Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

North-dipping relict subduction of the Paleo-Asian Ocean at the southeastern margin of the Mongolian Terrane: Study of two parallel deep seismic profiles

Wei Fu, Hesheng Hou, Rui Gao, Haiyan Wang, Lei Guo, Jianbo Zhou, Jin Yang, Rui Guo and Zongdong Pan
American Journal of Science February 2022, 322 (2) 380-395; DOI: https://doi.org/10.2475/02.2022.09
Wei Fu
*Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hesheng Hou
*Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: hesheng.hou@126.com
Rui Gao
**School of Earth Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
***Institute of Geology, Chinese Academy of Geological Science, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Haiyan Wang
***Institute of Geology, Chinese Academy of Geological Science, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lei Guo
***Institute of Geology, Chinese Academy of Geological Science, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianbo Zhou
§College of Earth Sciences, Jilin University, Changchun 130026, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jin Yang
*Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rui Guo
*Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zongdong Pan
*Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Badarch G.,
    2. Cunningham W. D.,
    3. Windley B. F.
    , 2002, A new terrane subdivision for Monglia: implications for the Phanerozoic crustal growth of Central Asia: Journal of Asian Earth Sciences, v. 21, n. 1, p. 87–110, doi:https://doi.org/10.1016/S1367-9120(02)00017-2
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Brown L. D.
    , 2013, From layer cake to complexity: 50 years of geophysical investigations of the Earth: Geological Society of America Special Paper, v. 500, p. 233–258, doi:https://doi.org/10.1130/2013.2500(07)
    OpenUrlCrossRef
  3. ↵
    1. Chen B.,
    2. Jahn B.-M.,
    3. Wilde S.,
    4. Xu B.
    , 2000, Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications: Tectonophysics, v. 328, n. 1–2, p. 157–182, doi:https://doi.org/10.1016/S0040-1951(00)00182-7
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Clowes R. M.,
    2. Brandon M. T.,
    3. Green A. G.,
    4. Yorath C. J.,
    5. Brown A. S.,
    6. Kanasewich E. R.,
    7. Spencer C.
    , 1987, LITHOPROBE—southern Vancouver Island: Cenozoic subduction complex imaged by deep seismic reflections: Canadian Journal of Earth Sciences, v. 24, n. 1, p. 31–51, doi:https://doi.org/10.1139/e87-004
    OpenUrlAbstract
  5. ↵
    1. Cook F. A.
    , 2002, Fine structure of the continental reflection Moho: Geological Society of America Bulletin, v. 114, n. 1, p. 64–79, doi:https://doi.org/10.1130/0016-7606(2002)114<0064:FSOTCR>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Cook F. A.,
    2. van der Velden A. J.,
    3. Hall K. W.,
    4. Roberts B. J.
    , 1999, Frozen subduction in Canada's Northwest Territories: Lithoprobe deep lithospheric reflection profiling of the western Canadian Shield: Tectonics, v. 18, n. 1, p. 1–24, doi:https://doi.org/10.1029/1998TC900016
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Cook F. A.,
    2. Clowes R. M.,
    3. Snyder D. B.,
    4. van der Velden A. J.,
    5. Hall K. W.,
    6. Erdmer P.,
    7. Evenchick C. A.
    , 2004, Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling: Tectonics, v. 23, n. 2, TC2010, doi:https://doi.org/10.1029/2002TC001412
    OpenUrlCrossRef
  8. ↵
    1. Cook F. A.,
    2. White D. J.,
    3. Jones A. G.,
    4. Eaton D. W. S.,
    5. Hall J.,
    6. Clowes R. M.
    , 2010, How the crust meets the mantle: Lithoprobe perspectives on the Mohorovičić discontinuity and crust–mantle transition: Canadian Journal of Earth Sciences, v. 47, n. 4, p. 315–351, doi:https://doi.org/10.1139/E09-076
    OpenUrlCrossRefGeoRef
  9. ↵
    1. Deng J. F.,
    2. Wu Z. X.,
    3. Zhao G. C.,
    4. Zhao H. L.,
    5. Luo Z. H.,
    6. Mo X. X.
    , 1999, Precambrian granitic rocks, continental crustal evolution and craton formation of the North China Platform: Acta Petrologica Sinica, v. 15, n. 2, p. 190–198 (in Chinese with English abstract).
    OpenUrlGeoRef
  10. ↵
    1. Dong S.-W.,
    2. Li T.-D.,
    3. Lü Q.-T.,
    4. Gao R.,
    5. Yang J.-S.,
    6. Chen X.-H.,
    7. Wei W.-B.,
    8. Zhou Q.
    , 2013, Progress in deep lithospheric exploration of the continental China: a review of the SinoProbe: Tectonophysics, v. 606, p. 1–13, doi:https://doi.org/10.1016/j.tecto.2013.05.038
    OpenUrlCrossRef
  11. ↵
    1. Eaton D. W.,
    2. Cassidy J. F.
    , 1996, A relic Proterozoic subduction zone in western Canada: New evidence from seismic reflection and receiver function data: Geophysical Research Letters, v. 23, n. 25, p. 3791–3794, doi:https://doi.org/10.1029/96GL03619
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Eizenhöfer P. R.,
    2. Zhao G.
    , 2018, Solonker Suture in East Asia and its bearing on the final closure of the eastern segment of the Palaeo-Asian Ocean: Earth-Science Reviews, v. 186, p. 153–172, doi:https://doi.org/10.1016/j.earscirev.2017.09.010
    OpenUrlCrossRef
  13. ↵
    1. Gong C.,
    2. Li Q.-S.,
    3. Ye Z.,
    4. Zhang. H.-S.,
    5. Li W.-H.,
    6. He C.-S.,
    7. Li Y.-K.
    , 2016, Crustal thickness and Poisson ratio beneath the Huailai-Bayinonder profile derived from teleseismic receiver functions: Chinese Journal of Geophysics, v. 59, n. 3, p. 897–911 (in Chinese with English abstract), doi:https://doi.org/10.6038/cjg20160312
    OpenUrlCrossRef
  14. ↵
    1. Green A. G.,
    2. Clowes R. M.,
    3. Yorath C. J.,
    4. Spencer C.,
    5. Kanasewich E. R.,
    6. Brandon M. T.,
    7. Brown A. S.
    , 1986, Seismic reflection imaging of the subducting Juan de Fuca plate: Nature, v. 319, p. 210–213, doi:https://doi.org/10.1038/319210a0
    OpenUrlCrossRefGeoRef
  15. ↵
    1. Guo X.,
    2. Li W.,
    3. Gao R.,
    4. Xu X.,
    5. Li H.,
    6. Huang X.,
    7. Ye Z.,
    8. Lu Z.,
    9. Klemperer S. L.
    , 2017, Nonuniform subduction of the Indian crust beneath the Himalayas: Scientific Reports, v. 7, p. 12497, doi:https://doi.org/10.1038/s41598-017-12908-0
    OpenUrlCrossRef
  16. ↵
    1. Holliger K.,
    2. Levander A.,
    3. Carbonell R.,
    4. Hobbs R.
    , 1994, Some attributes of wavefields scattered from Ivrea-type lower crust: Tectonophysics, v. 232, n. 1–4, p. 267–279, doi:https://doi.org/10.1016/0040-1951(94)90089-2
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Hou H.,
    2. Wang H.,
    3. Gao R.,
    4. Li Q.,
    5. Li H.,
    6. Xiong X.,
    7. Li W.,
    8. Tong Y.
    , 2015, Fine crustal structure and deformation beneath the Great Xing'an Ranges, CAOB: Revealed by deep seismic reflection profile: Journal of Asian Earth Sciences, v. 113, Part 1, p. 491–500, doi:https://doi.org/10.1016/j.jseaes.2015.01.030
    OpenUrlCrossRef
  18. ↵
    1. Hou H.-S.,
    2. Wang C.-S.,
    3. Zhang J.-D.,
    4. Ma F.,
    5. Fu W.,
    6. Wang P.-J.,
    7. Huang Y.-J.,
    8. Zou C.-C.,
    9. Gao Y.-F.,
    10. Gao Y.,
    11. Zhang L.-M.,
    12. Yang J.,
    13. Guo R.
    , 2018, Deep continental scientific drilling engineering in Songliao Basin: Progress in earth science research: China Geology, v. 1, p. 173–186, doi:https://doi.org/10.31035/cg2018036
    OpenUrlCrossRef
  19. ↵
    1. Jian P.,
    2. Liu D.,
    3. Kröner A.,
    4. Windley B. F.,
    5. Shi Y.,
    6. Zhang F.,
    7. Shi G.,
    8. Miao L.,
    9. Zhang W.,
    10. Zhang Q.,
    11. Zhang L.,
    12. Ren J.
    , 2008, Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth: Lithos, v. 101, n. 3–4, p. 233–259, doi:https://doi.org/10.1016/j.lithos.2007.07.005
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Jian P.,
    2. Liu D.,
    3. Kröner A.,
    4. Windley B. F.,
    5. Shi Y.,
    6. Zhang W.,
    7. Zhang F.,
    8. Miao L.,
    9. Zhang L.,
    10. Tomurhuu D.
    , 2010, Evolution of a Permian intraoceanic arc–trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia: Lithos, v. 118, n. 1–2, p. 169–190, doi:https://doi.org/10.1016/j.lithos.2010.04.014
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Jian P.,
    2. Kröner A.,
    3. Shi Y.,
    4. Zhang W.,
    5. Liu Y.,
    6. Windley B. F.,
    7. Jahn B.-m.,
    8. Zhang L.,
    9. Liu D.
    , 2016, Age and provenance constraints on seismically-determined crustal layers beneath the Paleozoic southern Central Asian Orogen, Inner Mongolia, China: Journal of Asian Earth Sciences, v. 123, p. 119–141, doi:https://doi.org/10.1016/j.jseaes.2016.04.001
    OpenUrlCrossRef
  22. ↵
    1. Klemperer S. L.
    , 1989, Deep seismic reflection profiling and the growth of the continental crust: Tectonophysics, v. 161, n. 3–4, p. 233–244, doi:https://doi.org/10.1016/0040-1951(89)90156-X
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    1. Kröner A.,
    2. Kovach V.,
    3. Belousova E.,
    4. Hegner E.,
    5. Armstrong R.,
    6. Dolgopolova A.,
    7. Seltmann R.,
    8. Alexeiev D. V.,
    9. Hoffmann J. E.,
    10. Wong J.,
    11. Sun M.,
    12. Cai K.,
    13. Wang T.,
    14. Tong Y.,
    15. Wilde S. A.,
    16. Degtyarev K. E.,
    17. Rytsk E.
    , 2014, Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt: Gondwana Research, v. 25, n. 1, p. 103–125, doi:https://doi.org/10.1016/j.gr.2012.12.023
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Kröner A.,
    2. Kovach V.,
    3. Alexeiev D.,
    4. Wang K.-L.,
    5. Wong J.,
    6. Degtyarev K.,
    7. Kozakov I.
    , 2017, No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data: Gondwana Research, v. 50, p. 135–166, doi:https://doi.org/10.1016/j.gr.2017.04.006
    OpenUrlCrossRef
  25. ↵
    1. Li J.-Y.
    , 2006, Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate: Journal of Asian Earth Sciences, v. 26, n. 3–4, p. 207–224, doi:https://doi.org/10.1016/j.jseaes.2005.09.001
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Li W.-H.,
    2. Gao R.,
    3. Keller R.,
    4. Li Q.-S.,
    5. Hou H.-S.,
    6. Li Y.-K.,
    7. Zhang S.-H.
    , 2014a, Crustal structure of the northern margin of north China craton from Huailai to Sonid Youqi profile: Chinese Journal of Geophysics, v. 57, n. 2, p. 472–483 (in Chinese with English abstract), doi:https://doi.org/10.6038/cjg20140213
    OpenUrlCrossRef
  27. ↵
    1. Li Y.-K.,
    2. Gao R.,
    3. Yao Y.-T.,
    4. Mi S.-X.,
    5. Li W.-H.,
    6. Xiong X.-S.,
    7. Gao J.-W.
    , 2014b, Crustal Velocity Structure from the Northern Margin of the North China Craton to the Southern Margin of the Siberian Plate: Chinese Journal of Geophysics, v. 57, n. 1, p.48–63 (in Chinese with English abstract), doi:https://doi.org/10.1002/cjg2.20083
    OpenUrlCrossRef
  28. ↵
    1. Li Y.,
    2. Brouwer F. M.,
    3. Xiao W.,
    4. Zheng J.
    , 2017, Late Devonian to early Carboniferous arc-related magmatism in the Baolidao arc, Inner Mongolia, China: Significance for southward accretion of the eastern Central Asian orogenic belt: Geological Society of America Bulletin, v. 129, n. 5–6, p. 677–697, doi:https://doi.org/10.1130/B31511.1
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Liang H.,
    2. Gao R.,
    3. Hou H.,
    4. Li W.,
    5. Han J.,
    6. Liu G.,
    7. Han S.
    , 2015, Post-collisional extend record at crustal scale: Revealed by the deep electrical structure from the southern margin of the central Asian orogenic belt to the northern margin of the North China Craton: Chinese Journal of Geology, v. 50, 2, p. 643–652, doi:https://doi.org/10.3969/j.issn.0563-5020.2015.02.019
    OpenUrlCrossRef
  30. ↵
    1. Liu D. Y.,
    2. Nutman A. P.,
    3. Compston W.,
    4. Wu J. S.,
    5. Shen Q. H.
    , 1992, Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton: Geology, v. 20, n. 4, p., 339–342, doi:https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Liu Y.,
    2. Li W.,
    3. Feng Z.,
    4. Wen Q.,
    5. Neubauer F.,
    6. Liang C.
    , 2017, A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt: Gondwana Research, v. 43, p.123–148, doi:https://doi.org/10.1016/j.gr.2016.03.013
    OpenUrlCrossRef
  32. ↵
    1. Dawson J. B.,
    2. Carswell D. A.,
    3. Hall J.,
    4. Wedepohl K. H.
    1. Matthews D. H.
    , 1986, Seismic reflections from the lower crust around Britain, in Dawson J. B., Carswell D. A., Hall J., Wedepohl K. H., editors, The Nature of the Lower Continental Crust: Geological Society London Special Publications, v. 24, n. 1, p. 11–21, doi:https://doi.org/10.1144/GSL.SP.1986.024.01.03
    OpenUrlCrossRef
  33. ↵
    1. Meissner R.,
    2. Rabbel W.,
    3. Kern H.
    , 2006, Seismic lamination and anisotropy of the Lower Continental Crust: Tectonophysics, v. 416, n. 1–4, p.81–99, doi:https://doi.org/10.1016/j.tecto.2005.11.013
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Miao L. C.,
    2. Fan W. M.,
    3. Liu D. Y.,
    4. Zhang F. Q.,
    5. Shi Y. R.,
    6. Guo F.
    , 2008, Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China: Journal of Asian Earth Sciences, v. 32, n. 5–6, p.348–370, doi:https://doi.org/10.1016/j.jseaes.2007.11.005
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Fountain W. D.,
    2. Arculus R.,
    3. Kay R. W.
    1. Mooney W. D.,
    2. Meissner R.
    , 1992, Multigenetic origin of crustal reflectivity: a review of seismic reflection profiling of the continental lower crust and Moho, in Fountain W. D., Arculus R., Kay R. W., editors, Continental Lower Crust: Amsterdam, the Netherlands, Elsevier, p. 45–79.
  36. ↵
    1. Moore J. C.,
    2. Diebold J.,
    3. Fisher M. A.,
    4. Sample J.,
    5. Brocher T.,
    6. Talwani M.,
    7. Ewing J.,
    8. von Huene R.,
    9. Rowe C.,
    10. Stone D.,
    11. Stevens C.,
    12. Sawyer D.
    , 1991, EDGE deep seismic reflection transect of the eastern Aleutian arc-trench layered lower crust reveals underplating and continental growth: Geology, v. 19, n. 5, p. 420–424, doi:https://doi.org/10.1130/0091-7613(1991)019<0420:EDSRTO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Nozaka T.,
    2. Liu Y.
    , 2002, Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China: Earth and Planetary Science Letters, v. 202, n. 1, p. 89–104, doi:https://doi.org/10.1016/S0012-821X(02)00774-4
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Percival J. A.,
    2. Green A. G.,
    3. Milkereit B.,
    4. Cook F. A.,
    5. Geis W.,
    6. West G. F.
    , 1989, Seismic reflection profiles across deep continental crust exposed in the Kapuskasing uplift structure: Nature, v. 342, p. 416–420, doi:https://doi.org/10.1038/342416a0
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Robinson P. T.,
    2. Zhou M.-F.,
    3. Hua X.-F.,
    4. Reynolds P.,
    5. Bai W.,
    6. Yang J.
    , 1999, Geochemical constraints on the origin of the Hegenshan Ophiolite, Inner Mongolia, China: Journal of Asian Earth Sciences, v. 17, n. 4, p. 423–442, doi:https://doi.org/10.1016/S1367-9120(99)00016-4
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Safonova I. Y.,
    2. Santosh M.
    , 2014, Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes: Gondwana Research, v. 25, n. 1, p. 126–158, doi:https://doi.org/10.1016/j.gr.2012.10.008
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Sengör A. M. C.,
    2. Natal'in B. A.
    , 1996, Paleotectonics of Asia: Fragments of a synthesis, in Tectonic Evolution of Asia, p. 486–640.
  42. ↵
    1. Şengör A. M. C.,
    2. Natal'in B. A.,
    3. Burtman V. S.
    , 1993, Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia: Nature, v. 364, p. 299–307, doi:https://doi.org/10.1038/364299a0
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Singh S. C.,
    2. McKenzie D.
    , 1993, Layering in the lower crust: Geophysical Journal International, v. 113, n. 3, p. 622–628, doi:https://doi.org/10.1111/j.1365-246X.1993.tb04656.x
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Smythe D. K.,
    2. Dobinson A.,
    3. Mcquillin R.,
    4. Brewer J. A.,
    5. Matthews D. H.,
    6. Blundell D. J.,
    7. Kelk B.
    , 1982, Deep structure of the Scottish Caledonides revealed by the MOIST reflection profile: Nature, v. 299, p. 338–340, doi:https://doi.org/10.1038/299338a0
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Song S.,
    2. Wang M.-M.,
    3. Xu X.,
    4. Wang C.,
    5. Niu Y.,
    6. Allen M. B.,
    7. Su L.
    , 2015, Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events: Tectonics, v. 34, n. 10, p. 2221–2248, doi:https://doi.org/10.1002/2015TC003948
    OpenUrlCrossRef
  46. ↵
    1. Steer D. N.,
    2. Knapp J. H.,
    3. Brown L. D.
    , 1998, Super-deep reflection profiling: exploring the continental mantle lid: Tectonophysics, v. 286, n. 1–4, p. 111–121, doi:https://doi.org/10.1016/S0040-1951(97)00258-8
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Tang K.
    , 1990, Tectonic development of Paleozoic foldbelts at the north margin of the Sino‐Korean Craton: Tectonics, v. 9, n. 2, p. 249–260, doi:https://doi.org/10.1029/TC009i002p00249
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Tong Y.,
    2. Hong D. W.,
    3. Wang T.,
    4. Shi J. X.,
    5. Zhang J. J.,
    6. Zeng T.
    , 2010, Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications: Acta Geoscientica Sinica, v. 31, n. 3, p. 395–412 (in Chinese with English abstract).
    OpenUrl
  49. ↵
    1. van der Velden A. J.,
    2. Cook F. A.
    , 2002, Products of 2.65–2.58 Ga orogenesis in the Slave Province correlated with Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) seismic reflection patterns: Canadian Journal of Earth Sciences, v. 39, n. 8, p. 1189–1200, doi:https://doi.org/10.1139/e02-034
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. van der Velden A. J.,
    2. Cook F. A.
    , 2005, Relict subduction zones in Canada: Journal of Geophysical Research, v. 110, n. B8, B08403, p. 1–17, doi:https://doi.org/10.1029/2004JB003333
    OpenUrlCrossRef
  51. ↵
    1. Wan B.,
    2. Li S.,
    3. Xiao W.,
    4. Windley B. F.
    , 2018, Where and when did the Paleo-Asian ocean form?: Precambrian Research, v. 317, p. 241–252, doi:https://doi.org/10.1016/j.precamres.2018.09.003
    OpenUrlCrossRef
  52. ↵
    1. Wang Y.
    , 1996, Tectonic evolutional processes of Inner Mongolia-Yanshan Orogenic Belt in Eastern China during the Late Paleozoic-Mesozoic: Beijing: Geological Publishing House (in Chinese).
  53. ↵
    1. Wang T.,
    2. Guo L.,
    3. Zhang L.,
    4. Yang Q.,
    5. Zhang J.,
    6. Tong Y.,
    7. Ye K.
    , 2015, Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings: Journal of Asian Earth Sciences, v. 97, Part B, p. 365–392, doi:https://doi.org/10.1016/j.jseaes.2014.10.005
    OpenUrlCrossRefGeoRef
  54. ↵
    1. Warner M.,
    2. Morgan J.,
    3. Barton P.,
    4. Morgan P.,
    5. Price C.,
    6. Jones K.
    , 1996, Seismic reflections from the mantle represent relict subduction zones within the continental lithosphere: Geology, v. 24, n. 1, p. 39–42, doi:https://doi.org/10.1130/0091-7613(1996)024<0039:SRFTMR>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. White D. J.,
    2. Musacchio G.,
    3. Helmstaedt H. H.,
    4. Harrap R. M.,
    5. Thurston P. C.,
    6. van der Velden A.,
    7. Hall K.
    , 2003, Images of a lower-crustal oceanic slab: Direct evidence for tectonic accretion in the Archean western Superior province: Geology, v. 31, n. 11, p. 997–1000, doi:https://doi.org/10.1130/G20014.1
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Wilde S. A.
    , 2015, Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction — A review of the evidence: Tectonophysics, v. 662, p. 345–362, doi:10.1016/j.tecto.2015.05.006
    OpenUrlCrossRefGeoRef
  57. ↵
    1. Wilde S. A.,
    2. Zhao G. C.,
    3. Sun M.
    , 2002, Development of the North China Craton during the late Archaean and its final amalgamation at 1.8 Ga: some speculations on its position within a global Paleoproterozoic supercontinent: Gondwana Research, v. 5, n. 1, p. 85–94, doi:https://doi.org/10.1016/S1342-937X(05)70892-3
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. Windley B. F.,
    2. Alexeiev D.,
    3. Xiao W.,
    4. Kröner A.,
    5. Badarch G.
    , 2007, Tectonic models for accretion of the Central Asian Orogenic Belt: Journal of the Geological Society, v. 164, p. 31–47, doi:https://doi.org/10.1144/0016-76492006-022
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Wu F.-Y.,
    2. Lin J.-Q.,
    3. Wilde S. A.,
    4. Zhang X. Q.,
    5. Yang J.-H.
    , 2005, Nature and significance of the early Cretaceous giant igneous event in eastern China: Earth and Planetary Science Letters, v. 233, n. 1–2, p. 103–119, doi:https://doi.org/10.1016/j.epsl.2005.02.019
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Wu Y.,
    2. Guo X.,
    3. Gao R.,
    4. Li S.,
    5. Wang H.,
    6. Lu Z.,
    7. Li W.
    , 2021, Deep seismic reflection insights into syn-Rodinian crustal recycling: Precambrian Research, v. 354, 106075, doi:https://doi.org/10.1016/j.precamres.2020.106075
    OpenUrlCrossRef
  61. ↵
    1. Xiao W.,
    2. Windley B. F.,
    3. Hao J.,
    4. Zhai M.
    , 2003, Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt: Tectonics, v. 22, n. 6, doi:https://doi.org/10.1029/2002tc001484
    OpenUrlCrossRef
  62. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Huang B. C.,
    4. Han C. M.,
    5. Yuan C.,
    6. Chen H. L.,
    7. Sun M.,
    8. Sun S.,
    9. Li J. L.
    , 2009, End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia: International Journal of Earth Sciences, v. 98, p. 1189–1217, doi:https://doi.org/10.1007/s00531-008-0407-z
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Xiao W.,
    2. Windley B. F.,
    3. Sun S.,
    4. Li J.,
    5. Huang B.,
    6. Han C.,
    7. Yuan C.,
    8. Sun M.,
    9. Chen H.
    , 2015, A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion: Annual Review of Earth and Planetary Sciences, v. 43, p. 477–507, doi:https://doi.org/10.1146/annurev-earth-060614-105254
    OpenUrlCrossRef
  64. ↵
    1. Xiao W.,
    2. Windley B. F.,
    3. Han C.,
    4. Liu W.,
    5. Wan B.,
    6. Zhang J. E.,
    7. Ao S.,
    8. Zhang Z.,
    9. Song D.
    , 2017, Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia: Earth-Science Reviews, v. 186, p. 94–128, doi:https://doi.org/10.1016/j.earscirev.2017.09.020
    OpenUrlCrossRef
  65. ↵
    1. Xu B.,
    2. Zhao P.,
    3. Wang Y. Y.,
    4. Liao W.,
    5. Luo Z. W.,
    6. Bao Q. Z.,
    7. Zhou Y. H.
    , 2015, The pre-Devonian tectonic framework of Xing'an–Mongolia orogenic belt (XMOB) in north China: Journal of Asian Earth Sciences, v. 97, Part B, p. 183–196, doi:https://doi.org/10.1016/j.jseaes.2014.07.020
    OpenUrlCrossRefGeoRef
  66. ↵
    1. Kusky T. M.,
    2. Zhai M.-G.,
    3. Xiao W.
    1. Zhai M.,
    2. Li T.-S.,
    3. Peng P.,
    4. Hu B.,
    5. Liu F.,
    6. Zhang Y. B.
    , 2010, Precambrian key tectonic events and evolution of the North China Craton, in Kusky T. M., Zhai M.-G., Xiao W., editors, The evolving continents: Understanding processes of continental growth: Geological society, London, Special Publication, v. 338, p. 235–262, doi:https://doi.org/10.1144/SP338.12[doi:10.1144/SP338.12]
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Zhang H.,
    2. Li Q.,
    3. Ye Z.,
    4. Gong C.,
    5. Wang X.
    , 2018, New Seismic Evidence for Continental Collision During the Assembly of the Central Asian Orogenic Belt: Journal of Geophysical Research: Solid Earth, v. 123, n. 8, p. 6687–6702, doi:https://doi.org/10.1029/2017JB015061
    OpenUrlCrossRef
  68. ↵
    1. Zhang S.,
    2. Gao R.,
    3. Li H.,
    4. Hou H.,
    5. Wu H.,
    6. Li Q.,
    7. Yang K.,
    8. Li C.,
    9. Li W.,
    10. Zhang J.,
    11. Yang T.,
    12. Keller G. R.,
    13. Liu M.
    , 2014a, Crustal structures revealed from a deep seismic reflection profile across the Solonker suture zone of the Central Asian Orogenic Belt, northern China: An integrated interpretation: Tectonophysics, v. 612–613, p. 26–39, doi:https://doi.org/10.1016/j.tecto.2013.11.035
    OpenUrlCrossRef
  69. ↵
    1. Zhang S.-H.,
    2. Zhao Y.,
    3. Ye H.,
    4. Liu J.-M.,
    5. Hu Z.-C.
    , 2014b, Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt: Geological Society of America Bulletin, v. 126, n. 9–10, p. 1275–1300, doi:https://doi.org/10.1130/B31042.1
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Zhao G.,
    2. Sun M.,
    3. Wilde S. A.,
    4. Li S.
    , 2003. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in the North China Craton: Gondwana Research, v. 6, n. 3, p. 417–434, doi:https://doi.org/10.1016/S1342-937X(05)70996-5
    OpenUrlCrossRefGeoRefWeb of Science
  71. ↵
    1. Zhao G.,
    2. Wang Y.,
    3. Huang B.,
    4. Dong Y.,
    5. Li S.,
    6. Zhang G.,
    7. Yu S.
    , 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea: Earth-Science Reviews, v. 186, p. 262–286, doi:https://doi.org/10.1016/j.earscirev.2018.10.003
    OpenUrlCrossRef
  72. ↵
    1. Zhou J.-B.,
    2. Wilde S. A.,
    3. Zhang X.-Z.,
    4. Zhao G.-C.,
    5. Zheng C.-Q.,
    6. Wang Y.-J.,
    7. Zhang X.-H.
    , 2009, The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt: Tectonophysics, v. 478, n. 3–4, p. 230–246, doi:https://doi.org/10.1016/j.tecto.2009.08.009
    OpenUrlCrossRefGeoRefWeb of Science
  73. ↵
    1. Zhou J.-B.,
    2. Han J.,
    3. Zhao G.-C.,
    4. Zhang X.-Z.,
    5. Cao J.-L.,
    6. Wang B.,
    7. Pei S.-H.
    , 2015, The emplacement time of the Hegenshan ophiolite: Constraints from the unconformably overlying Paleozoic strata: Tectonophysics, v. 622, p. 398–415, doi:https://doi.org/10.1016/j.tecto.2015.03.008
    OpenUrlCrossRef
  74. ↵
    1. Zhou J.-B.,
    2. Wilde S. A.,
    3. Zhao G.-C.,
    4. Han J.
    , 2018, Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean: Earth-Science Reviews, v. 186, p.76–93, doi:https://doi.org/10.1016/j.earscirev.2017.01.012
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (2)
American Journal of Science
Vol. 322, Issue 2
1 Feb 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
North-dipping relict subduction of the Paleo-Asian Ocean at the southeastern margin of the Mongolian Terrane: Study of two parallel deep seismic profiles
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 11 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
North-dipping relict subduction of the Paleo-Asian Ocean at the southeastern margin of the Mongolian Terrane: Study of two parallel deep seismic profiles
Wei Fu, Hesheng Hou, Rui Gao, Haiyan Wang, Lei Guo, Jianbo Zhou, Jin Yang, Rui Guo, Zongdong Pan
American Journal of Science Feb 2022, 322 (2) 380-395; DOI: 10.2475/02.2022.09

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
North-dipping relict subduction of the Paleo-Asian Ocean at the southeastern margin of the Mongolian Terrane: Study of two parallel deep seismic profiles
Wei Fu, Hesheng Hou, Rui Gao, Haiyan Wang, Lei Guo, Jianbo Zhou, Jin Yang, Rui Guo, Zongdong Pan
American Journal of Science Feb 2022, 322 (2) 380-395; DOI: 10.2475/02.2022.09
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL BACKGROUND AND TECTONIC SETTING
    • SEISMIC DATA AND PROCESSING
    • SEISMIC REFLECTION PATTERNS AND DISCUSSION
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The petrogenesis and tectonic setting of the New Hampshire Plutonic Suite: Towards a more comprehensive model for the magmatism of the Acadian Orogeny
  • On carbon burial and net primary production through Earth's history
  • The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian
Show more Article

Similar Articles

Keywords

  • Paleo-Asian Ocean
  • deep seismic profile
  • Solonker Suture
  • lower crustal reflection
  • mantle reflection

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire