Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticle

Constraints on the rollback of the Neo-Tethyan oceanic plate: Geochronology and geochemistry of volcanic rocks from the Dianzhong Formation, western Gangdese belt (Tibetan Plateau)

Zhen Wang, Yuruo Shi, Tianshui Yang, J. Lawford Anderson, Chenyang Hou, Yuelan Kang, Wenxiao Peng, Yiming Ma and Weiwei Bian
American Journal of Science February 2022, 322 (2) 396-411; DOI: https://doi.org/10.2475/02.2022.10
Zhen Wang
*School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
**Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuruo Shi
**Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: shiyuruo@bjshrimp.cn
Tianshui Yang
*School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Lawford Anderson
***Department of Earth and Environment, Boston University, Boston Massachusetts 02215, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chenyang Hou
*School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
**Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuelan Kang
*School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
**Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenxiao Peng
*School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
**Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yiming Ma
*School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Weiwei Bian
*School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Bao C.
    , ms, 2014, Genesis and Geochemistry characteristics of Dianzhong formation volcanic rocks of Linzizong Group in the Cuoqin area, Tibet: Ph.D. thesis, Chengdu University of Technology, Chengdu, China, 62 p. (in Chinese with English abstract).
  2. ↵
    1. Black L.P.,
    2. Kamo S. L.,
    3. Allen C. M.,
    4. Aleinikoff J. N.,
    5. Davis D. W.,
    6. Korsch R. J.,
    7. Foudoulis C.
    , 2003, TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology: Chemical Geology, v. 200, n. 1–2, p. 155–170, doi:https://doi.org/10.1016/S0009-2541(03)00165-7
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Cande S. C.,
    2. Patriat P.
    , 2015, The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic: Geophysical Journal International, v. 200, n. 1, p. 227–243, doi:https://doi.org/10.1093/gji/ggu392
    OpenUrlCrossRef
  4. ↵
    1. Chen W.,
    2. Yang T.,
    3. Zhang S.,
    4. Yang Z.,
    5. Li H.,
    6. Wu H.,
    7. Zhang J.,
    8. Ma Y.,
    9. Cai F.
    , 2012, Paleomagnetic results from the Early Cretaceous Zenong Group volcanic rocks, Cuoqin, Tibet, and their paleogeographic implications: Gondwana Research, v. 22, n. 2, p. 461–469, doi:https://doi.org/10.1016/j.gr.2011.07.019
    OpenUrlCrossRefGeoRef
  5. ↵
    1. Chung S. L.,
    2. Chu M. F.,
    3. Zhang Y.,
    4. Xie Y.,
    5. Lo C. H.,
    6. Lee T. Y.,
    7. Lan C. Y.,
    8. Li X.,
    9. Zhang Q.,
    10. Wang Y.
    , 2005, Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism: Earth-Science Reviews, v. 68, n. 3–4, p. 173–196, doi:https://doi.org/10.1016/j.gr.2011.07.019
    OpenUrlCrossRefGeoRef
    1. Defant M. J.,
    2. Drummond M. S.
    , 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere: Nature, v. 347, n. 6294, p. 662–665, doi:https://doi.org/10.1038/347662a0
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Ding L.,
    2. Xu Q.,
    3. Yue Y.,
    4. Wang H.,
    5. Cai F.,
    6. Li S.
    , 2014, The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin: Earth and Planetary Science Letters, v. 392, p. 250–264, doi:https://doi.org/10.1016/j.epsl.2014.01.045
    OpenUrlCrossRefGeoRef
  7. ↵
    1. Dong G. C.
    , ms, 2002, Linzizong volcanic rocks in Linzhou volcanic basin, Tibet: implications for India–-Eurasia collision process: Ph.D. thesis, China University of Geosciences, Beijing, China, 150 p. (in Chinese with English abstract).
  8. ↵
    1. Dong G. C.,
    2. Mo X. X.,
    3. Zhao Z. D.,
    4. Wang L.,
    5. Zhou S.
    , 2005, A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Linzhou basin, Tibet: Geological Bulletin of China, v. 24, p. 549–557 (in Chinese with English abstract).
    OpenUrl
  9. ↵
    1. Gibbons A. D.,
    2. Zahirovic S.,
    3. Müller R. D.,
    4. Whittaker J. M.,
    5. Yatheesh V.
    , 2015, A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the centraleastern Tethys: Gondwana Research, v. 28, n. 2, p. 451–492, doi:https://doi.org/10.1016/j.gr.2015.01.001
    OpenUrlCrossRef
  10. ↵
    1. Gorton M. P.,
    2. Schandl E. S.
    , 2000, From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks: The Canadian Mineralogist, v. 38, n. 5, p. 1065–1073, doi:https://doi.org/10.2113/gscanmin.38.5.1065
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Guo L.,
    2. Zhang H. F.,
    3. Harris N.,
    4. Pan F. B.,
    5. Xu W. C.
    , 2011, Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: constraints from U–Pb zircon dating and Hf isotopic composition: Lithos, v. 127, n. 1–2, p. 54–67, doi:https://doi.org/10.1016/j.lithos.2011.08.005
    OpenUrlCrossRefWeb of Science
  12. ↵
    1. He S.,
    2. Kapp P.,
    3. DeCelles P. G.,
    4. Gehrels G. E.,
    5. Heizler M.
    , 2007, Cretaceous–Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet: Tectonophysics, v. 433, n. 1–4, p. 15–37, doi:https://doi.org/10.1016/j.tecto.2007.01.005
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Ji W.-Q.,
    2. Wu F.-Y.,
    3. Chung S.-L.,
    4. Li J.-X.,
    5. Liu C.-Z.
    , 2009, Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet: Chemical Geology, v. 262, n. 3–4, p. 229–245, doi:https://doi.org/10.1016/j.chemgeo.2009.01.020
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Jia J. C.,
    2. Wen C. S.,
    3. Wang G. H.,
    4. Gao C. G.,
    5. Yang G.D.
    , 2005, Geochemical characteristics and geodynamic significance of the Linzizong Group volcanic rocks in the Gangdise area: Chinese Geology, v. 32, n. 3, p. 396–404 (in Chinese with English abstract).
    OpenUrlGeoRef
  15. ↵
    1. Jiang J. S.
    , ms, 2018, Genesis of Polymetallic Deposits and Propspecting Potential in the Linzizong Area,Western Gangdese Belt, Tibet: Ph.D. thesis, China University of Geosciences, Wuhan, China, 229 p. (in Chinese with English abstract).
  16. ↵
    1. Jiang J.-S.,
    2. Zheng Y.-Y.,
    3. Gao S.-B.,
    4. Zhang Y.-C.,
    5. Huang J.,
    6. Liu J.,
    7. Wu S.,
    8. Xu J.,
    9. Huang L.-L.
    , 2018, The newly-discovered Late Cretaceous igneous rocks in the Nuocang district: Products of ancient crust melting trigged by Neo–Tethyan slab rollback in the western Gangdese: Lithos, v. 308–309, p. 294–315, doi:https://doi.org/10.1016/j.lithos.2018.03.009
    OpenUrlCrossRef
  17. ↵
    1. Kapp P.,
    2. Decelles P. G.
    , 2019, Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses: American Journal of Science, v. 319, n. 3, p. 159–254, doi:https://doi.org/10.2475/03.2019.01
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Lee H. Y.,
    2. Chung S. L.,
    3. Wang Y.,
    4. Zhu D.,
    5. Yang J.,
    6. Song B.,
    7. Liu D.,
    8. Wu F.
    , 2007, Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin, southern Tibet: evidence from zircon U-Pb dates and Hf isotopes: Acta Petrologica Sinica, v. 23, p. 493–500 (in Chinese with English abstract).
    OpenUrlGeoRef
  19. ↵
    1. Lee H.-Y.,
    2. Chung S.-L.,
    3. Lo C.-H.,
    4. Ji J.,
    5. Lee T.-Y.,
    6. Qian Q.,
    7. Zhang Q.
    , 2009, Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record: Tectonophysics, v. 477, n. 1–2, p. 20–35, doi:https://doi.org/10.1016/j.tecto. 2009.02.031
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Lee H. Y.,
    2. Chung S. L.,
    3. Ji J.,
    4. Qian Q.,
    5. Gallet S.,
    6. Lo C. H.,
    7. Lee T. Y.,
    8. Zhang Q.
    , 2012, Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet: Journal of Asian Earth Sciences, v. 53, p. 96–114, doi:https://doi.org/10.1016/j.jseaes.2011.08.019
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Liang Y. P.,
    2. Zhu J.,
    3. Ci Q.,
    4. He W. H.,
    5. Zhang K. X.
    , 2010, Zircon U-Pb ages and geochemistry of volcanic rock from Linzizong Group in Zhunuo area in middle Gangdise belt, Tibet Plateau: Earth Science, v. 35, n. 2, p. 211–223 (in Chinese with English abstract).
    OpenUrl
  22. ↵
    1. Liu Z.-C.,
    2. Ding L.,
    3. Zhang L.-Y.,
    4. Wang C.,
    5. Qiu Z.-L.,
    6. Wang J.-G.,
    7. Shen X.-L.,
    8. Deng X.-Q.
    , 2018, Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba Formation) in the Gangdese arc, southern Tibet: Implications for the Neo-Tethyan subduction: Lithos, v. 312–313, p. 72–88, doi:https://doi.org/10.1016/j.lithos.2018.04.026
    OpenUrlCrossRef
  23. ↵
    1. Ludwig K. R.
    , 2003, Isoplot 3.0—A Geochronological Toolkit for Microsoft Excel: Special Publication No. 4., Berkeley Geochronology Center, Berkeley, California, 71 p.
  24. ↵
    1. Ma L.,
    2. Wang Q.,
    3. Wyman D. A.,
    4. Jiang Z. Q.,
    5. Yang J. H.,
    6. Li Q. L.,
    7. Gou G. N.,
    8. Guo H. F.
    , 2013a, Late Cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr–Nd–Hf–O isotopic evidence from Zhengga diorite–gabbro: Chemical Geology, v. 349–350, p. 54–70, doi:https://doi.org/10.1016/j.chemgeo.2013.04.005
    OpenUrlCrossRef
  25. ↵
    1. Ma L.,
    2. Wang Q.,
    3. Wyman D. A.,
    4. Li Z. X.,
    5. Jiang Z. Q.,
    6. Yang J. H.,
    7. Gou G. N.,
    8. Guo H. F.
    , 2013b, Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet: Lithos, v. 175–176, p. 315–332, doi:https://doi.org/10.1016/j.lithos.2013.04.006
    OpenUrlCrossRef
  26. ↵
    1. Meng Y.,
    2. Xu Z.,
    3. Xu Y.,
    4. Ma S.
    , 2018, Late Triassic granites from the Quxu batholith shedding a new light on the evolution of the Gangdese belt in southern Tibet: Acta Geologica Sinica‐English Edition, v. 92, n. 2, p. 462–481, doi:https://doi.org/10.1111/1755-6724.13537
    OpenUrlCrossRef
  27. ↵
    1. Mo X. X.,
    2. Zhao Z. D.,
    3. Deng J. F.,
    4. Dong G. C.,
    5. Zhou S.,
    6. Guo T. Y.,
    7. Zhang S. Q.,
    8. Wang L. L.
    , 2003, Response of volcanism to the India-Asia collision. Earth Science Frontiers, v. 10, n. 3, p. 135–148 (in Chinese with English abstract).
    OpenUrlGeoRef
  28. ↵
    1. Mo X. X.,
    2. Hou Z.,
    3. Niu Y.,
    4. Dong G.,
    5. Qu X.,
    6. Zhao Z.,
    7. Yang Z.
    , 2007, Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet: Lithos, v. 96, n. 1–2, p. 225–242, doi:https://doi.org/10.1016/j.lithos.2006.10.005
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Mo X.,
    2. Niu Y.,
    3. Dong G.,
    4. Zhao Z.,
    5. Hou Z.,
    6. Zhou S.,
    7. Ke S.
    , 2008, Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet: Chemical Geology, v. 250, n. 1–4, p. 49–67, doi:https://doi.org/10.1016/j.chemgeo.2008.02.003
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Nasdala L.,
    2. Hofmeister W.,
    3. Norberg N.,
    4. Martinson J. M.,
    5. Corfu F.,
    6. Dörr W.,
    7. Kamo S. L.,
    8. Kennedy A. K.,
    9. Kronz A.,
    10. Reiners P. W.
    , 2008, Zircon M257-a homogeneous natural referencematerial for the ion microprobe U-Pb analysis of zircon: Geostandards Geoanalitical Research, v. 32, n. 1–3, p. 247–265, doi:https://doi.org/10.1111/j.1751-908X.2008.00914.x
    OpenUrlCrossRef
  31. ↵
    1. Pan G.,
    2. Wang L.,
    3. Li R.,
    4. Yuan S.,
    5. Ji W.,
    6. Yin F.,
    7. Zhang W.,
    8. Wang B.
    , 2012, Tectonic evolution of the Qinghai-Tibet plateau: Journal of Asian Earth Sciences, v. 53, p. 3–14, doi:https://doi.org/10.1016/j.jseaes.2011.12.018
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. Thorpe R. S.
    1. Pearce J. A.
    , 1982, Trace element characteristics of lavas from destructive plate boundaries, in Thorpe R. S., editor, Andesites, Orogenic Andesites and Related Rocks: New York, John Wiley and Sons, p. 525–548.
  33. ↵
    1. Pearce J. A.,
    2. Peate D. W.
    , 1995, Tectonic implications of the composition of volcanic arc magmas: Annual Review of Earth and Planetary Sciences, v. 23, n. 1, p. 251–285, doi:https://doi.org/10.1146/annurev.ea.23.050195.001343
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Pearce J. A.,
    2. Harris N. B.,
    3. Tindle A. G.
    , 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, n. 4, p. 956–983, doi:https://doi.org/10.1093/petrology/25.4.956
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Saunders A. D.,
    2. Tarney J.,
    3. Weaver S. D.
    , 1980, Transverse geochemical variations across the Antarctic Peninsula: Implications for the genesis of calc-alkaline magmas: Earth and Planetary Science Letters, v. 46, n. 3, p. 344–360, doi:https://doi.org/10.1016/0012-821x(80)90050-3
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Stacey J. T.,
    2. Kramers J. D.
    , 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26 n. 2, p.207–221, doi:https://doi.org/10.1016/0012-821X(75)90088-6
    OpenUrlCrossRefGeoRefWeb of Science
  37. ↵
    1. Stern C. R.,
    2. Kilian R.
    , 1996, Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone: Contributions to Mineralogy and Petrology, v. 123, n. 3, p. 263–281, doi:https://doi.org/10.1007/s004100050155
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Sun S.-S.,
    2. McDonough W. F.
    , 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, n. 1, p. 313–345, doi:https://doi.org/10.1144/GSL.SP.1989.042.01.19
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Tatsumi Y.
    , 2006, High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: analogy to Archean magmatism and continental crust formation?: Annual Review of Earth and Planetary Sciences, v. 34, p. 467–499, doi:https://doi.org/10.1146/annurev.earth.34.031405.125014
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. van Hinsbergen D. J. J.,
    2. Steinberger B.,
    3. Doubrovine P. V.,
    4. Gassmöller R.
    , 2011, Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision: Journal of Geophysical Research-Solid Earth, v. 116, n. B6, B06101, doi:https://doi.org/10.1029/2010JB008051
    OpenUrlCrossRef
    1. Wang Q.
    , 2011, Geochemistry and zircon U-Pb chronology of Linzizong Group volcanic rocks in western Gangdese, Tibet: Master thesis, China University of Geosciences, Beijing, China, 81 p. (in Chinese with English abstract).
  41. ↵
    1. Wen D.-R.,
    2. Chung S.-L.,
    3. Song B.,
    4. Iizuka Y.,
    5. Yang H.-J.,
    6. Ji J.,
    7. Liu D.,
    8. Gallet S.
    , 2008, Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications: Lithos, v. 105, n. 1–2, p. 1–11, doi:https://doi.org/10.1016/j.lithos.2008.02.005
    OpenUrlCrossRefGeoRefWeb of Science
    1. McKibben M. A.,
    2. Shanks W. C.,
    3. Ridley W. L.
    1. Williams I. S.
    , 1998, U-Th-Pb Geochronology by Ion Microprobe, in McKibben M. A., Shanks W. C., Ridley W. L. Editors, Application of Microanalytical Techniques to Understanding Mineralizing Processes.Reviews, Economic Geology: Society of Economic Geologists, v. 7, p. 1–15, doi:https://doi.org/10.5382/Rev.07.01
    OpenUrlCrossRef
  42. ↵
    1. White L. T.,
    2. Lister G. S.
    , 2012, The collision of India with Asia: Journal of Geodynamics, v. 56–57, p. 7–17, doi:https://doi.org/10.1016/j.jog.2011.06.006
    OpenUrlCrossRef
  43. ↵
    1. Xie B. J.,
    2. Zhou S.,
    3. Xie G. G.,
    4. Tian M. Z.,
    5. Liao Z. L.
    , 2013, Zircon SHRIMP U-Pb data and regional contrasts of geochemical characteristics of Linzizong volcanic rocks from Konglong and Dinrenle region, middle Gangdese belt: Acta Petrologica Sinica, v. 29, n. 11, p. 3803–3814 (in Chinese with English abstract).
    OpenUrl
  44. ↵
    1. Xie K. J.,
    2. Zeng L. S.,
    3. Liu J.,
    4. Gao L. E.,
    5. Hu G. Y.
    , 2011, Timing and geochemistry of the Linzizong Group volcanic rocks in Sangsang area, Ngamring County, southern Tibet: Geological Bulletin of China, v. 30, n. 9, p. 1339–1352 (in Chinese with English abstract).
    OpenUrl
  45. ↵
    1. Yin A.,
    2. Harrison T. M.
    , 2000, Geologic evolution of the Himalayan-Tibetan orogen: Annual Review of Earth and Planetary Sciences, v. 28, n. 1, p. 211–280, doi:https://doi.org/10.1146/annurev.earth.28.1.211
    OpenUrlCrossRefWeb of Science
  46. ↵
    1. Yue X. Y.
    , ms, 2012, Geochemical Characteristics and Significance of Dianzhong Volcanic Rocks in the Cuoqin Area Tibet, China: Ph.D. thesis, Chengdu University of Technology, Chengdu, China, 64 p. (in Chinese with English abstract).
  47. ↵
    1. Zhang X. Q.
    , ms, 2013, Petrogenesis of Linzizong Group volcanic rocks in Zexue area, Tibet and its relation to mineralization: Ph.D. thesis, China University of Geosciences, Wuhan, China, 118 p (in Chinese with English abstract).
  48. ↵
    1. Zhang Z.,
    2. Dong X.,
    3. Santosh M.,
    4. Liu F.,
    5. Wang W.,
    6. Yiu F.,
    7. He Z.,
    8. Shen K.
    , 2012, Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: constraints on the origin and evolution of the north-eastern margin of the Indian Craton: Gondwana Research, v. 21, n. 1, p. 123–137, doi:https://doi.org/10.1016/j.gr.2011.02.002
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Zheng Y.-C.,
    2. Hou Z.-Q.,
    3. Gong Y.-L.,
    4. Liang W.,
    5. Sun Q.-Z.,
    6. Zhang S.,
    7. Fu Q.,
    8. Huang K.-X.,
    9. Li Q.-Y.,
    10. Li W.
    , 2014: Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth: Lithos, v. 190–191, p. 240–263, doi:https://doi.org/10.1016/j.lithos.2013.12.013
    OpenUrlCrossRef
  50. ↵
    1. Zhou S.,
    2. Mo X.,
    3. Dong G.,
    4. Zhao Z.,
    5. Qiu R.,
    6. Guo T.,
    7. Wang L.
    , 2004, 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications: Chinese Science Bulletin, v. 49, n. 18, p. 1970–1979 (in Chinese with English abstract).
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Zhu D.-C.,
    2. Zhao Z.-D.,
    3. Niu Y.,
    4. Mo X.-X.,
    5. Chung S.-L.,
    6. Hou Z.-Q.,
    7. Wang L.-Q.,
    8. Wu F.-Y.
    , 2011, The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth: Earth and Planetary Science Letters, v. 301, n. 1–2, p. 241–255, doi:https://doi.org/10.1016/j.epsl.2010.11.005
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Zhu D. C.,
    2. Wang Q.,
    3. Zhao Z. D.,
    4. Chung S. L.,
    5. Cawood P. A.,
    6. Niu Y.,
    7. Liu S. A.,
    8. Wu F. Y.,
    9. Mo X. X.
    , 2015, Magmatic record of India-Asia collision: Scientific Reports, v. 5, p. 14289, doi:https://doi.org/10.1038/srep14289
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (2)
American Journal of Science
Vol. 322, Issue 2
1 Feb 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Constraints on the rollback of the Neo-Tethyan oceanic plate: Geochronology and geochemistry of volcanic rocks from the Dianzhong Formation, western Gangdese belt (Tibetan Plateau)
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Constraints on the rollback of the Neo-Tethyan oceanic plate: Geochronology and geochemistry of volcanic rocks from the Dianzhong Formation, western Gangdese belt (Tibetan Plateau)
Zhen Wang, Yuruo Shi, Tianshui Yang, J. Lawford Anderson, Chenyang Hou, Yuelan Kang, Wenxiao Peng, Yiming Ma, Weiwei Bian
American Journal of Science Feb 2022, 322 (2) 396-411; DOI: 10.2475/02.2022.10

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Constraints on the rollback of the Neo-Tethyan oceanic plate: Geochronology and geochemistry of volcanic rocks from the Dianzhong Formation, western Gangdese belt (Tibetan Plateau)
Zhen Wang, Yuruo Shi, Tianshui Yang, J. Lawford Anderson, Chenyang Hou, Yuelan Kang, Wenxiao Peng, Yiming Ma, Weiwei Bian
American Journal of Science Feb 2022, 322 (2) 396-411; DOI: 10.2475/02.2022.10
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • TECTONIC BACKGROUND AND SAMPLES
    • ANALYTICAL METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Paleo- to Mesoarchean crustal growth in the Karwar block, southern India: Constraints on TTG genesis and Archean tectonics
  • Early carboniferous rifting of the Harlik arc in the Eastern Tianshan (NW China): Response to rollback in the southern Altaids?
  • Cyclicity of multistage anatexis of deeply subducted continental crust during the North Qaidam orogeny: Tracing the source, timescale, and evolution of pulsed melts
Show more Article

Similar Articles

Keywords

  • Dianzhong Formation
  • Zircon U-Pb age
  • SHRIMP
  • Neo-tethyan plate
  • Rollback

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire