism in the Vermont Appalachians: in Tollo R. P., Bartholomew M. J., Hibbard J. P., Karabinos P. M., editors, From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: Geological Society of America Memoir, v. 206, p. 91–110, doi:https://doi.org/10.1130/2010.1206(05)
    OpenUrlCrossRef
  25. ↵
    1. Coleman D. S.,
    2. Glazner A. F.
    , 1997, The Sierra crest magmatic event: rapid formation of juvenile crust during the late cretaceous in California: International Geology Reviews, v. 39, n. 9, p. 768–787, doi:https://doi.org/10.1080/00206819709465302
    OpenUrlCrossRef
  26. ↵
    1. Dailey S. R.,
    2. Christiansen E. H.,
    3. Dorais M. J.,
    4. Kowallis B. J.,
    5. Fernandez D. P.,
    6. Johnson D. M.
    , 2018, Geochemistry of the fluorine-and beryllium-rich Spor Mountain Rhyolite, western Utah: American Mineralogist, v. 103, n. 8, p. 1228–1252, doi:https://doi.org/10.2138/am-2018-6256
    OpenUrlCrossRef
  27. ↵
    1. Defant M. J.,
    2. Drummond M. S.
    , 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere: Nature, v. 347, p. 662–665, doi:https://doi.org/10.1038/347662a0
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Dehrer S. T.,
    2. Macpherson C. G.,
    3. Pearson D. G.,
    4. Davidson J. P.
    , 2005, Re-Os isotope studies of Mindanao adakites: Implications for sources of metals and melts: Geology, v. 33, n. 12, p. 957–960, doi:https://doi.org/10.1130/G21755.1
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Dodge F. C. W.,
    2. Papike J. J.,
    3. Mays R. E.
    , 1968, Hornblendes from granitic rocks of the centralwh Sierra Nevada batholith, California: Journal of Petrology, v. 9, n. 3, p. 378–410, doi:https://doi.org/10.1093/petrology/9.3.378
    OpenUrlCrossRefGeoRef
  30. ↵
    1. Dodge F. C. W.,
    2. Smith V. C.,
    3. Mays R. E.
    , 1969, Biotites from granitic rocks of the central Sierra Nevada batholith, California: Journal of Petrology, v. 10, n. 2, p. 250–271, doi:https://doi.org/10.1093/petrology/10.2.250
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Dorais M. J.
    , 1990, Compositional variations in amphiboles and pyroxenes of the Belknap Mountains complex, New Hampshire: Evidence for the origin of silica saturated alkaline rocks: American Mineralogist, v. 75, n. 9–10, p. 1092–1105.
    OpenUrlAbstract
  32. ↵
    1. Dorais M. J.
    , 2003, The petrogenesis and emplacement of the New Hampshire plutonic suite: American Journal of Science, v. 303, n. 5, p. 447–487, doi:https://doi.org/10.2475/ajs.303.5.447
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Koteas C.
    1. Dorais M. J.
    , 2019a, The New Hampshire Plutonic Suite: Mineralogical and geochemical evidence for source rock compositions, partial melting reactions, and peritectic/restitic phase entrainment: New England Intercollegiate Geological Conference 111th Annual Meeting, Koteas C., editor, p. 177–216.
  34. ↵
    1. Dorais M. J.
    , 2019b, A Field Guide to the Geology of Northern New England: BYU Press, Provo, Utah, 242 p.
  35. ↵
    1. Dorais M. J.,
    2. Campbell S.
    , 2022, Peritectic and phenocrystic garnet accumulation and the origin of strongly peraluminous granitic rocks: the Flagstaff Lake Igneous Complex, Maine: Lithos, v. 418–419, 106680, doi:https://doi.org/10.1016/j.lithos.2022.106680
    OpenUrlCrossRef
  36. ↵
    1. Dorais M. J.,
    2. Floss C.
    , 1992, An ion and electron microprobe study of the mineralogy of enclaves and host syenites of the Red Hill complex, New Hampshire, USA: Journal of Petrology, v. 33, n. 5, p. 1193–1218, doi:https://doi.org/10.1093/petrology/33.5.1193
    OpenUrlCrossRefGeoRef
  37. ↵
    1. Dorais M. J.,
    2. MacRae N. D.
    , 1994, Amphibole zoning in the Garland Peak Syenite, Red Hill complex, New Hampshire: Camptonitic parental magmas and differentiation to silica-oversaturated syenites: Contributions to Mineralogy and Petrology, v. 117, p. 76–86, doi:https://doi.org/10.1007/BF00307731
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Dorais M. J.,
    2. Paige M. L.
    , 2000, Regional mineralogical and isotopic variations in the post-tectonic Acadian plutons of New Hampshire, Maine, and Vermont: Implications for magma sources and Grenville-Avalon basement terrane boundaries: Geological Society of America Bulletin, v. 112, n. 6, p. 900–914, doi:https://doi.org/10.1130/0016-7606(2000)112<900:RGAIVO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Dorais M. J.,
    2. Spencer C. J.
    , 2014, Revisiting the importance of residual source material (restite) in granite petrogenesis: The Cardigan Pluton, New Hampshire: Lithos, v. 202–203, p. 237–249, doi:https://doi.org/10.1016/j.lithos.2014.05.007
    OpenUrlCrossRef
  40. ↵
    1. Dorais M. J.,
    2. Tubrett M.
    , 2012, Detecting peritectic garnet in the peraluminous Cardigan pluton: New Hampshire: Journal of Petrology, v. 53, n. 2, p. 299–324, doi:https://doi.org/10.1093/petrology/egr063
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Dorais M. J.,
    2. Whitney J. A.,
    3. Roden M. F.
    , 1990, Oigin of mafic enclaves in the Dinkey Creek pluton, central Sierra Nevada batholith: Journal of Petrology, v. 31, n. 4, p. 853–881, doi:https://doi.org/10.1093/petrology/31.4.853
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Dorais M. J.,
    2. Pett T. K.,
    3. Tubrett M.
    , 2009, Garnetites of the Cardigan pluton, New Hampshire: Evidence for peritictic garnet and implications for source rock compositions: Journal of Petrology, v. 50, n. 11, p. 1993–2016, doi:https://doi.org/10.1093/petrology/egp058
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Dorais M. J.,
    2. Wintsch R. P.,
    3. Kunk M. J.,
    4. Aleinikoff J.,
    5. Burton W.,
    6. Underdown C.,
    7. Kerwin C. M.
    , 2012, P-T-t conditions, Nd and Pb isotopic compositions and detrital zircon geochronology of the Massabesic Gneiss Complex, New Hampshire: Isotopic and metamorphic evidence for the identification of the Gander Basement, central New England: American Journal of Science, v. 312, n. 10, p. 1049–1097, doi:https://doi.org/10.2475/10.2012.01
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Dorais M. J.,
    2. Marvinney R. G.,
    3. Markert K.
    , 2017, The age, petrogenesis and tectonic significance of the Frontenac Formation basalts, northern New Hampshire and western Maine: American Journal of Science, v. 317, p. 990–1018, doi:https://doi.org/10.2475/09.2017.02
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Duke E. F.
    , ms, 1978, Petrology of Spaulding group tonalites, Penacook quadrangle, New Hampshire: M.S. thesis, Dartmouth College, Hanover, New Hampshire, 117 p.
  46. ↵
    1. Ellam R. M.
    , 1992, Lithospheric thickness as a control on basalt geochemistry: Geology, v. 20, n. 2, p. 153–156, doi:https://doi.org/10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. England P. C.,
    2. Thompson A. B.
    , 1984, Pressure–temperature–time paths of regional metamorphism I, Heat transfer during the evolution of regions of thickened continental crust: Journal of Petrology, v. 25, n. 4, p. 894–928, doi:https://doi.org/10.1093/petrology/25.4.894
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Englund E. J.
    , 1976, The bedrock geology of the Holderness quadrangle: New Hampshire Department of Resources and Economic Development Bulletin, v. 7, 90 p.
    OpenUrl
  49. ↵
    1. Eusden J. D.
    , 2010, The Presidential Range: Its Geologic History and Plate Tectonics: Lyme, New Hampshire, Durand Press, 62 p.
  50. ↵
    1. Eusden J. D. Jr..,
    2. Barreiro B.
    , 1988, The timing of peak high-grade metamorphism in central-eastern New England: Atlantic Geoscience, v. 24, n. 3, p. 241–255, doi:https://doi.org/10.4138/1654
    OpenUrlCrossRefGeoRef
  51. ↵
    1. Roy D. C.,
    2. Skehan J. W.
    1. Eusden J. D. Jr.,
    2. Lyons J. B.
    , 1993, The sequence of Acadian deformation in central New Hampshire, in Roy D. C., Skehan J. W., editors, The Acadian Orogeny: Recent Studies in New England, Maritime Canada, and the Autochthonous Foreland: Geological Society of America Special Paper, v. 275, p. 51–66, doi:https://doi.org/10.1130/SPE275-p51
    OpenUrlCrossRef
  52. ↵
    1. Eusden J. D.,
    2. Bothner W. A.,
    3. Hussey A. M.
    , 1987, The Kearsarge-Central Maine synclinorium of southeastern New Hampshire and southwestern Maine: Stratigraphic and structural relations of an inverted section: American Journal of Science, v. 287, n. 3, p. 242–264, doi:https://doi.org/10.2475/ajs.287.3.242
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Eusden J. D. Jr..,
    2. Guzofski C. A.,
    3. Ronbinson A. C.,
    4. Tucker R. D.
    , 2000, Timing of the Acadian Orogeny in Northern New Hampshire: Journal of Geology, v. 108, n. 2, p. 219–232, doi:https://doi.org/10.1086/314396
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  54. ↵
    1. Fitton J. G.,
    2. James D.,
    3. Kempton P. D.,
    4. Ormerod D. S.,
    5. Leeman W. P.
    , 1988, The role of lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States: Journal of Petrology, Special Volume, n. 1, p. 331–349, doi:https://doi.org/10.1093/petrology/Special_Volume.1.331
    OpenUrlCrossRef
  55. ↵
    1. Fowler M. B.,
    2. Henney P. J.
    , 1996, Mixed Caledonain appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis: Contributions to Mineralogy and Petrology, v. 126, p. 199–215, doi:https://doi.org/10.1007/s004100050244
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Fowler-Billings K.
    , 1949, Geology of the Monadnock region of New Hampshire: Geological Society of America Bulletin, v. 60, n. 8, p. 1249–1280, doi:https://doi.org/10.1130/0016-7606(1949)60[1249:GOTMRO]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Fyffe L. R.,
    2. Pajari G. E.,
    3. Cherry M. E.
    , 1981, The Acadian plutonic rocks of New Brunswick: Atlantic Geoscience, v. 17, n. 1, p. 23–36, doi:https://doi.org/10.4138/1373
    OpenUrlCrossRef
  58. ↵
    1. Gao S.,
    2. Rudnick R. L.,
    3. Yuan H. L.,
    4. Liu X. M.,
    5. Liu Y. S.,
    6. Xu W. L.,
    7. Lin W. L.,
    8. Ayers J.,
    9. Wang X. C.,
    10. Wang Q. H.
    , 2004, Recycling lower continental crust in the North China craton: Nature v. 432, p. 892–897, doi:https://doi.org/10.1038/nature03162
    OpenUrlCrossRefPubMedWeb of Science
  59. ↵
    1. Gardien G.,
    2. Thompson A. B.,
    3. Grujic D.,
    4. Ulmer P.
    , 1995, Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting: Journal of Geophysical Research: Solid Earth, v. 100, n, B8, p. 15581–15591, doi:https://doi.org/10.1029/95JB00916
    OpenUrlCrossRef
  60. ↵
    1. Gibson D.,
    2. Barr S. M.,
    3. van Rooyen D.,
    4. White C.,
    5. Polote J. L.
    , 2021, Protracted intra- and inter-pluton magmatism during the Acadian orogeny: Evidence from new LA-ICP-MS U-Pb ages from northwestern Maine, USA: Atlantic Geoscience, v. 57, n. 1, p. 147–191, doi:https://doi.org/10.4138/atlgeol.2021.008
    OpenUrlCrossRef
    1. Green R. C.
    , 1970, The geology of the Peterborough quadrangle, New Hampshire: New Hampshire Department of Resources and Economic Development, no. 4, 88 p.
  61. ↵
    1. Guo Z.,
    2. Wilson M.,
    3. Liu J.,
    4. Mao Q.
    , 2006, Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms: Journal of Petrology, v. 47, n. 6, p. 1177–1220, doi:https://doi.org/10.1093/petrology/egl007
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Harrison T. M.,
    2. Aleinikoff J. N.,
    3. Compston W.
    , 1987, Observations and controls on the occurrence of inherited zircon in Concord-type granitoids, New Hampshire: Geochemica et Cosmochimica Acta, v. 51, n. 9, p. 2549–2558, doi:https://doi.org/10.1016/0016-7037(87)90305-X
    OpenUrlCrossRef
  63. ↵
    1. Haschke M. R.,
    2. Scheuber E.,
    3. Günther A.,
    4. Reutter K. J.
    , 2002, Evolutionary cycles during the Andean orogeny: repeated slab breakoff and flat subduction?: Terra Nova, v. 14, n. 1, p. 49–55, doi:https://doi.org/10.1046/j.1365-3121.2002.00387.x
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Tucker R. D.,
    2. Marvinney R. G.
    1. Hayward J. A.
    , 1989, Implications of the Rb-Sr and O isotopic systematics and geochemistry of some two-mica granites in northern New England, in Tucker R. D., Marvinney R. G., editors, Studies in Maine Geology: Maine Geological Survey, v. 3, p. 53–66.
    OpenUrl
  65. ↵
    1. Hibbard J. P.,
    2. van Staal C. R.,
    3. Cawood P. A.
    1. Hepburn J. C.,
    2. Dunning G. R.,
    3. Hon R.
    , 1995, Geochronology and regional tectonic implications of Silurina deformation in the Nashoba terrane, southeastern New England, U.S.A., in Hibbard J. P., van Staal C. R., Cawood P. A., editors, Current Perspectives in the Appalachian-Caledonian Orogen: Geological Association of Canada Special Paper 1, p. 349–365.
  66. ↵
    1. Tollo R. P.,
    2. Bartholomew M. J.,
    3. Hibbard J. P.,
    4. Karabinos P. M.
    1. Hibbard J. P.,
    2. van Staal C. R.,
    3. Rankin D. W.
    , 2010, Comparative analysis of the geological evolution of the northern and southern Appalachian orogen: Late Ordovician-Permian, in Tollo R. P., Bartholomew M. J., Hibbard J. P., Karabinos P. M., editors, From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: Geological Society of America Memoir, v. 206, p. 51–69, doi:http://dx.doi.org/10.1130/2010.1206(03).
    OpenUrlCrossRef
  67. ↵
    1. Hillenbrand I. W.,
    2. Williams M. L.
    , 2021, Paleozoic evolution of crustal thickness and elevation in the northern Appalachian orogen, USA: Geology, v. 49, n. 8, p. 946–951, doi:https://doi.org/10.1130/G48705.1
    OpenUrlCrossRef
  68. ↵
    1. Hitchcock C. H.
    , 1877, The Geology of New Hampshire: A report comprising the results of explorations ordered by the legislature: Part II. Stratigraphical Geology: Concord, New Hampshire, 684 p.
  69. ↵
    1. Hollocher K.,
    2. Robinson P.,
    3. Walsh E.,
    4. Roberts D.
    , 2012. Geochemistry of amphibolite-facies volcanics and gabbros of the støren nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings: American Journal of Science, v. 312, n. 4, p. 357–416, doi:https://doi.org/10.2475/04.2012.01
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Hon R.,
    2. Fitzgerald J. P.,
    3. Sargent S. L.,
    4. Schwartz W. D.,
    5. Dostal J.,
    6. Keppie J. D.
    , 1992, Silurian–Early Devonian mafic rocks of the Piscataquis volcanic belt in northern Maine: Atlantic Geoscience, v. 28, n. 2, p. 163–170, doi:https://doi.org/10.4138/1858
    OpenUrlCrossRef
  71. ↵
    1. Hu F.,
    2. Ducea M. N.,
    3. Liu S.,
    4. Chapman J. B.
    , 2017, Quantifying crustal thickness in continental collision belts: Global perspective and a geologic application: Scientific Reports, v. 7, 7058, doi:https://doi.org/10.1038/s41598-017-07849-7
    OpenUrlCrossRef
  72. ↵
    1. Tollo R. P.,
    2. Bartholomew M. J.,
    3. Hibbard J. P.,
    4. Karabinos P. M.
    1. Hussey A. M. II.,
    2. Bothner W. A.,
    3. Alienikoff J.
    , 2010, The tectono-stratigraphic framework and evolution of southwestern Maine and southeastern New Hampshire, in Tollo R. P., Bartholomew M. J., Hibbard J. P., Karabinos P. M., editors, From Rodinia to Pangea: the lithotectonic record of the Appalachian Region: Geological Society of America Memoir, v. 206, p. 205–230, doi:https://doi.org/10.1130/2010.1206(10)
    OpenUrlCrossRef
  73. ↵
    1. Jagoutz O.,
    2. Klein B.
    , 2018, On the importance of crystallization-differentiation for the generation of SiO2-rich melts and the compositional build-up of arc (and continental) crust: American Journal of Science, v. 318, n. 1, p. 29–63, doi:https://doi.org/10.2475/01.2018.03
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Jagoutz O.,
    2. Schmidt M. W.,
    3. Enggist A.,
    4. Burg J. P.,
    5. Hamid D.,
    6. Hussain S.
    , 2013, TTG- type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust: Contributions to Mineralogy and Petrology, v. 166, p. 1099–1118, doi:https://doi.org/10.1007/s00410-013-0911-4
    OpenUrlCrossRefGeoRef
  75. ↵
    1. Treolar P. J.,
    2. O'Brien P. J.
    1. Jamieson R. A.,
    2. Beaumont C.,
    3. Fullsack P.,
    4. Lee B.
    , 1998, Barrovian regional etamorphism: where's the heat?: in Treolar P. J., O'Brien P. J., editors, What Drives Metamorphism and Metamorphic Reactions? Geological Society, London, Special Publications, v. 138, p. 23–51, doi:https://doi.org/10.1144/GSL.SP.1996.138.01.03
    OpenUrlCrossRef
  76. ↵
    1. Harmon R. S.,
    2. Rapela C. W.
    1. Kay S. M.,
    2. Mpodozis C.,
    3. Ramos V. A.,
    4. Munizaga F.
    , 1991, Magma source variations for mid–late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S), in Harmon R. S., Rapela C. W., editors, Andean magmatism and its tectonic setting: Geological Society of America Special Paper, v. 265, p. 113–137, doi:https://doi.org/10.1130/SPE265-p113
    OpenUrlCrossRef
  77. ↵
    1. Kay S. M.,
    2. Godoy E.,
    3. Kurtz A.
    , 2005, Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes: Geological Society of America Bulletin, v. 117, n. 1–2, p. 67–88, doi:https://doi.org/10.1130/B25431.1
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Keppie J. D.,
    2. Dostal J.
    , 1994, Late Silurian–Early Devonian transpressional rift origin of the Quebec Reentrant, northern Appalachians: Constraints from geochemistry of volcanic rocks: Tectonics, v. 13, n. 5, p. 1183–1189, doi:https://doi.org/10.1029/94TC01504
    OpenUrlCrossRefGeoRefWeb of Science
  79. ↵
    1. Khanna T. C.,
    2. Subba Roa D. V.,
    3. Bizimis M.,
    4. Satyanarayanan M.,
    5. Krishna A. K.,
    6. Sai V. V. S.
    , 2017, ∼2.1 Ga intraoceanic magmatism in the Central India Tectonic Zone: Constraints from the petrogenesis of Ferropicrites in the Mahakoshal Supracrustal belt: Precambrian Research, v. 302, p. 1–17, doi:https://doi.org/10.1016/j.precamres.2017.09.012
    OpenUrlCrossRef
  80. ↵
    1. Lathrop A. S.,
    2. Blum J. D.,
    3. Chamberlain C. P.
    , 1994, Isotopic evidence for closed-system anatexis at midcrustal levels: An example from the Acadian Appalachians of New England: Journal of Geophyical Research: Solid Earth, v. 99, n. B5, p. 9453–9468, doi:https://doi.org/10.1029/93JB03598
    OpenUrlCrossRef
  81. ↵
    1. Lathrop A. S.,
    2. Blum J. D.,
    3. Chamberlain C. P.
    , 1996, Nd, Sr and O isotopic study of the petrogenesis of two syntectonic members of the New Hampshire plutonic series: Contributions to Mineralogy and Petrology, v. 124, p. 126–138, doi:https://doi.org/10.1007/s004100050180
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. Leat P. T.,
    2. Thompson R. N.,
    3. Morrison M. A.,
    4. Hendry G. L.,
    5. Dickin A. P.
    , 1988, Compositionally-diverse Miocene-Recent rift-related magmatism in northwest Colorado: partial melting, and mixing of mafic magmas from 3 different asthenospheric and lithospheric mantle sources: Journal of Petrology, Special Volume, n. 1, p. 351–377, doi:https://doi.org/10.1093/petrology/Special_Volume.1.351
    OpenUrlCrossRef
  83. ↵
    1. Bothner W.A
    1. Lyons J. B.
    , 1988, Geology of the Mount Kearsarge and Penacook quadrangles, New Hampshire: in Bothner W.A, editor, Guidebook for field trips in southwestern New Hampshire, southeastern Vermont, and north-central Massachusetts: New England Intercollegiate Geological Conference, 80th Annual Meeting, p. 60–69.
  84. ↵
    1. Lyons J. B.,
    2. Livingston D. E.
    , 1977, Rb-Sr age of the New Hampshire plutonic series: Geological Society of America Bulletin, v. 88, n. 12, p. 1808–1812, doi:https://doi.org/10.1130/0016-7606(1977)88<1808:RAOTNH>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  85. ↵
    1. Lyons J. B.,
    2. Bothner W. A.,
    3. Moench R. H.,
    4. Thompson J. B.
    , 1997, Bedrock geologic map of New Hampshire: United States Geological Survey, Scale 1: 500,000.
  86. ↵
    1. Lyubetskaya T.,
    2. Ague J. J.
    , 2010, Modeling metamorphism in collisional orogens intruded by magmas: I. Thermal Evolution: American Journal of Science, v. 310, n. 6, p. 427–458, doi:https://doi.org/10.2475/06.2010.01
    OpenUrlAbstract/FREE Full Text
  87. ↵
    1. Macpherson C. G.,
    2. Dreher S. T.,
    3. Thirwall M. F.
    , 2006, Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines: Earth and Planetary Science Letters, v. 243, n. 3–4, p. 581–593, doi:https://doi.org/10.1016/j.epsl.2005.12.034
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Martin H.,
    2. Moyen J. F.
    , 2003, Secular changes in TTG composition: comparison with modern adakites: EGS-AGU-EUG joint meeting, Nice, April, VGP7-1FR2O-001.
  89. ↵
    1. Martin H.,
    2. Smithies R. H.,
    3. Rapp R.,
    4. Moyen J. F.,
    5. Champion D.
    , 2005, An overview of adkite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution: Lithos, v. 79, n. 1–2, p. 1–24, doi:https://doi.org/10.1016/j.lithos.2004.04.048
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Matos J. F. S.
    , ms, 2021, An in situ εhf and δ18O Isotopic Study of Zircon of the Mount Osceola and the Conway Granites, White Mountain Batholith, New Hampshire: Deciphering the Petrogenesis of A-type Granites: M.S. Thesis, Brigham Young University, Provo, Utah.
  91. ↵
    1. McDonough W. F.,
    2. Sun S. S.,
    3. Ringwood A. E.,
    4. Jagoutz E.,
    5. Hofmann A. W.
    , 1992, Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth: Geochimica et Cosmochimica Acta, v. 56, n. 3, p. 1001–1012, doi:https://doi.org/10.1016/0016-7037(92)90043-I
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    1. Meschede M.
    , 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram: Chemical Geology, v. 78, n. 3–4, p. 207–218, doi:https://doi.org/10.1016/0009-2541(86)90004-5
    OpenUrlCrossRef
  93. ↵
    1. Murphy J. B.
    , 2013, Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma: Earth-Science Reviews, v. 119, p. 35–59, doi:https://doi.org/10.1016/j.earscirev.2013.02.002
    OpenUrlCrossRefGeoRef
  94. ↵
    1. Murphy J. B.
    , 2020, Appinite suites and their genetic relationship with coeval voluminous granitoid bathoilths: International Geology Review, v. 62, n. 6, p. 683–713, doi:https://doi.org/10.1080/00206814.2019.1630859
    OpenUrlCrossRef
  95. ↵
    1. Murphy J. B.,
    2. van Staal C. R.,
    3. Keppie J. D.
    , 1999, Middle to late Paleozoic Acadian orogeny in northern Appalachians: A Laramide-style plume-modified orogeny?: Geology, v. 27, n. 7, p. 653–656, doi:https://doi.org/10.1130/0091-7613(1999)027<0653:MTLPAO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  96. ↵
    1. Murphy J. B.,
    2. Blais S. A.,
    3. Tubrett M.,
    4. McNeil D.,
    5. Middleton M.
    , 2012, Microchemistry of amphiboles near the roof of a mafic magma chamber: Insights into high level melt evolution: Lithos, v. 148, p. 162–175, doi:https://doi.org/10.1016/j.lithos.2012.06.012
    OpenUrlCrossRefGeoRef
  97. ↵
    1. Nance R. D.,
    2. Thompson M. D.
    , 1996, Avalonian and related peri-Gondwanan terranes of the Circum-North Atlantic: An introduction: Geological Society of America Special Paper, v. 304, doi:https://doi.org/10.1130/0-8137-2304-3.1
    OpenUrlCrossRef
  98. ↵
    1. Nelson W. R.,
    2. Dorais M. J.,
    3. Christiansen E. H.,
    4. Hart G. L.
    , 2013, Petrogenesis of the Sierra Nevada plutons inferred from Sr, Nd, and O isotopic signatures of mafic igneous complexes in Yosemite Valley, California: Contributions to Mineralogy and Petrology, v. 165, p. 397–417, doi:https://doi.org/10.1007/s00410-012-0814-9
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Tucker R. D.,
    2. Marvinney R. G
    1. Nielsen R. L.,
    2. Landus E. S.,
    3. Ceci V. M.,
    4. Poston C. J.
    , 1989, The commingling of diverse magma types in the Flagstaff Lake Igneous Complex, in Tucker R. D., Marvinney R. G, editors, Studies in Maine Geology: Maine Geological Survey, v. 3, p. 67–78.
    OpenUrl
  100. ↵
    1. Nielson D. L.
    , 1981, The bedrock geology of the Hillsboro quadrangle, New Hampshire: New Hampshire Department of Resources and Economic Development, Bulletin, n. 8, 76 p.
  101. ↵
    1. Osberg P. H.,
    2. Hussey A. M. II.,
    3. Boone G. M.
    , editors, 1985, Bedrock geologic map of Maine: Maine Geological Survey, Maine Geological Survey Maps, 23, scale 1:500,000, http://digitalmaine.com/mgs_maps/23
  102. ↵
    1. Pearce J. A.
    , 2008, Geochemical fingerprinting of oceanic basalts with application to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, n. 1–4, p. 14–48, doi:https://doi.org/10.1016/j.lithos.2007.06.016
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Pitcher W. S.,
    2. Berger A. R.
    , 1972, The Appinite suite: basic rocks genetically associated with granite, The Geology of Donegal, A Study of Granite Emplacement and Unroofing, Regional Geology Series: New York, Wiley-interscience, p. 143–168.
  104. ↵
    1. Pressley R. A.,
    2. Brown M.
    , 1999, The Phillips pluton, Maine, USA: Evidence of heterogeneous crustal sources and implications for granite ascent and emplacementmechanisms in convergent orogens: Lithos, v. 46, n. 3, p. 335–366, doi:https://doi.org/10.1016/S0024-4937(98)00073-5
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Quinn A.
    , 1944, Magmatic contrasts in the Winnipesaukee region, New Hampshire: Geological Society of America Bulletin, v. 55, n. 4, p. 473–496, doi:https://doi.org/10.1130/GSAB-55-473
    OpenUrlAbstract/FREE Full Text
  106. ↵
    1. Rapp R. P.,
    2. Watson E. B.
    , 1995, Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling: Journal of Petrology, v. 36, n. 4, p. 891–931, doi:https://doi.org/10.1093/petrology/36.4.891
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. Rapp R. P.,
    2. Watson E. B.,
    3. Miller C. F.
    , 1991, Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalites: Precambrian Research, v. 51, n. 1–4, p. 1–25, doi:https://doi.org/10.1016/0301-9268(91)90092-O
    OpenUrlCrossRefGeoRefWeb of Science
  108. ↵
    1. Ratajeski K.,
    2. Glazner A. F.,
    3. Miller B. V.
    , 2001, Geology and geochemistry of mafic to felsic plutonic rocks in the cretaceous intrusive suite of Yosemite Valley, California: Geological Society of America Bulletin, v. 113, n. 11, p. 1485–1602, doi:https://doi.org/10.1130/0016-7606(2001)113<1486:GAGOMT>2.0.CO;2
    OpenUrlCrossRef
  109. ↵
    1. Ratcliffe N. M.,
    2. Stanley R. S.,
    3. Gale M. H.,
    4. Thompson P. J.,
    5. Walsh G. J.
    , 2011, Bedrock geologic map of Vermont: U.S. Geological Survey Scientific Investigations Map 3184, 3 sheets, scale 1:100,000, doi:https://doi.org/10.3133/sim3184
    OpenUrlCrossRef
  110. ↵
    1. Reid J. B. Jr..,
    2. Evans O. C.,
    3. Fates D. G.
    , 1983, Magma mixing in granitic rocks of the central Sierra Nevada, California: Earth and Planetary Science Letters, v. 66, p. 243–261, doi:https://doi.org/10.1016/0012-821X(83)90139-5
    OpenUrlCrossRefGeoRefWeb of Science
  111. ↵
    1. Richards J. P.,
    2. Kerrich R.
    , 2007, Special paper: Adaklite-like rocks: their diverse origins and questionable role in metallogenesis: Economic Geology, v. 102, n. 4, p. 537–576, doi:https://doi.org/10.2113/gsecongeo.102.4.537
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Robinson P.,
    2. Tucker R. D.,
    3. Bradley D.,
    4. Berry H. N. IV.,
    5. Osberg P. H.
    , 1998, Paleozoic orogens in New England, USA: GFF, v. 120, n. 2, p.119–148, doi:https://doi.org/10.1080/11035899801202119
    OpenUrlCrossRefGeoRefWeb of Science
  113. ↵
    1. Roselle G. T.,
    2. Thüring M.,
    3. Engi M.
    , 2002, MELONPIT: A finite element code for simulating tectonic mass movement and heat flow within subduction zones: American Journal of Science, v. 302, n. 5, p. 381–409, doi:https://doi.org/10.2475/ajs.302.5.381
    OpenUrlAbstract/FREE Full Text
  114. ↵
    1. Floyd P. A.
    1. Saunders A. D.,
    2. Tarney J.
    , 1991, Barc-arc basins: in Floyd P. A., editor, Oceanic, Basalts: Boston, MA, Springer, p. 219–263., doi:https://doi.org/10.1007/978-1-4615-3540-9_10
    OpenUrlCrossRef
  115. ↵
    1. Schoonmaker A.,
    2. Kidd W. S. F.,
    3. Bradley D. C.
    , 2005, Foreland-forearc collisional granitoid and mafic magmatism caused by lower-plate lithospheric slab breakoff: The Acadian of Maine, and other orogens: Geology, v. 33, n. 12, p. 961–964, doi:http://dx.doi.org/10.1130/G21832.1
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Schoonmaker A.,
    2. Kidd W. S. F.,
    3. Reusch D. N.,
    4. Dorais M. J.,
    5. Gregg T.,
    6. Spencer C.
    , 2011, Stratigraphic context, geochemical, and isotopic properties of magmatism in the Siluro-Devonian inliers of northern Maine: Implications for the Acadian Orogeny: American Journal of Science, v. 311, n. 6, p. 528–572, doi:https://doi.org/10.2475/06.2011.03
    OpenUrlAbstract/FREE Full Text
  117. ↵
    1. Sen C.,
    2. Dunn T.
    , 1994, Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakites: Contributions to Mineralogy and Petrology, v. 117, p. 394–409, doi:https://doi.org/10.1007/BF00307273
    OpenUrlCrossRefGeoRefWeb of Science
  118. ↵
    1. Sisson T. W.,
    2. Ratajeski K.,
    3. Hankins W. B.,
    4. Glazner A. F.
    , 2005, Voluminous granitic magmas from common basaltic sources: Contributions to Mineralogy and Petrology, v. 148, p. 635–661, doi:https://doi.org/10.1007/s00410-004-0632-9
    OpenUrlCrossRefGeoRefWeb of Science
  119. ↵
    1. Solar G. S.,
    2. Pressley R. A.,
    3. Brown M.,
    4. Tucker R. D.
    , 1998, Granite ascent in contractional orogenic belts: Testing a model: Geology, v. 26, n. 8, p. 711–714, doi:https://doi.org/10.1130/0091-7613(1998)026<0711:GAICOB>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  120. ↵
    1. Sundeen D. A.
    , 1971, The bedrock geology of the Haverhill 15' quadrangle, New Hampshire: New Hampshire: Department of Resources and Economic Development, Bulletin 5, 119 p.
    OpenUrl
  121. ↵
    1. Tassara S.,
    2. Ague J. J.,
    3. Valencia V.
    , 2020, The deep magmatic cumulate roots of the Acadian orogeny, eastern North America: Geology, v. 49, n. 2, doi:https://doi.org/10.1130/G47887.1
    OpenUrlCrossRef
  122. ↵
    1. Thompson R. N.,
    2. Morrison M. A.
    , 1988, Asthenospheric and lower-lithospheric mantle contributions to continental extension magmatism: an example from the British Tertiary Province: Chemical Geology, v. 68, n. 1–2, p. 1–15, doi:https://doi.org/10.1016/0009-2541(88)90082-4
    OpenUrlCrossRefGeoRefWeb of Science
  123. ↵
    1. Tian J.
    , ms, 2000, A geological and geochemical study of the Mooselookmeguntic composite pluton, west-central Maine and east-central New Hampshire: MS Thesis, University of Maryland, College Park, Maryland.
  124. ↵
    1. Tomascak P. B.,
    2. Krogstad E. J.,
    3. Walker R. J.
    , 1996, Nature of the crust in Maine, USA: Evidence from the Sebago batholith: Contributions to Mineralogy and Petrology, v. 125, p. 45–59, doi:https://doi.org/10.1007/s004100050205
    OpenUrlCrossRefGeoRefWeb of Science
  125. ↵
    1. Tremblay A.,
    2. Pinet N.
    , 2016, Late Neoproterozoic to Permian tectonic evolution of the Quebec Appalachians, Canada: Earth-Science Reviews, v. 160, p. 131–170, doi:https://doi.org/10.1016/j.earscirev.2016.06.015
    OpenUrlCrossRef
  126. ↵
    1. Tucker R. D.,
    2. Osberg P. H.,
    3. Berry H. N. IV.
    2001, The geology of a part of Acadia and the nature of the Acadian Orogeny across central and eastern Maine: American Journal of Science, v. 301, p. 205–260, doi:https://doi.org/10.2475/ajs.301.3.205
    OpenUrlAbstract/FREE Full Text
  127. ↵
    1. van Staal C. R.,
    2. Barr S.
    , 2012, Lithospheric architecture and tectonic evolution of the Canadian Appalachians and associated Atlantic margin: Geological Association of Canada Special Paper, v. 49, p. 41–95.
    OpenUrl
  128. ↵
    1. Blundell D. J.,
    2. Scott A. C.
    1. van Staal C. R.,
    2. Dewey J. F.,
    3. Mac Niocaill C.,
    4. McKerrow S.
    , 1998, The Cambrian-Silurian tectonic evolution of the northern Appalachians: History of a complex, southwest Pacific-type segment of Iapetus: in Blundell D. J., Scott A. C., editors, Lyell: The Past is the Key to the Present: Geological Society, London, Special Publications, v. 143, n. 1, p. 199–242, doi:https://doi.org/10.1144/GSL.SP.1998.143.01.17
    OpenUrlCrossRef
  129. ↵
    1. Murphy J. B.,
    2. Keppie J. D.,
    3. Hynes A. J.
    1. van Staal C. R.,
    2. Whalen J. B.,
    3. Valverde-Vaquero P.,
    4. Zagorevski A.,
    5. Rogers N.
    , 2009, Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians, in Murphy J. B., Keppie J. D., Hynes A. J., editors, Ancient orogens and modern analogues: Geological Society, London, Special Publications, v. 327, p. 271–316, doi:http://dx.doi.org/10.1144/SP327.13.
    OpenUrlCrossRefWeb of Science
  130. ↵
    1. van Staal C. R.,
    2. Barr S. M.,
    3. Murphy J. B.
    , 2012, Provenance and tectonic evolution of Ganderia: Constraints on the evolution of the Iapetus and Rheic Oceans: Geology, v. 40, n. 11, p. 987–990, doi:https://doi.org/10.1144/SP327.13
    OpenUrlAbstract/FREE Full Text
  131. ↵
    1. van Staal C. R.,
    2. Zagorevski A.,
    3. McNicoll V. J.,
    4. Rogers N.
    , 2014, Time-Transgressive Salinic and Acadian Orogenesis, Magmatism and Old Red Sandstone Sedimentation in Newfoundland: Geoscience Canada, v. 41, n. 2, doi:https://doi.org/10.12789/geocanj.2014.41.031
    OpenUrlCrossRef
  132. ↵
    1. Vielzeuf D.,
    2. Holloway J. R.
    , 1988, Experimental determination of the fluid-absent melting relations in the pelitic system: Contributions to Mineralogy and Petrology v. 98, p. 257–276, doi:https://doi.org/10.1007/BF00375178
    OpenUrlCrossRefGeoRefWeb of Science
  133. ↵
    1. Vielzeuf D.,
    2. Montel J. M.
    , 1994, Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships: Contributions to Mineralogy and Petrology, v. 117, p. 375–393, doi:https://doi.org/10.1007/BF00307272
    OpenUrlCrossRefGeoRefWeb of Science
  134. ↵
    1. Wang Q.,
    2. Xu J. F.,
    3. Zhao Z. H.,
    4. Bao Z. W.,
    5. Xu W.,
    6. Xiong X. L.
    , 2004, Cretaceous high- potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent: Geochemical Journal, v. 38, n. 5, p. 417–434, doi:https://doi.org/10.2343/geochemj.38.417
    OpenUrlCrossRefGeoRefWeb of Science
  135. ↵
    1. Wang Q.,
    2. McDermott F.,
    3. Xu J. F.,
    4. Bellon H.,
    5. Zhu Y. T.
    , 2005, Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intra- continental setting: Geology, v. 33, n. 6, p. 465–468, doi:https://doi.org/10.1130/G21522.1
    OpenUrlAbstract/FREE Full Text
  136. ↵
    1. Watts B. G.,
    2. Dorais M. J.,
    3. Wintsch R. P.
    , 2000, Geochemistry of early Devonian calc-alkaline plutons in the Merrimack trough: Implications for mid-Paleozoic terrane relationships in the New England Appalachians: Atlantic Geoscience, v. 36, n. 2–3, p. 79–102, doi:https://doi.org/10.4138/2013
    OpenUrlCrossRefGeoRef
  137. ↵
    1. West D. P. Jr..,
    2. Tomascak P. B.,
    3. Coish R. A.,
    4. Yates M. G.,
    5. Reilly M. J.
    , 2007, Petrogenesis of the ultrapotassic Lincoln Syenite, Maine: Late Silurian–Early Devonian melting of a source region modified by subduction driven metasomatism: American Journal of Science, v. 307, n. 1, p. 265–310, doi:https://doi.org/10.2475/01.2007.08
    OpenUrlAbstract/FREE Full Text
  138. ↵
    1. Whalen J. B.,
    2. McNicoll V. J.,
    3. van Staal C. R.,
    4. Lissenberg C. J.,
    5. Longstaffe F. J.,
    6. Jenner G. A.,
    7. van Breemen O.
    , 2006, Spatial, temporal and geochemical characteristics of Silurian collision zone magmatism, Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off: Lithos, v. 89, n. 3–4, p. 377–404, doi:https://doi.org/10.1016/j.lithos.2005.12.011
    OpenUrlCrossRefGeoRefWeb of Science
  139. ↵
    1. Martin G. L.
    1. Wilson R. A.,
    2. Kamo S.,
    3. Burden E. T.
    , 2005, Geology of the Val d'Amour Formation: revisiting the type area of the Dalhousie Group, northern New Brunswick, in Martin G. L., editor, Geological Investigations in New Brunswick for 2004: New Brunswick Department of Natural Resources; Minerals, Policy and Planning Division, Mineral Resource Report 2005-1, p. 167212.
  140. ↵
    1. Wilson R. A.,
    2. van Staal. C. R.,
    3. Kamo S. L.
    , 2017, Rapid Transition from the Salinic to Acadian Orogenic cycles in the northern Appalachian Orogen: Evidence from northern New Brunswick, Canada: American Journal of Science, v. 317, n. 4, p. 449–482, doi:https://doi.org/10.2475/04.2017.02
    OpenUrlAbstract/FREE Full Text
  141. ↵
    1. Winther K. T.,
    2. Newton R. C.
    , 1991, Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archaean cratons: Bulletin of the Geological Society of Denmark, v. 39, p. 213–228, doi:https://doi.org/10.37570/bgsd-1991-39-10
    OpenUrlCrossRefWeb of Science
  142. ↵
    1. Wintsch R. P.,
    2. Aleinikoff J. N.,
    3. Walsh G. J.,
    4. Bothner W. A.,
    5. Hussey A. M. II,
    6. Fanning C. M.
    , 2007, SHRIMP U-Pb evidence for a Late Silurian age of metasedimentary rocks in the Merrimack and Putnam-Nashoba terranes, eastern New England: American Journal of Science, v. 307, n. 1, p. 119–167, doi:https://doi.org/10.2475/01.2007.05
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Wolf M. B.,
    2. Wyllie P. J.
    , 1994, Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time: Contributions to Mineralogy and Petrology, v. 115, p. 369–383, doi:https://doi.org/10.1007/BF00320972
    OpenUrlCrossRefGeoRefWeb of Science
  144. ↵
    1. Wood D. A.
    , 1980, The application of Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province: Earth and Planetary Science Letters, v. 50, n. 1, p. 11–30, doi:https://doi.org/10.1016/0012-821X(80)90116-8
    OpenUrlCrossRefGeoRefWeb of Science
  145. ↵
    1. Wyllie P. J.,
    2. Wolf M. B.
    , 1993, Amphibolite dehydration-melting: sorting out the solidus: Geological Society, London, Special Publications, v. 76, p. 405–416, doi:https://doi.org/10.1144/GSL.SP.1993.076.01.20
    OpenUrlAbstract/FREE Full Text
  146. ↵
    1. Xu Q.,
    2. Zeng L.,
    3. Zhao L.,
    4. Hu Z.,
    5. Wang H.,
    6. Shen Y.,
    7. Wang Y.,
    8. Wang Y.
    , 2020, Geochemical characteristics and petrogenesis of Miocene high Sr/Y rocks in Zigatze fore-arc basin, southern Tibet: Lithos, v. 366–367, 105543, doi:https://doi.org/10.1016/j.lithos.2020.105543
    OpenUrlCrossRef
    1. Zamora D.
    , ms, 2000, Fusion de la croûte océanique subductée: approche expérimentale et géochimique: Université Thesis Université Blaise Pascal, Clermont-Ferrand, 314 p.
  147. ↵
    1. Zen E. A.
    , 1988, Thermal modelling of step-wise anatexis in a thrust-thickened sialic crust: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 79, n. 2–3, p. 223–235, doi:https://doi.org/10.1017/S0263593300014231
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (3)
American Journal of Science
Vol. 322, Issue 3
1 Mar 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The petrogenesis and tectonic setting of the New Hampshire Plutonic Suite: Towards a more comprehensive model for the magmatism of the Acadian Orogeny
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 11 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The petrogenesis and tectonic setting of the New Hampshire Plutonic Suite: Towards a more comprehensive model for the magmatism of the Acadian Orogeny
Michael J. Dorais
American Journal of Science Mar 2022, 322 (3) 493-531; DOI: 10.2475/03.2022.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The petrogenesis and tectonic setting of the New Hampshire Plutonic Suite: Towards a more comprehensive model for the magmatism of the Acadian Orogeny
Michael J. Dorais
American Journal of Science Mar 2022, 322 (3) 493-531; DOI: 10.2475/03.2022.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGIC SETTING AND PETROGRAPHY
    • ANALYTICAL METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Acadian Orogeny
  • subduction zone polarity
  • adakites
  • appinites

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire