Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian

Pierre Maffre, Yves Godderis, Alexandre Pohl, Yannick Donnadieu, Sebastien Carretier and Guillaume Le Hir
American Journal of Science March 2022, 322 (3) 461-492; DOI: https://doi.org/10.2475/03.2022.02
Pierre Maffre
*Department of Earth and Planetary Science, University of California, Berkeley, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yves Godderis
**Géoscience Environnement Toulouse, CNRS - IRD - Université Paul Sabatier, Toulouse, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: yves.godderis@get.omp.eu
Alexandre Pohl
***Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
§§Biogéosciences, UMR 6282, UBFC/CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, F-21000 Dijon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yannick Donnadieu
§§Biogéosciences, UMR 6282, UBFC/CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, F-21000 Dijon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sebastien Carretier
**Géoscience Environnement Toulouse, CNRS - IRD - Université Paul Sabatier, Toulouse, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guillaume Le Hir
§§§Institut de Physique du Globe de Paris, Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Algeo T.,
    2. Scheckler S. E.
    , 1998, Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events: Philosophical Transactions of the Royal Society B, v. 353, n. 1365, p.113–130, doi:https://doi.org/10.1098/rstb.1998.0195
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Berner R. A.
    , 1998, The carbon cycle and CO2 over Phanerozoic time: the role of land plants: Philosophical Transactions of the Royal Society B, v. 353, n. 1365, p. 75–82, doi:https://doi.org/10.1098/rstb.1998.0192
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Berner R. A.
    , 2004, The Phanerozoic carbon cycle: CO2 and O2: New York, Oxford University Press, 150 p., doi:https://doi.org/10.1093/oso/9780195173338.001.0001
    OpenUrlCrossRef
  4. ↵
    1. Boyce C. K.,
    2. Lee J.-E.
    , 2016, Plant evolution and climate over geological timescales: Annual Review of Earth and Planetary Sciences, v. 45, p. 61–87, doi:https://doi.org/10.1146/annurev-earth-063016-015629
    OpenUrlCrossRef
  5. ↵
    1. Brugger J.,
    2. Hoffman M.,
    3. Petri S.,
    4. Feulner G.
    , 2019, On the sensitivity of the Devonian climate to continental configuration, vegetation cover, orbital configuration, CO2 concentration, and insolation: Palaeoceanography and Paleoclimatology, v. 34, n. 8, p. 1375–1398, doi:https://doi.org/10.1029/2019PA003562
    OpenUrlCrossRef
  6. ↵
    1. Calmels D.,
    2. Gaillardet J.,
    3. Brenot A.,
    4. France-Lanord C.
    , 2007, Sustained sulfide oxidation by physical erosion processes in the Mackenzie river basin: climatic perspectives: Geology, v. 35, n. 11, p. 1003–1006, doi:https://doi.org/10.1130/G24132A.1
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Carretier S.,
    2. Goddéris Y.,
    3. Delannoy T.,
    4. Rouby D.
    , 2014, Mean bedrock-to-saprolite conversion and erosion rates during mountain growth and decline: Geomorphology, v. 209, p. 39–52, doi:https://doi.org/10.1016/j.geomorph.2013.11.025
    OpenUrlCrossRefGeoRef
  8. ↵
    1. Carriere A.,
    2. Le Bouteiller C.,
    3. Tucker G. E,
    4. Klotz S.,
    5. Naaim M.
    , 2020, Impact of vegetation on erosion: insights from the calibration and test of a landscape evolution model in alpine badland catchments: Earth Surface Processes and Landforms, v. 45, n. 5, p. 1085–1099, doi:https://doi.org/10.1002/esp.4741
    OpenUrlCrossRef
  9. ↵
    1. D'Antonio M. P.,
    2. Ibarra D. E.,
    3. Boyce C. K.
    , 2020, Land plant evolution decreased, rather than increased, weathering rates: Geology, v. 48, n. 1, p. 29–33, doi:https://doi.org/10.1130/G46776.1
    OpenUrlCrossRef
  10. ↵
    1. Davies N. S.,
    2. Gibling M. R.
    , 2010, Paleozoic vegetation and the Siluro-Devonian rise of fluvial accretion sets: Geology, v. 38, n. 1, p. 51–54, doi:https://doi.org/10.1130/G30443.1
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Davy P.,
    2. Lague D.
    , 2009, The erosion/transport equation of landscape evolution models revisited: Journal of Geophysical Research: Earth Surface, v. 114, n. F3, F03007, doi:https://doi.org/10.1029/2008JF001146
    OpenUrlCrossRef
  12. ↵
    1. Dietrich W. E.,
    2. Perron J. T.
    , 2006, The search for a topographic signature of life: Nature, v. 439, p. 411–418, doi:https://doi.org/10.1038/nature04452
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Donnadieu Y.,
    2. Goddéris Y.,
    3. Pierrehumbert R.,
    4. Dromart G.,
    5. Fluteau F.,
    6. Jacob R.
    , 2006, A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup: Geochemistry, Geophysics, Geosystems, v. 7, n. 11, Q11019, doi:https://doi.org/10.1029/2006GC001278
    OpenUrlCrossRef
  14. ↵
    1. Gensel P.,
    2. Edwards D.
    1. Driese S. G.,
    2. Mora C. I.
    , 2001, Diversification of Siluro-Devonian plant traces in paleosols and influence on estimates of paleoatmospheric CO2 levels, in Gensel P., Edwards D., editors, Plants invade the land: Columbia University Press, p. 237–253, doi:https://doi.org/10.7312/gens11160-014
    OpenUrlCrossRef
  15. ↵
    1. Edwards D.,
    2. Cherns L.,
    3. Raven J. A.
    , 2015, Could land-based early photosynthesizing ecosystems have bioengineered the planet in mid-Paleozoic times?: Paleontology, v. 58, n. 5, p. 803–837, doi:https://doi.org/10.1111/pala.12187
    OpenUrlCrossRef
  16. ↵
    1. Ferrier K. L.,
    2. Kirchner J. W.
    , 2008, Effect of physical erosion on chemical denudation rates: a numerical modeling study of soil-mantled hillslopes: Earth and Planetary Science Letters, v. 272, n. 3–4, p. 591–599, doi:https://doi.org/10.1016/j.epsl.2008.05.024
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Foster G. L.,
    2. Royer D. L.,
    3. Lunt D. J.
    , 2017, Future climate forcing potentially without precedent in the last 620 million years: Nature Communications, v. 8, 14845, doi:https://doi.org/10.1038/ncomms14845
    OpenUrlCrossRef
  18. ↵
    1. France-Lanord C.,
    2. Derry L. A.
    , 1997, Organic carbon burial forcing of the carbon cycle from Himalayan erosion: Nature, v. 390, p. 65–67, doi:https://doi.org/10.1038/36324
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Gabet E. J.,
    2. Mudd S. M.
    , 2009, A theoretical model coupling chemical weathering rates with denudation rates: Geology, v. 37, n. 2, p. 151–154, doi:https://doi.org/10.1130/G25270A.1
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Gaillardet J.,
    2. Dupré B.,
    3. Louvat P.,
    4. Allègre C. J.
    , 1999, Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers: Chemical Geology, v. 159, n. 1–4, p. 3–30, doi:https://doi.org/10.1016/S0009-2541(99)00031-5
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Galy V.,
    2. France-Lanord C.,
    3. Beyssac O.,
    4. Faure P.,
    5. Kudrass H.,
    6. Palhol F.
    , 2007, Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system: Nature, v. 450, p. 407–410, doi:https://doi.org/10.1038/nature06273
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  22. ↵
    1. Garcia-Ruiz J. M.,
    2. Beguria S.,
    3. Nadal-Romero E.,
    4. Gonzalez-Hidalgo J. C.,
    5. Lana-Renault N.,
    6. Sanjuan Y.
    , 2015, A meta-analysis of soil erosion rates across the world: Geomorphology, v. 239, p. 160–173, doi:https://doi.org/10.1016/j.geomorph.2015.03.008
    OpenUrlCrossRef
  23. ↵
    1. Goddéris Y.,
    2. Donnadieu Y.
    , 2019, A sink- or a source-driven carbon cycle at the geological timescale? Relative importance of palaeogeography versus solid Earth degassing rate in the Phanerozoic climatic evolution: Geological Magazine, v. 156, n. 2, p. 355–365, doi:https://doi.org/10.1017/S0016756817001054
    OpenUrlCrossRef
  24. ↵
    1. Goddéris Y.,
    2. Joachimski M. M.
    , 2004, Global change in the late Devonian: modelling the Frasnian-Famennian short-term carbon isotope excursions: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 202, n. 3–4, p. 309–329, doi:https://doi.org/10.1016/S0031-0182(03)00641-2
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Goddéris Y.,
    2. Donnadieu Y.,
    3. Le Hir G.,
    4. Lefebvre V.,
    5. Nardin E.
    , 2014, The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate: Earth-Science Reviews, v. 128, p. 122–138, doi:https://doi.org/10.1016/j.earscirev.2013.11.004
    OpenUrlCrossRefGeoRef
  26. ↵
    1. Goddéris Y.,
    2. Donnadieu Y.,
    3. Carretier S.,
    4. Aretz M.,
    5. Dera G.,
    6. Macouin M.,
    7. Regard V.
    , 2017, Onset and ending of the late Paleozoic ice age triggered by tectonically paced rock weathering: Nature Geoscience, v. 10, p. 382–387, doi:https://doi.org/10.1038/ngeo2931
    OpenUrlCrossRef
  27. ↵
    1. Kiessling W.,
    2. Flügel E.,
    3. Golonka J.
    1. Golonka J.,
    2. Kiessling W.
    , 2002, Phanerozoic time scale and definition of time slices, in Kiessling W., Flügel E., Golonka J., editors, Phanerozoic Reef Patterns: SEPM special publication, v. 72, doi:https://doi.org/10.2110/pec.02.72.0011
    OpenUrlCrossRef
  28. ↵
    1. Greb S. F.,
    2. DiMichele W. A.
    1. Greb S. F.,
    2. DiMichele W. A.,
    3. Gastalo R. A.
    , 2006, Evolution and importance of wetlands in Earth history, in Greb S. F., DiMichele W. A., editors, Wetlands through time: Geological Society of America Special Papers, v. 399, p. 1–40, doi:https://doi.org/10.1130/2006.2399(01)
    OpenUrlCrossRef
  29. ↵
    1. Heimsath A. M.,
    2. Dietrich W. E.,
    3. Nishiizumi K.,
    4. Finkel R. C.
    , 1997, The soil production function and landscape equilibrium: Nature, v. 388, p. 358–361, doi:https://doi.org/10.1038/41056
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Humphrey G. S.,
    2. Wilkinson M. T.
    , 2007, The soil production function: a brief history and its rediscovery: Geoderma, v. 139, n. 1–2, p. 73–78, doi:https://doi.org/10.1016/j.geoderma.2007.01.004
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Ibarra D. E.,
    2. Rugenstein J. K. C.,
    3. Bachan A.,
    4. Baresh A.,
    5. Lau K. V.,
    6. Thomas D. L.,
    7. Lee J.-E.,
    8. Boyce C. K.,
    9. Chamberlain C. P.
    , 2019, Modeling the consequences of land plants evolution on silicate weathering: American Journal of Science, v. 319, n. 1, p.1–43, doi:https://doi.org/10.2475/01.2019.01
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Istanbulluoglu E.,
    2. Bras R. L.
    , 2005, Vegetation-modulated landscape evolution: effects of vegetation on landscape processes, drainage intensity, and topography: Journal of Geophysical Research: Earth Surface, v. 110, n. F2, F02012, doi:https://doi.org/10.1029/2004JF000249
    OpenUrlCrossRef
  33. ↵
    1. Joachimski M. M.,
    2. Bresig S.,
    3. Buggisch W.,
    4. Talent J. A.,
    5. Mawson R.,
    6. Gereke M.,
    7. Morrow J. R.,
    8. Day J.,
    9. Weddige K.
    , 2009, Devonian climate and reef evolution: insights from oxygen isotopes in apatite: Earth and Planetary Science Letters, v. 284, n. 3–4, p. 599–609, doi:https://doi.org/10.1016/j.epsl.2009.05.028
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  34. ↵
    1. Joshi M. M.,
    2. Mills B. J. W.,
    3. Johnson M.
    , 2019, A capacitor-discharge mechanism to explain the timing of orogeny-related global glaciations: Geophysical Research Letters, v. 46, n. 14, p. 8347–8354, doi:https://doi.org/10.1029/2019GL083368
    OpenUrlCrossRef
  35. ↵
    1. Krause A. J.,
    2. Mills B. J. W.,
    3. Zhang S.,
    4. Planavsky N. J.,
    5. Lenton T. M.,
    6. Poulton S. W.
    , 2018, Stepwise oxygenation of the Paleozoic atmosphere: Nature Communications, v. 9, 4081, doi:https://doi.org/10.1038/s41467-018-06383-y
    OpenUrlCrossRef
  36. ↵
    1. Ruddiman
    1. Kump L. R.,
    2. Arthur M. A.
    , 1997, Global chemical erosion during the Cenozoic: weatherability balances the budget, in Ruddiman, editor, Tectonic Uplift and Climate Change: Boston, MA, Springer, p. 399–426, doi:https://doi.org/10.1007/978-1-4615-5935-1_18
    OpenUrlCrossRef
  37. ↵
    1. Langbein W. B.,
    2. Schumm S. A.
    , 1958, Yield of sediment in relation to mean annual precipitation: Eos, Transactions of the American Geophysical Union, v. 39, n. 6, p. 1076–1084, doi:https://doi.org/10.1029/TR039i006p01076
    OpenUrlCrossRef
  38. ↵
    1. Le Hir G.,
    2. Donnadieu Y.,
    3. Goddéris Y.,
    4. Meyer-Berthaud B.,
    5. Ramstein G.,
    6. Blakey R. C.
    , 2011, The climate change caused by the land plants invasion in the Devonian: Earth and Planetary Science Letters, v. 310, n. 3–4, p. 203–212, doi:https://doi.org/10.1016/j.epsl.2011.08.042
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Lenton T. M.,
    2. Crouch M.,
    3. Johnson M.,
    4. Pires N.,
    5. Dolan L.
    , 2012, First plants cooled the Ordovician: Nature Geoscience, v. 5, p. 86–89, doi:https://doi.org/10.1038/ngeo1390
    OpenUrlCrossRef
  40. ↵
    1. Lenton T. M.,
    2. Daines S. J.,
    3. Mills B. J. W.
    , 2018, COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time: Earth-Science Reviews, v. 178, p. 1–28, doi:https://doi.org/10.1016/j.earscirev.2017.12.004
    OpenUrlCrossRef
  41. ↵
    1. Maffre P.,
    2. Ladant J.-B.,
    3. Moquet J.-S.,
    4. Carretier S.,
    5. Labat D.,
    6. Goddéris Y.
    , 2018, Moutain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?: Earth and Planetary Science Letters, v. 493, p. 174–185, doi:https://doi.org/10.1016/j.epsl.2018.04.034
    OpenUrlCrossRef
  42. ↵
    1. Maffre P.,
    2. Swanson-Hysell N. L.,
    3. Goddéris Y.
    , 2021, Limited carbon cycle response to increased sulfide weathering due to oxygen feedback: Geophysical Research Letters, v. 48, n. 19, e2021GL094589, doi:https://doi.org/10.1029/2021GL094589
    OpenUrlCrossRef
  43. ↵
    1. Maher K.,
    2. Chamberlain C.
    , 2014, Hydrologic regulation of chemical weathering and the geologic carbon cycle: Science, v. 343, n. 6178, p. 1502–1504, doi:https://doi.org/10.1126/science.1250770
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Mishra A. K.,
    2. Placzek C.,
    3. Jones R.
    , 2019, Coupled influence of precipitation and vegetation on millennial-scale erosion rates derived from 10Be: PLoS ONE, v. 14, n. 1, e021132, doi:https://doi.org/10.1371/journal.pone.0211325
    OpenUrlCrossRef
  45. ↵
    1. Morris J. L.,
    2. Puttick M. N.,
    3. Clark J. W.,
    4. Edwards D.,
    5. Kenrick P.,
    6. Pressel S.,
    7. Wellman C. H.,
    8. Yang Z.,
    9. Schneider H.,
    10. Donoghue P. C. J.
    , 2018, The timescale of early land plant evolution: Proceedings of the National Academy of Science of the United States of America, v. 115, n. 10, p. E2274–E2283, doi:https://doi.org/10.1073/pnas.1719588115
  46. ↵
    1. Moulton K. L.,
    2. West J.,
    3. Berner R. A.
    , 2000, Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering: American Journal of Science, v. 300, n. 7, p. 539–570, doi:https://doi.org/10.2475/ajs.300.7.539
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Navarre-Sitchler A.,
    2. Brantley S.,
    3. Rother G.
    , 2015, How porosity increases during incipient weathering of crystalline silicate rocks: Reviews in Mineralogy and Geochemistry, v. 80, p. 331–354, doi:https://doi.org/10.2138/rmg.2015.80.10
    OpenUrlFREE Full Text
  48. ↵
    1. Norton K. P.,
    2. Molnar P.,
    3. Schlunegger F.
    , 2014, The role of climate- driven chemical weathering on soil production: Geomorphology, v. 204, p. 510–517, doi:https://doi.org/10.1016/j.geomorph.2013.08.030
    OpenUrlCrossRefGeoRef
  49. ↵
    1. Ochoa P. A.,
    2. Fries A.,
    3. Mejia D.,
    4. Burneo J. I.,
    5. Ruíz-Sinoga J. D.,
    6. Cerdà A.
    , 2016, Effects of climate, land cover and topography on soil erosion risk in semi-arid basins of the Andes: Catena, v. 140, p. 31–42, doi:https://doi.org/10.1016/j.catena.2016.01.011
    OpenUrlCrossRef
  50. ↵
    1. Oliva P.,
    2. Viers J.,
    3. Dupré B.
    , 2003, Chemical weathering in granitic environments: Chemical Geology, v. 202, n. 3–4, p. 225–256, doi:https://doi.org/10.1016/j.chemgeo.2002.08.001
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Panagos P.,
    2. Borreli P.,
    3. Meusburger K.,
    4. Alewell C.,
    5. Lugato E.,
    6. Montanarella L.
    , 2015, Estimating the soil erosion cover-management factor at the European scale: Land Use Policy, v. 48, p. 38–50, doi:https://doi.org/10.1016/j.landusepol.2015.05.021
    OpenUrlCrossRef
  52. ↵
    1. Pawlik L.,
    2. Buma B.,
    3. Samonil P.,
    4. Kvacek J.,
    5. Galazka A.,
    6. Kohout P.,
    7. Malik I.
    , 2020, Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth's system properties – a critical review: Earth-Science Reviews, v. 205, 103200, doi:https://doi.org/10.1016/j.earscirev.2020.103200
    OpenUrlCrossRef
  53. ↵
    1. Penman D. E.,
    2. Rugenstein J. K. C.,
    3. Ibarra D. E.,
    4. Winnick M. J.
    , 2020, Silicate weathering as a feedback and forcing in Earth's climate and carbon cycle: Earth-Science Reviews, v. 209, doi:https://doi.org/10.1016/j.earscirev.2020.103298
    OpenUrlCrossRef
  54. ↵
    1. Porada P.,
    2. Lenton T. M.,
    3. Pohl A.,
    4. Weber B.,
    5. Mander L.,
    6. Donnadieu Y.,
    7. Beer C.,
    8. Pöschl U.,
    9. Kleidon A.
    , 2016, High potential for weathering and climate effects of non-vascular vegetation in the late Ordovician: Nature Communications, v. 7, 12113, doi:https://doi.org/10.1038/ncomms12113
    OpenUrlCrossRef
  55. ↵
    1. Porder S.
    , 2019, How plants enhance weathering and how weathering is important to plants: Elements, v. 15, n. 4, p 241–246, doi:https://doi.org/10.2138/gselements.15.4.241
    OpenUrlCrossRef
  56. ↵
    1. Raymo M. E.
    , 1991, Geochemical evidence supporting T. C. Chamberlin's theory of glaciation: Geology, v. 19, n. 4, p. 344–347, doi:https://doi.org/10.1130/0091-7613(1991)019<0344:GESTCC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Royer D. L.,
    2. Berner R. A.,
    3. Park J.
    , 2007, Climate sensitivity constrained by CO2 concentrations over the past 420 million years: Nature, v. 446, p. 530–532, doi:https://doi.org/10.1038/nature05699
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  58. ↵
    1. Royer D. L.,
    2. Donnadieu Y.,
    3. Park J.,
    4. Kowalczyk J.,
    5. Goddéris Y.
    , 2014, Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF: American Journal of Science, v. 314, n. 9, p. 1259–1283, doi:https://doi.org/10.2475/09.2014.01
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Rubinstein C. V.,
    2. Gerrienne P.,
    3. de la Puente G. S.,
    4. Astini R. A.,
    5. Steemans P.
    , 2010, Early middle Ordovician evidence for land plants in Argentina (eastern Gondwana): New Phytologist, v. 188, n. 2, p. 365–369, doi:https://doi.org/10.1111/j.1469-8137.2010.03433.x
    OpenUrlCrossRefPubMedWeb of Science
  60. ↵
    1. Stallard R. F.,
    2. Edmond J. M.
    , 1983, Geochemistry of the Amazon 2: the influence of the geology and weathering environmenton the dissolved load: Journal of Geophysical Research: Oceans, v. 88, n. C14, p. 9671–9688, doi:https://doi.org/10.1029/JC088iC14p09671
    OpenUrlCrossRef
  61. ↵
    1. Starke J.,
    2. Ehlers T. A.,
    3. Schaller M.
    , 2020, Latitudinal effect of vegetation on erosion rates identified along western South America: Science, v. 367, n. 6484, p. 1358–1361, doi:https://doi.org/10.1126/science.aaz0840
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. Stein W. E.,
    2. Berry C. M.,
    3. Morris J. L.,
    4. Hernick L. V.,
    5. Mannolini F.,
    6. Straeten C. V.,
    7. Landing E.,
    8. Marshall J. E. A.,
    9. Wellman C. H.,
    10. Beerlong D. J.,
    11. Leake J. R.
    , 2020, Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests: Current Biology, v. 30, n. 3, p. 421–431, doi:https://doi.org/10.1016/j.cub.2019.11.067
    OpenUrlCrossRef
  63. ↵
    1. Torres M. A.,
    2. West A. J.,
    3. Clark K. E.,
    4. Paris G.,
    5. Bouchez J.,
    6. Ponton C.,
    7. Feakins S. J.,
    8. Galy V.,
    9. Adkins J. F.
    , 2016, The acid and alkalinity budgets of weathering in the Andes-Amazon system: insights into the erosional control of global biogeochemical cycles: Earth and Planetary Science Letters, v. 450, p. 381–391, doi:https://doi.org/10.1016/j.epsl.2016.06.012
    OpenUrlCrossRef
  64. ↵
    1. Vanacker V.,
    2. von Blanckenburg F.,
    3. Govers G.,
    4. Molina A.,
    5. Poesen J.,
    6. Deckers J.,
    7. Kubik P.
    , 2007, Restoring dense vegetation can slow mountain erosion to near natural benchmark levels: Geology, v. 35, n. 4, p. 303–306, doi:https://doi.org/10.1130/G23109A.1
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Walker J. C. G.,
    2. Hays P. B.,
    3. Kasting J. F.
    , 1981, A negative feedback mechanism for the long-term stabilization of Earth's surface temperature: Journal of Geophysical Research: Oceans, v. 86, n. C10, p. 9776–9782, doi:https://doi.org/10.1029/JC086iC10p09776
    OpenUrlCrossRef
  66. ↵
    1. West A. J.
    , 2012, Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks: Geology, v. 40, n. 9, p. 811–814, doi:https://doi.org/10.1130/G33041.1
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. White J. D.,
    2. Montanez I. P.,
    3. Wilson J. P.,
    4. Poulsen C. J.,
    5. McElwain J. C.,
    6. DiMichele W. A.,
    7. Hren M.T.,
    8. Macarewich S.,
    9. Richey J. D.,
    10. Matthaeus W. J.
    , 2020, A process-based ecosystem model (paleo-bgc) to simulate the dynamic response of late Carboniferous plants to elvated O2 and aridification: American Journal of Science, v. 320, n. 7, p.547–598, doi:https://doi.org/10.2475/09.2020.01
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Willis K. J.,
    2. McElwain J. C.
    , 2002, The evolution of plants: Oxford, Oxford University Press, p. 378.
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (3)
American Journal of Science
Vol. 322, Issue 3
1 Mar 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
12 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian
Pierre Maffre, Yves Godderis, Alexandre Pohl, Yannick Donnadieu, Sebastien Carretier, Guillaume Le Hir
American Journal of Science Mar 2022, 322 (3) 461-492; DOI: 10.2475/03.2022.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian
Pierre Maffre, Yves Godderis, Alexandre Pohl, Yannick Donnadieu, Sebastien Carretier, Guillaume Le Hir
American Journal of Science Mar 2022, 322 (3) 461-492; DOI: 10.2475/03.2022.02
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MODEL DESCRIPTION
    • BOUNDARY CONDITIONS AND PARAMETERS FOR THE STEADY-STATE SIMULATIONS
    • RESULTS
    • LIMITATIONS AND ADDITIONAL THOUGHTS
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Carbon cycle
  • Devonian
  • vascular plants
  • climate
  • model

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire