Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

On carbon burial and net primary production through Earth's history

Noah J. Planavsky, Mojtaba Fakhraee, Edward W. Bolton, Christopher T. Reinhard, Terry T. Isson, Shuang Zhang and Benjamin J. W. Mills
American Journal of Science March 2022, 322 (3) 413-460; DOI: https://doi.org/10.2475/03.2022.01
Noah J. Planavsky
*Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: noah.planavsky@yale.edu
Mojtaba Fakhraee
*Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
**School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edward W. Bolton
*Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher T. Reinhard
**School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terry T. Isson
***School of Science, University of Waikato (Tauranga), Tauranga, New Zealand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shuang Zhang
§Geophysical Laboratory, Carnegie Institution for Science, Washington DC, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benjamin J. W. Mills
§§School of Earth and Environment, University of Leeds, Leeds, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. AbouRizk S. M.,
    2. Halpin D. W.,
    3. Wilson J. R.
    , 1994, Fitting Beta Distributions Based on Sample Data: Journal of Construction Engineering and Management, v. 120, n. 2, p. 288–305, doi:https://doi.org/10.1061/(ASCE)0733-9364(1994)120:2(288)
    OpenUrlCrossRef
  2. ↵
    1. Alonso-González I. J.,
    2. Arístegui J.,
    3. Lee C.,
    4. Sanchez-Vidal A.,
    5. Calafat A.,
    6. Fabrés J.,
    7. Sangrá P.,
    8. Masqué P.,
    9. Hernández-Guerra A.,
    10. Benítez-Barrios V.
    , 2010, Role of slowly settling particles in the ocean carbon cycle: Geophysical Research Letters, v. 37, n. 13, doi:https://doi.org/10.1029/2010GL043827
    OpenUrlCrossRef
  3. ↵
    1. Arndt S.,
    2. Jørgensen B. B.,
    3. LaRowe D. E.,
    4. Middelburg J. J.,
    5. Pancost R. D.,
    6. Regnier P.
    , 2013, Quantifying the degradation of organic matter in marine sediments: A review and synthesis: Earth-Science Reviews, v. 123, p. 53–86, doi:https://doi.org/10.1016/j.earscirev.2013.02.008
    OpenUrlCrossRefGeoRef
  4. ↵
    1. Bachan A.,
    2. Kump L. R.
    , 2015, The rise of oxygen and siderite oxidation during the Lomagundi event: Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 21, p. 6562–6567, doi:https://doi.org/10.1073/pnas.1422319112
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Bekker A.,
    2. Holmden C.,
    3. Beukes N. J.,
    4. Kenig F.,
    5. Eglington B.,
    6. Patterson W. P.
    , 2008, Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion: v. 271, n. 1–4, p. 278–291, doi:https://doi.org/10.1016/j.epsl.2008.04.021
    OpenUrlCrossRef
  6. ↵
    1. Berner E. K.,
    2. Berner R. A.
    , 2012, Global environment: Water, air, and geochemical cycles: Princeton, Princeton University Press, 464 p.
    1. Berner R. A.
    , 1980, Early Diagenesis: A Theoretical Approach: Princeton University Press, doi:https://doi.org/10.2307/j.ctvx8b6p2
    OpenUrlCrossRef
  7. ↵
    1. Berner R. A.,
    2. Beerling D. J.,
    3. Dudley R.,
    4. Robinson J. M.,
    5. Wildman R. A. Jr..
    ,2003, Phanerozoic Atmospheric Oxygen: Annual Review of Earth and Planetary Sciences, v. 31, p. 105–134, doi:https://doi.org/10.1146/annurev.earth.31.100901.141329
    OpenUrlCrossRef
  8. ↵
    1. Bjerrum C. J.,
    2. Canfield D. E.
    , 2002, Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides: Nature, 417, p. 159–162, doi:https://doi.org/10.1038/417159a
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  9. ↵
    1. Bjerrum C. J.,
    2. Canfield D. E.
    2004, New insights into the burial history of organic carbon on the early Earth: Geochemistry: Geophysics, Geosystems, v. 5, n. 8, q08001, doi:https://doi.org/10.1029/2004GC000713
    OpenUrlCrossRef
  10. ↵
    1. Blair N. E.,
    2. Leithold E. L.,
    3. Aller R. C.
    , 2004, From bedrock to burial: the evolution of particulate organic carbon across coupled watershed-continental margin systems: Marine Chemistry, v. 92, n. 1–4, p. 141–156, doi:https://doi.org/10.1016/j.marchem.2004.06.023
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Bluth G. J. S.,
    2. Kump L. R.
    , 1991, Phanerozoic paleogeology: American Journal of Science, v. 291, n. 3, p. 284–308, doi:https://doi.org/10.2475/ajs.291.3.284
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Bolton E. W.,
    2. Berner R. A.,
    3. Petsch S. T.
    , 2006, The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modeling: American Journal of Science, v. 306, n. 8, p. 575–615, doi:https://doi.org/10.2475/08.2006.01
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Boudreau B. P.
    , 1997, Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments: Springer, 414 p.
  14. ↵
    1. Canfield D. E.
    , 2005, The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels: Annual Review of Earth and Planetary Sciences, v. 33, p. 1–36, doi:https://doi.org/10.1146/annurev.earth.33.092203.122711
    OpenUrlCrossRefGeoRefWeb of Science
  15. ↵
    1. Canfield D. E.,
    2. van Zuilen M. A.,
    3. Nabhan S.,
    4. Bjerrum C. J.,
    5. Zhang S.,
    6. Wang H.,
    7. Wang X.
    , 2021, Petrographic carbon in ancient sediments constrains Proterozoic Era atmospheric oxygen levels: Proceedings of the National Academy of Sciences of the United States of America, v. 118, n. 23, p. e2101544118, doi:https://doi.org/10.1073/pnas.2101544118
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Chang S.,
    2. Berner R. A.
    , 1998, Humic Substance Formation via the Oxidative Weathering of Coal: Environmental Science and Technology: v. 32, n. 19, p. 2883–2886, doi:https://doi.org/10.1021/es9802504
    OpenUrlCrossRefGeoRef
  17. ↵
    1. Chang S.,
    2. Berner R. A.
    1999, Coal weathering and the geochemical carbon cycle: Geochimica et Cosmochimica Acta, v. 63, n. 19–20, p. 3301–3310, doi:https://doi.org/10.1016/S0016-7037(99)00252-5
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Crowe S. A.,
    2. Døssing L. N.,
    3. Beukes N. J.,
    4. Bau M.,
    5. Kruger S. J.,
    6. Frei R.,
    7. Canfield D. E.
    , 2013, Atmospheric oxygenation three billion years ago: Nature, v. 501, p. 535–538, doi:https://doi.org/10.1038/nature12426
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  19. ↵
    1. Daines S. J.,
    2. Mills B. J. W.,
    3. Lenton T. M.
    , 2017, Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon: Nature Communications, v. 8, 14379, doi:https://doi.org/10.1038/ncomms14379
    OpenUrlCrossRef
  20. ↵
    1. DePaolo D. J.,
    2. Lee V. E.,
    3. Christensen J. N.,
    4. Maher K.
    , 2012, Uranium comminution ages: Sediment transport and deposition time scales: Comptes Rendus Geoscience, v. 344, n. 11–12, p. 678–687, doi:https://doi.org/10.1016/j.crte.2012.10.014
    OpenUrlCrossRef
  21. ↵
    1. Holland H. D.,
    2. Turekian K. K.
    1. Derry L. A.
    , 2014, Organic Carbon Cycling and the Lithosphere, Organic Geochemistry, in Holland H. D., Turekian K. K., editors, Treatise on Geochemistry (second edition): Amsterdam, the Netherlands, Elsevier, v. 12, p.239–249.
    OpenUrl
  22. ↵
    1. Derry L. A.
    2015, Causes and consequences of mid-Proterozoic anoxia: Geophysical Research Letters, v. 42, n. 20, p. 8538–8546, doi:https://doi.org/10.1002/2015GL065333
    OpenUrlCrossRef
  23. ↵
    1. Dixon J. L.,
    2. von Blanckenburg F.
    , 2012, Soils as pacemakers and limiters of global silicate weathering: Compes Rendus Geoscience, v. 344, n. 11–12, p. 597–609, doi:https://doi.org/10.1016/j.crte.2012.10.012
    OpenUrlCrossRef
  24. ↵
    1. Fakhraee M.,
    2. Hancisse O.,
    3. Canfield D. E.,
    4. Crowe S. A.,
    5. Katsev S.
    , 2019, Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry: Nature Geoscience, v. 12, p. 375–380, doi:https://doi.org/10.1038/s41561-019-0351-5
    OpenUrlCrossRef
  25. ↵
    1. Fakhraee M.,
    2. Planavsky N. J.,
    3. Reinhard C. T.
    , 2020, The role of environmental factors in the long-term evolution of the marine biological pump: Nature Geoscience, v. 13, p. 812–816, doi:https://doi.org/10.1038/s41561-020-00660-6
    OpenUrlCrossRef
  26. ↵
    1. Fakhraee M.,
    2. Tarhan L. G.,
    3. Planavsky N. J.,
    4. Reinhard C. T.
    , 2021, A largely invariant marine dissolved organic carbon reservoir across Earth's history: Proceedings of the National Academy of Sciences of the United States of America, v. 118, n. 40, p. e2103511118, doi:https://doi.org/10.1073/pnas.2103511118
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Fennel K.,
    2. Follows M.,
    3. Falkowski P. G.
    , 2005, The co-evolution of the nitrogen, carbon and oxygen cycles in the proterozoic ocean: American Journal of Science, v. 305, n. 6–8, p. 526–545, doi:https://doi.org/10.2475/ajs.305.6-8.526
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Fischer W. W.,
    2. Schroeder S.,
    3. Lacassie J. P.,
    4. Beukes N. J.,
    5. Goldberg T.,
    6. Strauss H.,
    7. Horstmann U. E.,
    8. Schrag D. P.,
    9. Knoll A. H.
    , 2009, Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa: Precambrian Research, v. 169, n. 1–4, p. 15–27, doi:https://doi.org/10.1016/j.precamres.2008.10.010
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Fritsch F. N.,
    2. Carlson R. E.
    , 1980, Monotone Piecewise Cubic Interpolation: SIAM Journal on Numerical Analysis, v. 17, n. 2, p. 238–246, doi:https://doi.org/10.1137/0717021
    OpenUrlCrossRefWeb of Science
  30. ↵
    1. Lide D. R.
    1. Gevantman L. H.
    , 2006, Solubility of Selected Gases in Water, in Lide D. R., editor, CRC Handbook of Chemistry and Physics, 86th edition, Internet Version 2006, http://www.hbcpnetbase.com: Boca Raton, Florida, Taylor and Francis, online data
  31. ↵
    1. Gleisner M.,
    2. Herbert R. B.,
    3. Frogner P. C.
    , 2004, Microbial pyrite oxidation at various oxygen partial pressures: Geochimica et Cosmochimica Acta, v. 68, n. 11, Supplement, p. A146.
    OpenUrl
  32. ↵
    1. Guidry M. W.,
    2. Mackenzie F. T.
    , 2000, Apatite Weathering and the Phanerozoic Phosphorus Cycle: Geology, v. 28, p. 631–634, doi:https://doi.org/10.1130/0091-7613(2000)28<631:AWATPP>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Valley J. W.,
    2. Cole D. R.
    1. Hayes J. M.
    , 2018, Fractionation of Carbon and Hydrogen Isotopes in Biosynthetic Processes, in Valley J. W., Cole D. R., editors, Stable isotope geochemistry: De Gruyter, p. 225–278, doi:https://doi.org/10.1515/9781501508745-006
    OpenUrlCrossRef
  34. ↵
    1. Hayes J. M.,
    2. Waldbauer J. R.
    , 2006, The carbon cycle and associated redox processes through time: Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, p. 931–950, doi:https://doi.org/10.1098/rstb.2006.1840
    OpenUrlCrossRef
  35. ↵
    1. Hodgskiss M. S. W.,
    2. Crockford P. W.,
    3. Peng Y.,
    4. Wing B. A.,
    5. Horner T. J.
    , 2019, A productivity collapse to end Earth's Great Oxidation: Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 35, p. 17207–17212, doi:https://doi.org/10.1073/pnas.1900325116
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Holland H. D.
    , 1978, The chemistry of the atmosphere and oceans: New York, Wiley, v. 1, 351 p.
    OpenUrl
  37. ↵
    1. Holland H. D.
    1984, The chemical evolution of the atmosphere and oceans: Princeton, Princeton University Press, 582 p,
  38. ↵
    1. Horwath W. R.
    , 2006, The Phanerozoic Carbon Cycle: CO2 and O2, v: 5 n. 4, p. 1155–1156, doi:https://doi.org/10.2136/vzj2006.0054br
    OpenUrlCrossRef
  39. ↵
    1. Howell D.,
    2. Stachel T.,
    3. Stern R. A.,
    4. Pearson D. G.,
    5. Nestola F.,
    6. Hardman M. F.,
    7. Harris J. W.,
    8. Jaques A. L.,
    9. Shirey S. B.,
    10. Cartigny P.,
    11. Smit K. V.,
    12. Aulbach S.,
    13. Brenker F. E.,
    14. Jacob D. E.,
    15. Thomassot E.,
    16. Walter M. J.,
    17. Navon O.
    , 2020, Deep carbon through time: Earth's diamond record and its implications for carbon cycling and fluid speciation in the mantle: Geochimica et Cosmochimica Acta, v. 275, p. 99–122, doi:https://doi.org/10.1016/j.gca.2020.02.011
    OpenUrlCrossRef
  40. ↵
    1. Ickert R. B.,
    2. Stachel T.,
    3. Stern R. A.,
    4. Harris J. W.
    , 2015, Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds: Geochemical Perspectives Letters, v. 1, p. 65–74, doi:https://doi.org/10.7185/geochemlet.1507
    OpenUrlCrossRef
  41. ↵
    1. Jaisi D. P.,
    2. Blake R. E.
    , 2010, Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates: Geochimica et Cosmochimica Acta, v. 74, n. 11, p. 3199–3212, doi:https://doi.org/10.1016/j.gca.2010.02.030
    OpenUrlCrossRefGeoRef
  42. ↵
    1. Jerz J. K.,
    2. Rimstidt J. D.
    , 2004, Pyrite oxidation in moist air: Geochimica et Cosmochimica Acta, v. 68, n. 4, p. 701–714, doi:https://doi.org/10.1016/S0016-7037(03)00499-X
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Johnston D. T.,
    2. MacDonald F. A.,
    3. Gill B. C.,
    4. Hoffman P. F.,
    5. Schrag D. P.
    , 2012, Uncovering the neoproterozoic carbon cycle: Nature, v. 483, p. 320–323, doi:https://doi.org/10.1038/nature10854
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  44. ↵
    1. Knoll A. H.,
    2. Canfield D. E.,
    3. Konhouser K. O.
    1. Kasting J. F.,
    2. Canfield D. E.
    , 2012, The Global Oxygen Cycle, in Knoll A. H., Canfield D. E., Konhouser K. O., editors, Fundamentals of Geobiology: Blackwell Publishing, p. 93–104.
  45. ↵
    1. Katsev S.,
    2. Crowe S. A.
    , 2015, Organic carbon burial efficiencies in sediments: The power law of mineralization revisited: Geology, v. 43, n. 7, p. 607–610, doi:https://doi.org/10.1130/G36626.1
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Kipp M. A.,
    2. Stüeken E. E.
    , 2017, Biomass recycling and Earth's early phosphorus cycle: Science Advances, v. 3 n. 11, p. eaao4795, doi:https://doi.org/10.1126/sciadv.aao4795
    OpenUrlFREE Full Text
  47. ↵
    1. Korenaga J.
    , 2013, Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations: Annual Review of Earth and Planetary Sciences, v. 41, p. 117–151, doi:https://doi.org/10.1146/annurev-earth-050212-124208
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Krissansen-Totton J.,
    2. Buick R.,
    3. Catling D. C.
    , 2015, A statistical analysis of the carbon isotope record from the Archean to phanerozoic and implications for the rise of oxygen: American Journal of Science, v. 315, n. 4, p. 275–316, doi:https://doi.org/10.2475/04.2015.01
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Kump L. R.
    , 2008, The rise of atmospheric oxygen: Nature, v. 451, p. 277–278, doi:https://doi.org/10.1038/nature06587
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  50. ↵
    1. Kump L. R.,
    2. Arthur M. A.
    , 1999, Interpreting carbon-isotope excursions: Carbonates and organic matter: Chemical Geology, v. 161, n. 1–3, p. 181–198, doi:https://doi.org/10.1016/S0009-2541(99)00086-8
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Kump L. R.,
    2. Holland H. D.
    , 1992, Iron in Precambrian rocks: Implications for the global oxygen budget of the ancient Earth: Geochimica et Cosmochimica Acta, v. 56, n. 8, p. 3217–3223, doi:https://doi.org/10.1016/0016-7037(92)90299-X
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  52. ↵
    1. Laakso T. A.,
    2. Schrag D. P.
    , 2014, Regulation of atmospheric oxygen during the Proterozoic: Earth and Planetary Science Letters, v. 388, p. 81–91, doi:https://doi.org/10.1016/j.epsl.2013.11.049
    OpenUrlCrossRefWeb of Science
  53. ↵
    1. Laakso T. A.,
    2. Schrag D. P.
    2018, Limitations on Limitation: Global Biogeochemical Cycles: v. 32, n. 3, p. 486–496, doi:https://doi.org/10.1002/2017GB005832
    OpenUrlCrossRef
  54. ↵
    1. Larsen I. J.,
    2. Almond P. C.,
    3. Eger A.,
    4. Stone J. O.,
    5. Montgomery D. R.,
    6. Malcolm B.
    , 2014a, Rapid soil production and weathering in the Southern Alps, New Zealand: Science, v. 343, n. 6171, p. 637–640, doi:https://doi.org/10.1126/science.1244908
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Larsen I. J.,
    2. Montgomery D. R.,
    3. Greenberg H. M.
    , 2014b, The contribution of mountains to global denudation: Geology, v. 42, n. 6, p. 527–530, doi:https://doi.org/10.1130/G35136.1
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Lasaga A. C.,
    2. Ohmoto H.
    , 2002, The oxygen geochemical cycle: Dynamics and stability: Geochimica et Cosmochimica Acta, v. 66, n. 3, p. 361–381, doi:https://doi.org/10.1016/S0016-7037(01)00685-8
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Laurenceau-Cornec E. C.,
    2. Le Moigne F. A. C.,
    3. Gallinari M.,
    4. Moriceau B.,
    5. Toullec J.,
    6. Iversen M. H.,
    7. Engel A.,
    8. De La Rocha C. L.
    , 2019, New guidelines for the application of Stokes' models to the sinking velocity of marine aggregates: Limnology and Oceanography, v. 65, n. 6, p. 1264–1285, doi:https://doi.org/10.1002/lno.11388
    OpenUrlCrossRef
  58. ↵
    1. Lenton T. M.,
    2. Boyle R. A.,
    3. Poulton S. W.,
    4. Shields-Zhou G. A.,
    5. Butterfield N. J.
    , 2014, Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era: Nature Geoscience, v. 7, p. 257–265, doi:https://doi.org/10.1038/ngeo2108
    OpenUrlCrossRef
  59. ↵
    1. Li C.,
    2. Planavsky N. J.,
    3. Love G. D.,
    4. Reinhard C. T.,
    5. Hardisty D.,
    6. Feng L.,
    7. Bates S. M.,
    8. Huang J.,
    9. Zhang Q.,
    10. Chu X.,
    11. Lyons T. W.
    , 2015, Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: Insights from the Chuanlinggou Formation, Yanshan Basin, North China: Geochimica et Cosmochimica Acta, v. 150, p. 90–105, doi:https://doi.org/10.1016/j.gca.2014.12.005
    OpenUrlCrossRefGeoRef
  60. ↵
    1. Liu P.,
    2. Liu J.,
    3. Ji A.,
    4. Reinhard C. T.,
    5. Planavsky N. J.,
    6. Babikov D.,
    7. Najjar R. G.,
    8. Kasting J. F.
    , 2021, Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic: Proceedings of the National Academy of Sciences of the United States of America, v. 118, n. 51, e2105074118, doi:https://doi.org/10.1073/pnas.2105074118
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Lyons T. W.,
    2. Reinhard C. T.,
    3. Planavsky N. J.
    , 2014, The rise of oxygen in Earth's early ocean and atmosphere: Nature, v. 506, p. 307–315, doi:https://doi.org/10.1038/nature13068
    OpenUrlCrossRefPubMedWeb of Science
  62. ↵
    1. Marais D. J. D.,
    2. Strauss H.,
    3. Summons R. E.,
    4. Hayes J. M.
    , 1992, Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment: Nature, v. 359, p. 605–609, doi:https://doi.org/10.1038/359605a0
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  63. ↵
    1. Marshall A. O.,
    2. Corsetti F. A.,
    3. Sessions A. L.,
    4. Marshall C. P.
    , 2009, Raman spectroscopy and biomarker analysis reveal multiple carbon inputs to a Precambrian glacial sediment: Organic Geochemistry, v. 40, n. 11, p. 1115–1123, doi:https://doi.org/10.1016/j.orggeochem.2009.08.006
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. McDonnell A. M. P.,
    2. Buesseler K. O.
    , 2010, Variability in the average sinking velocity of marine particles: Limnology and Oceanography, v. 55, n. 5, p. 2085–2096, doi:https://doi.org/10.4319/lo.2010.55.5.2085
    OpenUrlCrossRef
  65. ↵
    1. McKibben M. A.,
    2. Barnes H. L.
    , 1986, Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures: Geochimica et Cosmochimica Acta, v. 50, n. 7, p. 1509–1520, doi:https://doi.org/10.1016/0016-7037(86)90325-X
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    1. Middelburg J. J.
    , 1989, A simple rate model for organic matter decomposition in marine sediments: Geochimica et Cosmochimica Acta, v. 53, n. 7, p. 1577–1581, doi:https://doi.org/10.1016/0016-7037(89)90239-1
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Milliman J. D.,
    2. Meade R. H.
    , 1983, World-wide delivery of sediment to the oceans: Journal of Geology, v. 91, n. 1, p. 1–21, doi:https://doi.org/10.1086/628741
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    1. Miyazaki Y.,
    2. Planavsky N. J.,
    3. Bolton E. W.,
    4. Reinhard C. T.
    , 2018, Making Sense of Massive Carbon Isotope Excursions with an Inverse Carbon Cycle Model: Journal of Geophysical Research: Biogeosciences, v. 123, n. 8, p. 2485–2496, doi:https://doi.org/10.1029/2018JG004416
    OpenUrlCrossRef
  69. ↵
    1. Nicholson R. V.,
    2. Gillham R. W.,
    3. Reardon E. J.
    , 1988, Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics: Geochimica et Cosmochimica Acta, v. 52, n. 5, p. 1077–1085, doi:https://doi.org/10.1016/0016-7037(88)90262-1
    OpenUrlCrossRefGeoRefWeb of Science
  70. ↵
    1. Och L. M.,
    2. Shields-Zhou G. A.
    , 2012, The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling: Earth-Science Reviews, v. 110, n. 1–4, p. 26–57, doi:https://doi.org/10.1016/j.earscirev.2011.09.004
    OpenUrlCrossRefGeoRef
    1. Ozaki K.,
    2. Tajika E.
    , 2013, Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry: Implications for greenhouse climates: Earth and Planetary Science Letters, v. 373, p. 129–139, doi:https://doi.org/10.1016/j.epsl.2013.04.029
    OpenUrlCrossRefGeoRef
  71. ↵
    1. Ozaki K.,
    2. Reinhard C. T.,
    3. Tajika E.
    , 2019, A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance: Geobiology, v. 17, n. 1, p. 3–11, doi:https://doi.org/10.1111/gbi.12317
    OpenUrlCrossRef
  72. ↵
    1. Planavsky N. J.,
    2. Reinhard C. T.,
    3. Wang X.,
    4. Thomson D.,
    5. McGoldrick P.,
    6. Rainbird R. H.,
    7. Johnson T.,
    8. Fischer W. W.,
    9. Lyons T. W.
    , 2014, Low mid-proterozoic atmospheric oxygen levels and the delayed rise of animals: Science, v. 346, n. 6209, p. 635–638, doi:https://doi.org/10.1126/science.1258410
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Planavsky N. J.,
    2. Cole D. B.,
    3. Isson T. T.,
    4. Reinhard C. T.,
    5. Crockford P. W.,
    6. Sheldon N. D.,
    7. Lyons T. W.
    , 2018, A case for low atmospheric oxygen levels during Earth's middle history: Emerging Topics in Life Sciences, v. 2, n. 2, p. 149–159, doi:https://doi.org/10.1042/ETLS20170161
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Petsch S. T.
    , ms, 2000, A study on the weathering of organic matter in black shales and implications for the geochemical cycles of carbon and oxygen: Ph. D. dissertaation, Yale University, New Haven, 273 p.
  75. ↵
    1. Petsch S. T.,
    2. Berner R. A.,
    3. Eglinton T. I.
    , 2000, A field study of the chemical weathering of ancient sedimentary organic matter: Organic Geochemistry, v. 31, n. 5, p. 475–487, doi:https://doi.org/10.1016/S0146-6380(00)00014-0
    OpenUrlCrossRefGeoRefWeb of Science
  76. ↵
    1. Raiswell R.,
    2. Berner R. A.
    , 1986, Pyrite and organic matter in Phanerozoic normal marine shales: Geochimica et Cosmochimica Acta, v. 50, n. 9, p. 1967–1976, doi:https://doi.org/10.1016/0016-7037(86)90252-8
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    1. Reinhard C. T.,
    2. Planavsky N. J.,
    3. Gill B. C.,
    4. Ozaki K.,
    5. Robbins L. J.,
    6. Lyons T. W.,
    7. Fischer W. W.,
    8. Wang C.,
    9. Cole D. B.,
    10. Konhauser K. O.
    , 2017, Evolution of the global phosphorus cycle: Nature, v. 541, p. 386–389, doi:https://doi.org/10.1038/nature20772
    OpenUrlCrossRefPubMed
  78. ↵
    1. Schidlowski M.
    , 1988, A 3,800-million-year isotopic record of life from carbon in sedimentary rocks: Nature, v. 333, p. 313–318, doi:https://doi.org/10.1038/333313a0
    OpenUrlCrossRefGeoRefWeb of Science
  79. ↵
    1. Schidlowski M.
    2001, Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of earth history: Evolution of a concept: Precambrian Research, v. 106, n. 1–2, p. 117–134, doi:https://doi.org/10.1016/S0301-9268(00)00128-5
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Schidlowski M.,
    2. Eichmann R.,
    3. Junge C. E.
    , 1976, Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia: Geochimica et Cosmochimica Acta, v. 40, n. 4, p. 449–455, doi:https://doi.org/10.1016/0016-7037(76)90010-7
    OpenUrlCrossRefGeoRefWeb of Science
  81. ↵
    1. Schrag D. P.,
    2. Higgins J. A.,
    3. Macdonald F. A.,
    4. Johnston D. T.
    , 2013, Authigenic carbonate and the history of the global carbon cycle: Science, v. 339, n. 6119, p. 540–543, doi:https://doi.org/10.1126/science.1229578
    OpenUrlAbstract/FREE Full Text
  82. ↵
    1. Shen Y.,
    2. Knoll A. H.,
    3. Walter M. R.
    , 2003, Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin: Nature, v. 423, p. 632–635, doi:https://doi.org/10.1038/nature01651
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  83. ↵
    1. Shields G. A.,
    2. Mills B. J. W.
    , 2017, Tectonic controls on the long-term carbon isotope mass balance: Proceedings of the National Academy of Sciences of the United States of America, v. 114, n. 17, p. 4318–4323, doi:https://doi.org/10.1073/pnas.1614506114
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Smith E. E.,
    2. Shumate K. S.
    , 1970, Sulfide to sulfate reaction mechanism: A study of the sulfide to sulfate reaction mechanism as it relates to the formation of acid mine waters: US Federal Water Quality Administration, Water pollution control research series
  85. ↵
    1. Sperling E. A.,
    2. Wolock C. J.,
    3. Morgan A. S.,
    4. Gill B. C.,
    5. Kunzmann M.,
    6. Halverson G. P.,
    7. Macdonald F. A.,
    8. Knoll A. H.,
    9. Johnston D. T.
    , 2015, Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation: Nature, v. 523, p. 451–454, doi:https://doi.org/10.1038/nature14589
    OpenUrlCrossRefGeoRefPubMed
  86. ↵
    1. Stachel T.,
    2. Harris J. W.,
    3. Muehlenbachs K.
    , 2009, Sources of carbon in inclusion bearing diamonds: Lithos, v. 112, p. 625–637, doi:https://doi.org/10.1016/j.lithos.2009.04.017
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Sun X.,
    2. Turchyn A. V.
    , 2014, Significant contribution of authigenic carbonate to marine carbon burial: Nature Geoscience, v. 7, p. 201–204, doi:https://doi.org/10.1038/ngeo2070
    OpenUrlCrossRef
  88. ↵
    1. Tang D.,
    2. Shi X.,
    3. Wang X.,
    4. Jiang G.
    , 2016, Extremely low oxygen concentration in mid-Proterozoic shallow seawaters: Precambrian Research, v. 276, p. 145–157, doi:https://doi.org/10.1016/j.precamres.2016.02.005
    OpenUrlCrossRef
  89. ↵
    1. Knoll A. H.,
    2. Canfirld D. E.,
    3. Konhauser K. O.
    1. Wallmann K.,
    2. Aloisi G.
    , 2012, The Global Carbon Cycle: Geological Processes, in Knoll A. H., Canfirld D. E., Konhauser K. O., editors, Fundamentals of Geobiology: John Wiley & Sons, Ltd, Chichester, United Kingdom, p. 20–35, doi:https://doi.org/10.1002/9781118280874.ch3
    OpenUrlCrossRef
  90. ↵
    1. Wildman R. A.,
    2. Berner R. A.,
    3. Petsch S. T.,
    4. Bolton E. W.,
    5. Eckert J. O.,
    6. Mok U.,
    7. Evans J. B.
    , 2004, The weathering of sedimentary organic matter as a control on atmospheric O2: I. Analysis of a black shale: American Journal of Science, v. 304, n. 3, p. 234–249, doi:https://doi.org/10.2475/ajs.304.3.234
    OpenUrlAbstract/FREE Full Text
  91. ↵
    1. Willenbring J. K.,
    2. Codilean A. T.,
    3. McElroy B.
    , 2013, Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales: Geology, v. 41, n. 3, p. 343–346, doi:https://doi.org/10.1130/G33918.1
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (3)
American Journal of Science
Vol. 322, Issue 3
1 Mar 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
On carbon burial and net primary production through Earth's history
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 14 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
On carbon burial and net primary production through Earth's history
Noah J. Planavsky, Mojtaba Fakhraee, Edward W. Bolton, Christopher T. Reinhard, Terry T. Isson, Shuang Zhang, Benjamin J. W. Mills
American Journal of Science Mar 2022, 322 (3) 413-460; DOI: 10.2475/03.2022.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
On carbon burial and net primary production through Earth's history
Noah J. Planavsky, Mojtaba Fakhraee, Edward W. Bolton, Christopher T. Reinhard, Terry T. Isson, Shuang Zhang, Benjamin J. W. Mills
American Journal of Science Mar 2022, 322 (3) 413-460; DOI: 10.2475/03.2022.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • DESCRIPTION OF THE MODELS
    • MODELING RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Carbon burial
  • marine NPP
  • reactive transport modeling
  • atmospheric oxygen level

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire