Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Late carboniferous continental arc magmatism in the southeastern Central Asian Orogenic Belt: insights from the Erenhot granitic pluton, Inner Mongolia

Bing Xu, Guochun Zhao, Jinlong Yao, Peng Wang, Yanhong He, Yigui Han, Hai Zhou and Bo Wang
American Journal of Science February 2022, 322 (2) 351-379; DOI: https://doi.org/10.2475/02.2022.08
Bing Xu
*State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guochun Zhao
**Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
*State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gzhao@hku.hk
Jinlong Yao
*State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peng Wang
**Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yanhong He
*State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yigui Han
*State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hai Zhou
***School of Earth Science and Resources, Chang'an University, Xi'an, 710054, China
*State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bo Wang
*State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Badarch G.,
    2. Cunningham W. D.,
    3. Windley B. F.
    , 2002, A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia: Journal of Asian Earth Sciences, v. 21, n. 1, p. 87–110, doi:https://doi.org/10.1016/S1367-9120(02)00017-2
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Bao Z. W.,
    2. Chen S. H.,
    3. Zhang Z. T.
    , 1994, A study on REE and Sm-Nd isotopes of Hegenshan ophiolite, Inner Mongolia: Geochemica, v. 23, p. 339–349 (in Chinese with English abstract).
    OpenUrl
  3. ↵
    1. Barbarin B.
    , 1999, A review of the relationships between granitoid types, their origins and their geodynamic environments: Lithos, v. 46, n. 3, p. 605–626, doi:https://doi.org/10.1016/S0024-4937(98)00085-1
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Blight J. H. S.,
    2. Crowley Q. G.,
    3. Petterson M. G.,
    4. Cunningham D.
    , 2010a, Granites of the southern Mongolia Carboniferous Arc: New geochronological and geochemical constraints: Lithos, v. 116, n. 1–2, p. 35–52, doi:https://doi.org/10.1016/j.lithos.2010.01.001
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Blight J. H. S.,
    2. Petterson M. G.,
    3. Crowley Q. G.,
    4. Cunningham D.
    , 2010b, The Oyut Ulaan Volcanic Group: stratigraphy, magmatic evolution and timing of Carboniferous arc development in SE Mongolia: Journal of the Geological Society, v. 167, n. 3, p. 491–509, doi:https://doi.org/10.1144/0016-76492009-094
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Bonin B.
    , 2004, Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review: Lithos, v. 78, n. 1–2, p. 1–24, doi:https://doi.org/10.1016/j.lithos.2004.04.042
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Borg L. E.,
    2. Clynne M. A.
    , 1998, The petrogenesis of felsic calc-alkaline magmas from the southernmost Cascades, California: origin by partial melting of basaltic lower crust, Journal of Petrology, v. 39, n. 6, p. 1197–1222, doi:https://doi.org/10.1093/petroj/39.6.1197
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Bouvier A.,
    2. Vervoort J. D.,
    3. Patchett P. J.
    , 2008, The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets: Earth and Planetary Science Letters, v. 273, n. 1–2, p. 48–57, doi:https://doi.org/10.1016/j.epsl.2008.06.010
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Chappell B. W.
    , 1999, Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites: Lithos, v. 46, n. 3, p. 535–551, doi:https://doi.org/10.1016/S0024-4937(98)00086-3
    OpenUrlCrossRefGeoRefWeb of Science
  10. ↵
    1. Chappell B. W.,
    2. White A. J. R.
    , 1974, Two contrasting granite types: Pacific Geology, v. 8, p. 173–174.
    OpenUrlGeoRef
  11. ↵
    1. Chappell B. W.,
    2. White A. J. R.
    , 1992, I- and S-type granites in the Lachlan Fold Belt: Earth and Environmental Science Transactions of The Royal Society of Edinburgh, v. 83, n. 1–2, p. 1–26, doi:https://doi.org/10.1017/S0263593300007720
    OpenUrlCrossRef
  12. ↵
    1. Chappell B. W.,
    2. White A. J. R.
    , 2001, Two contrasting granite types: 25 years later: Australian Journal of Earth Sciences, v. 48, n. 4, p. 489–499, doi:https://doi.org/10.1046/j.1440-0952.2001.00882.x
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Chen B.,
    2. Jahn B. M.,
    3. Wilde S.,
    4. Xu B.
    , 2000, Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications: Tectonophysics, v. 328, n. 1–2, p. 157–182, doi:https://doi.org/10.1016/S0040-1951(00)00182-7
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Chen B.,
    2. Jahn B. M.,
    3. Tian W.
    , 2009, Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and collision-related magmas and forearc sediments: Journal of Asian Earth Sciences, v. 34, n. 3, p. 245–257, doi:https://doi.org/10.1016/j.jseaes.2008.05.007
    OpenUrlCrossRefGeoRefWeb of Science
  15. ↵
    1. Cheng Y. H.,
    2. Teng X. J.,
    3. Xin H. T.,
    4. Yang J. Q.,
    5. Yi S. P.,
    6. Zhang Y.,
    7. Li Y. F.
    , 2012, SHRIMP zircon U-Pb dating of granites in Mahonondor area, East Ujimqin Banner, Inner Mongolia: Acta Petrologica et Mineralogica, v. 31, n. 3, p. 323–334 (in Chinese with English abstract).
    OpenUrl
  16. ↵
    1. Cheng Y. H.,
    2. Teng X. J.,
    3. Li Y. F.,
    4. Li M.,
    5. Zhang T. F.
    , 2014, Early Permian East-Ujimqin mafic-ultramafic and granitic rocks from the Xing'an-Mongolian Orogenic Belt, North China: Origin, chronology, and tectonic implications: Journal of Asian Earth Sciences, v. 96, p. 361–373, doi:https://doi.org/10.1016/j.jseaes.2014.09.027
    OpenUrlCrossRefGeoRef
  17. ↵
    1. Clemens J. D.
    , 2003, S-type granitic magmas–petrogenetic issues, models and evidence: Earth-Science Reviews, v. 61, n. 1–2, p. 1–18, doi:https://doi.org/10.1016/S0012-8252(02)00107-1
    OpenUrlCrossRefGeoRef
  18. ↵
    1. Clemens J. D.,
    2. Stevens G.,
    3. Farina F.
    , 2011, The enigmatic sources of I-type granites: The peritectic connexion: Lithos, v. 126, n. 3–4, p. 174–181, doi:https://doi.org/10.1016/j.lithos.2011.07.004
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Diwu C. R.,
    2. Sun Y.,
    3. Zhang H.,
    4. Wang Q.,
    5. Guo A. L.,
    6. Fan L. G.
    , 2012, Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China: Constraints from detrital zircon U-Pb ages: Journal of Asian Earth Sciences, v. 47, p. 107–122, doi:https://doi.org/10.1016/j.jseaes.2011.07.012
    OpenUrlCrossRefGeoRef
  20. ↵
    1. Dong Y.,
    2. Ge W. C.,
    3. Zhao G. C.,
    4. Yang H.,
    5. Liu X. W.,
    6. Zhang Y. L.
    , 2016, Petrogenesis and tectonic setting of the Late Paleozoic Xing'an complex in the northern Great Xing'an Range, NE China: Constraints from geochronology, geochemistry and zircon Hf isotopes: Journal of Asian Earth Sciences, v. 115, p. 228–246, doi:https://doi.org/10.1016/j.jseaes.2015.09.031
    OpenUrlCrossRef
  21. ↵
    1. Eizenhöfer P. R.,
    2. Zhao G. C.,
    3. Zhang J.,
    4. Sun M.
    , 2014, Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks: Tectonics, v. 33, n. 4, p. 441–463, doi:https://doi.org/10.1002/2013TC003357
    OpenUrlCrossRefGeoRef
  22. ↵
    1. Eizenhöfer P. R.,
    2. Zhao G. C.,
    3. Sun M.,
    4. Zhang J.,
    5. Han Y. G.,
    6. Hou H.
    , 2015a, Geochronological and Hf isotopic variability of detrital zircons in Palaeozoic sedimentary strata across the accretionary collision Zone between the North China Craton and the Mongolian arcs, and its tectonic implications: Geological Society of America Bulletin, v. 127, n. 9–10, p. 1422–1436, doi:https://doi.org/10.1130/B31175.1
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Eizenhöfer P. R.,
    2. Zhao G. C.,
    3. Zhang J.,
    4. Han Y. G.,
    5. Hou W. Z.,
    6. Liu D. X.,
    7. Wang B.
    , 2015b, Geochemical characteristics of the Permian basins and their provenances across the Solonker Suture Zone: Assessment of net crustal growth during the closure of the Palaeo-Asian Ocean: Lithos, v. 224–225, p. 240–255, doi:https://doi.org/10.1016/j.lithos.2015.03.012
    OpenUrlCrossRef
  24. ↵
    1. Feng Z.-Q.,
    2. Li W.-M.,
    3. Liu Y.-J.,
    4. Jin W.,
    5. Wen Q.-B.,
    6. Liu B.-Q.,
    7. Zhou J.-P.,
    8. Zhang T.-A.,
    9. Li X.-Y.
    , 2017, Early Carboniferous tectonic evolution of the northern Heihe-Nenjiang–Hegenshan suture zone, NE China: Constraints from the mylonitized Nenjiang rhyolites and the Moguqi gabbros: Geological Journal, v. 53, n. 3, p. 1005–1021, doi:https://doi.org/10.1002/gj.2940
    OpenUrlCrossRef
  25. ↵
    1. Ferré E. C.,
    2. Leake B. E.
    , 2001, Geodynamic significance of early orogenic high-K crustal and mantle melts: examples of the Corsica Batholith: Lithos, v. 59, n. 1–2, p. 47–67, doi:https://doi.org/10.1016/S0024-4937(01)00060-3
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Fu D.,
    2. Huang B.,
    3. Peng S. B.,
    4. Kusky T. M.,
    5. Zhou W. X.,
    6. Ge M. C.
    , 2016, Geochronology and geochemistry of late Carboniferous volcanic rocks from northern Inner Mongolia, North China: Petrogenesis and tectonic implications: Gondwana Research, v. 36, p. 545–560, doi:https://doi.org/10.1016/j.gr.2015.08.007
    OpenUrlCrossRef
  27. ↵
    1. Glazner A. F.
    , 2007, Thermal limitations on incorporation of wall rock into magma: Geology, v. 35, n. 4, p. 319–322, doi:https://doi.org/10.1130/G23134A.1
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Gou J.,
    2. Sun D.-Y.,
    3. Ren Y.-S.,
    4. Liu Y.-J.,
    5. Zhang S.-Y.,
    6. Fu C.-L.,
    7. Wang T.-H.,
    8. Wu P.-F.,
    9. Liu X.-M.
    , 2013, Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: Geochronological, geochemical and Hf isotopic evidence: Journal of Asian Earth Sciences, v. 67–68, p. 114–137, doi:https://doi.org/10.1016/j.jseaes.2013.02.016
    OpenUrlCrossRef
  29. ↵
    1. Griffin W. L.,
    2. Belousova E. A.,
    3. Shee S. R.,
    4. Pearson N. J.,
    5. O'Reilly S. Y.
    , 2004, Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons: Precambrian Research, v. 131, n. 3–4, p. 231–282, doi:https://doi.org/10.1016/j.precamres.2003.12.011
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Guo F.,
    2. Fan W. M.,
    3. Li C. W.,
    4. Gao X. F.,
    5. Miao L. C.
    , 2009, Early Cretaceous highly positive εNd felsic volcanic rocks from the Hinggan Mountains, NE China: origin and implications for Phanerozoic crustal growth: International Journal of Earth Sciences, v. 98, p. 1395–1411, doi:https://doi.org/10.1007/s00531-008-0362-8
    OpenUrlCrossRefGeoRef
  31. ↵
    1. Guo Q.,
    2. Xiao W.,
    3. Hou Q.,
    4. Windley B. F.,
    5. Han C.,
    6. Tian Z.,
    7. Song D.
    , 2014, Construction of late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt: Lithos, v. 184–187, p. 361–378, doi:https://doi.org/10.1016/j.lithos.2013.11.007
    OpenUrlCrossRef
  32. ↵
    1. Han G. Q.,
    2. Liu Y. J.,
    3. Neubauer F.,
    4. Jin W.,
    5. Genser J.,
    6. Ren S. M.,
    7. Li W.,
    8. Wen Q. B.,
    9. Zhao Y. L.,
    10. Liang C. Y.
    , 2012, LA-ICP-MS U-Pb dating and Hf isotopic compositions of detrital zircons from the Permian sandstones in Da Xing'an Mountains, NE China: New evidence for the eastern extension of the Erenhot-Hegenshan suture zone: Journal of Asian Earth Sciences, v. 49, p. 249–271, doi:https://doi.org/10.1016/j.jseaes.2011.11.011
    OpenUrlCrossRefGeoRef
  33. ↵
    1. Han Y. G.,
    2. Zhao G. C.,
    3. Sun M.,
    4. Eizenhöfer P. R.,
    5. Hou W. Z.,
    6. Zhang X. R.,
    7. Liu D. X.,
    8. Wang B.,
    9. Zhang G. W.
    , 2015, Paleozoic accretionary orogenesis in the Paleo-Asian Ocean: Insights from detrital zircons from Silurian to Carboniferous strata at the northwestern margin of the Tarim Craton: Tectonics, v. 34, n. 2, p. 334–351, doi:https://doi.org/10.1002/2014TC003668
    OpenUrlCrossRef
  34. ↵
    1. Han Y. G.,
    2. Zhao G. C.,
    3. Cawood P. A.,
    4. Sun M.,
    5. Eizenhöfer P. R.,
    6. Hou W. Z.,
    7. Zhang X. R.,
    8. Liu Q.
    , 2016a, Tarim and North China cratons linked to northern Gondwana through switching accretionary tectonics and collisional orogenesis: Geology, v. 44, n. 2, p. 95–98, doi:https://doi.org/10.1130/G37399.1
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Han Y. G.,
    2. Zhao G. C.,
    3. Sun M.,
    4. Eizenhöfer P. R.,
    5. Hou W. Z.,
    6. Zhang X. R.,
    7. Liu Q.,
    8. Wang B.,
    9. Liu D. X.,
    10. Xu B.
    , 2016b, Late Paleozoic subduction and collision processes during the amalgamation of the Central Asian Orogenic Belt along the South Tianshan suture zone: Lithos, v. 246–247, p. 1–12, doi:https://doi.org/10.1016/j.lithos.2015.12.016
    OpenUrlCrossRef
  36. ↵
    1. Healy B.,
    2. Collins W. J.,
    3. Richards S. W.
    , 2004, A hybrid origin for Lachlan S-type granites: the Murrumbridgee batholith example: Lithos, v. 79, n. 1–2, p. 197–216, doi:https://doi.org/10.1016/j.lithos.2004.04.047
    OpenUrlCrossRef
  37. ↵
    1. Hendrix M. S.,
    2. Davis G. A.
    1. Heubeck C.
    , 2001, Assembly of Central Asia during the middle and late Paleozoic, in Hendrix M. S., Davis G. A., editors, Paleozoic and Mesozoic tectonic evolution of Central and Eastern Asia: from continental assembly to intracontinental deformation: Geological Society of America Memoir, v. 194, p. 1–22, doi:https://doi.org/10.1130/0-8137-1194-0.1
    OpenUrlCrossRef
  38. ↵
    1. Heumann M. J.,
    2. Johnson C. L.,
    3. Webb L. E.,
    4. Taylor J. P.,
    5. Jalbaa U.,
    6. Minjin C.
    , 2012, Paleogeographic reconstruction of a late Paleozoic arc collision zone, southern Mongolia: Geological Society of America Bulletin, v. 124, n. 9–10, p. 1514–1534, doi:https://doi.org/10.1130/B30510.1
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Hofmann A. W.
    , 1988, Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust: Earth and Planetary Science Letters, v. 90, n, 3, p. 297–314, doi:https://doi.org/10.1016/0012-821X(88)90132-X
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Hong D. W.,
    2. Huang H. Z.,
    3. Xiao Y. J.,
    4. Xu H. M.,
    5. Jin M. Y.
    , 1994, The Permian alkaline granites in central Inner Mongolia and their geodynamic significance: Acta Petrologica Sinica, v. 68, p. 219–230 (in Chinese with English abstract).
    OpenUrl
  41. ↵
    1. Hong D. W.,
    2. Zhang J. S.,
    3. Wang T.,
    4. Wang S. G.,
    5. Xie X. L.
    , 2004, Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt: Journal of Asian Earth Sciences, v. 23, n. 5, p. 799–813, doi:https://doi.org/10.1016/S1367-9120(03)00134-2
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Hu C. S.,
    2. Li W. B.,
    3. Huang Q. Y.,
    4. Xu C.,
    5. Zhou J.,
    6. Li Z. H.
    , 2017, Geochemistry and petrogenesis of late Carboniferous igneous rocks from southern Mongolia: Implications for the post-collisional extension in the southeastern Central Asian Orogenic Belt: Journal of Asian Earth Sciences, v. 144, p. 141–154, doi:https://doi.org/10.1016/j.jseaes.2017.01.011
    OpenUrlCrossRef
  43. ↵
    1. Huang B.,
    2. Fu D.,
    3. Li S. C.,
    4. Ge M. C.,
    5. Zhou W. X.
    , 2016, The age and tectonic implications of Hegenshan ophiolite in Inner Mongolia: Acta Petrologica Sinica, v. 32, p. 158–176 (in Chinese with English abstract).
    OpenUrl
  44. ↵
    1. Huang J. Q.,
    2. Ren J. S.,
    3. Jiang C. F.
    , 1977, The basic tectonic outline of China: Acta Geologica Sinica, v. 2, p. 117–135 (in Chinese).
    OpenUrl
  45. ↵
    Inner Mongolian Bureau of Geology and Mineral Resources (IMBGMR), 1965, Geological map of Bengbatu, Inner Mongolia: Geological Map of P.R.C. Geological Publishing House, Beijing, scale 1:200,000 (in Chinese).
  46. ↵
    Inner Mongolian Bureau of Geology and Mineral Resources (IMBGMR), 1979, Geological map of Chagan Obo Temple, Inner Mongolia: Geological Map of P.R.C. Geological Publishing House, Beijing, scale 1:200000 (in Chinese).
  47. ↵
    Inner Mongolian Bureau of Geology and Mineral Resources (IMBGMR), 1991, Regional geology of Inner Mongolian Autonomous Region: Geological Publishing House, Beijing (in Chinese with English abstract).
  48. ↵
    1. Jackson S. E.,
    2. Pearson N. J.,
    3. Griffin W. L.,
    4. Belousova E. A.
    , 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, v. 211, n. 1–2, p. 47–69, doi:https://doi.org/10.1016/j.chemgeo.2004.06.017
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Malpas J.,
    2. Fletcher C. J. N.,
    3. Ali J. R.,
    4. Aitchison J. C.
    1. Jahn B. M.
    , 2004, The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic, in Malpas J., Fletcher C. J. N., Ali J. R., Aitchison J. C., editors, Aspects of the Tectonic Evolution of China: Journal of the Geological Society, Special Publication, v. 226, p. 73–100, doi:https://doi.org/10.1144/GSL.SP.2004.226.01.05
    OpenUrlCrossRefWeb of Science
  50. ↵
    1. Jahn B. M.,
    2. Wu F. Y.,
    3. Chen B.
    , 2000, Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic: Earth and Environmental Science Transactions Royal Society of Edinburgh, v. 91, n. 1–2, p. 181–193, doi:https://doi.org/10.1017/S0263593300007367
    OpenUrlCrossRef
  51. ↵
    1. Jahn B. M.,
    2. Capdevila R.,
    3. Liu D. Y.,
    4. Vernon A.,
    5. Badarch G.
    , 2004, Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth: Journal of Asian Earth Sciences, v. 23, n. 5, p. 629–653, doi:https://doi.org/10.1016/S1367-9120(03)00125-1
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Jahn B. M.,
    2. Litvinovsky B. A.,
    3. Zanvilevich A. N.,
    4. Reichow M.
    , 2009, Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis and tectonic significance: Lithos, v. 113, n. 3–4, p. 521–539, doi:https://doi.org/10.1016/j.lithos.2009.06.015
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Janoušek V.,
    2. Finger F.,
    3. Roberts M.,
    4. Frýda J.,
    5. Pin C.,
    6. Dolejš D.
    , 2004, Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 95, n. 1–2, p. 141–159, doi:https://doi.org/10.1017/S0263593300000985
    OpenUrlCrossRef
  54. ↵
    1. Jian P.,
    2. Liu D. Y.,
    3. Kröner A.,
    4. Windley B. F.,
    5. Shi Y. R.,
    6. Zhang F. Q.,
    7. Shi G. H.,
    8. Miao L. C.,
    9. Zhang W.,
    10. Zhang Q.,
    11. Zhang L. Q.,
    12. Ren J. S.
    , 2008, Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: implications for continental growth: Lithos, v. 101, n. 3–4, p. 233–259, doi:https://doi.org/10.1016/j.lithos.2007.07.005
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Jian P.,
    2. Liu D.,
    3. Kröner A.,
    4. Windley B. F.,
    5. Shi Y.,
    6. Zhang W.,
    7. Zhang F.,
    8. Miao L.,
    9. Zhang L.,
    10. Tomurhuu D.
    , 2010, Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia: Lithos, v. 118, n. 1–2, p. 169–190, doi:https://doi.org/10.1016/j.lithos.2010.04.014
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Jian P.,
    2. Kröner A.,
    3. Windley B. F.,
    4. Shi Y. R.,
    5. Zhang W.,
    6. Zhang L. Q.,
    7. Yang W. R.
    , 2012, Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”: Lithos, v. 142–143, p. 48–66, doi:https://doi.org/10.1016/j.lithos.2012.03.007
    OpenUrlCrossRef
  57. ↵
    1. Eiler J.
    1. Kelemen P. B.,
    2. Yogodzinski G. M.,
    3. Scholl D. W.
    , 2003, Along strike variation in the Aleutian island arc: Genesis of high Mg# andesite and implications for continental crust, in Eiler J., editor, Inside the Subduction Factory: American Geophysical Union, Geophysical Monograph, v. 138, p. 223–246, doi:https://doi.org/10.1029/138GM11
    OpenUrlCrossRef
  58. ↵
    1. Turekian K. K.
    1. Kemp A. I. S.,
    2. Hawkesworth C. J.
    , 2003, Granitic perspectives on the generation and secular evolution of the continental crust A2 — Holland, Heinrich D., in Turekian K. K., editor, Treatise on Geochemistry: Amsterdam, the Netherlands, Elsevier, v. 3, p. 349–410, doi:https://doi.org/10.1016/B0-08-043751-6/03027-9
    OpenUrlCrossRef
  59. ↵
    1. Kemp A. I. S.,
    2. Hawkesworth C. J.,
    3. Foster G. L.,
    4. Paterson B. A.,
    5. Woodhead J. D.,
    6. Hergt J. M.,
    7. Gray C. M.,
    8. Whitehouse M. J.
    , 2007, Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon: Science, v. 315, n. 5814, p. 980–983, doi:https://doi.org/10.1126/science.1136154
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Kovalenko V. I.,
    2. Yarmoluyk V. V.,
    3. Sal'nikova E. B.,
    4. Kozlovsky A. M.,
    5. Kotov A. B.,
    6. Kovach V. P.,
    7. Savatenkov V. M.,
    8. Vladykin N. V.,
    9. Ponomarchuk V. A.
    , 2006, Geology, geochronology and geodynamics of the Khan Bogd alkali granite pluton in southern Mongolia: Geotectonics, v. 40, p. 450–466, doi:https://doi.org/10.1134/S0016852106060033
    OpenUrlCrossRefGeoRefWeb of Science
  61. ↵
    1. Kröner A.,
    2. Demoux A.,
    3. Zack T.,
    4. Rojas-Agramonte Y.,
    5. Jian P.,
    6. Tomurhuu D.,
    7. Barth M.
    , 2011, Zircon ages for a felsic volcanic rock and arc-related early Paleozoic sediments on the margin of the Baydrag microcontinent, Central Asian Orogenic Belt, Mongolia: Journal of Asian Earth Sciences, v. 42, n. 5, p. 1008–1017, doi:https://doi.org/10.1016/j.jseaes.2010.09.002
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Lackey J. S.,
    2. Valley J. W.,
    3. Saleeby J. B.
    , 2005, Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high δ18O zircon: Earth and Planetary Science Letters, v. 235, n. 1–2, p. 315–330, doi:https://doi.org/10.1016/j.epsl.2005.04.003
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Lamb M. A.,
    2. Badarch G.
    , 2001, Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia: new geochemical and petrographic constraints: Geological Society of America Memoirs, v. 194, p. 117–149, doi:https://doi.org/10.1130/0-8137-1194-0.117
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Le Fort P.,
    2. Cuney M.,
    3. Deniel C.,
    4. France-Lanord C.,
    5. Sheppard S. M. F.,
    6. Upreti B. N.,
    7. Vidal P.
    , 1987, Crustal generation of the Himalayan leucogranites: Tectonophysics, v. 134, n. 1–3, p. 39–57, doi:https://doi.org/10.1016/0040-1951(87)90248-4
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Li D. P.,
    2. Chen Y. L.,
    3. Wang Z.,
    4. Hou K. J.,
    5. Liu C. Z.
    , 2011a, Detrital zircon U-Pb ages, Hf isotopes and tectonic implications for Palaeozoic sedimentary rocks from the Xing-Meng Orogenic Belt, middle-east part of Inner Mongolia, China: Geological Journal, v. 46, n. 1, p. 63–81, doi:https://doi.org/10.1002/gj.1257
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    1. Li J. Y.
    , 2006, Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate: Journal of Asian Earth Sciences, v. 26, n. 3–4, p. 207–224, doi:https://doi.org/10.1016/j.jseaes.2005.09.001
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Li K.,
    2. Zhang Z. C.,
    3. Feng Z. S.,
    4. Li J. F.,
    5. Tang W. H.,
    6. Luo Z. W.
    , 2014, Zircon SHRIMP U-Pb dating and its geological significance of the Late-Carboniferous to Early-Permian volcanic rocks in Bayanwula area, the central of Inner Mongolia: Acta Petrologica Sinica, v. 30, n. 7, p. 2041–2054 (in Chinese with English abstract).
    OpenUrl
  68. ↵
    1. Li K.,
    2. Zhang Z. C.,
    3. Feng Z. S.,
    4. Li J. F.,
    5. Tang W. H.,
    6. Luo Z. W.,
    7. Chen Y.
    , 2015, Two-phase magmatic events during late Paleozoic in the north of the central Inner Mongolia-Da Hinggan Orogenic Belt and its tectonic significance: Acta Geologica Sinica, v. 89, n. 30, p.272–288 (in Chinese with English abstract).
    OpenUrl
  69. ↵
    1. Li Y. J.,
    2. Wang G. H.,
    3. Santosh M.,
    4. Wang J. F.,
    5. Dong P. P.,
    6. Li H. Y.
    , 2020, Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia, North China: Earth and Planetary Science Letters, v. 535, 116087, doi:https://doi.org/10.1016/j.epsl.2020.116087
    OpenUrlCrossRef
  70. ↵
    1. Li Y. L.,
    2. Zhou H. W.,
    3. Brouwer F. M.,
    4. Wijbrans J. R.,
    5. Zhong Z. Q.,
    6. Liu H. F.
    , 2011b, Tectonic significance of the Xilin Gol complex, Inner Mongolia, China: Petrological, geochemical and U-Pb zircon age constraints: Journal of Asian Earth Sciences, v. 42, n. 5, p. 1018–1029, doi:https://doi.org/10.1016/j.jseaes.2010.09.009
    OpenUrlCrossRefGeoRefWeb of Science
  71. ↵
    1. Li Y. L.,
    2. Brouwer F. M.,
    3. Xiao W. J.,
    4. Zheng J. P.
    , 2017a, Late Devonian to Early Carboniferous arc-related magmatism in the Baolidao arc, Inner Mongolia, China: Significance for southward accretion of the eastern Central Asian Orogenic Belt: Geological Society of America Bulletin, v. 129, n. 5–6, p. 677–697, doi:https://doi.org/10.1130/B31511.1
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. Li Y. L.,
    2. Brouwer F. M.,
    3. Xiao W. J.,
    4. Zheng J. P.
    , 2017b, A Paleozoic fore-arc complex in the eastern Central Asian Orogenic Belt: Petrology, geochemistry and zircon U-Pb-Hf isotopic composition of paragneisses from the Xilingol Complex in Inner Mongolia, China: Gondwana Research, v. 47, p. 323–341, doi:https://doi.org/10.1016/j.gr.2017.02.004
    OpenUrlCrossRef
  73. ↵
    1. Litvinovsky B. A.,
    2. Tsygankov A. A.,
    3. Jahn B. M.,
    4. Katzir Y.,
    5. Be'eri-Shlevin Y.
    , 2011, Origin and evolution of overlapping calc-alkaline and alkaline magmas: the Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia): Lithos, v. 125, n. 3–4, p. 845–874, doi:https://doi.org/10.1016/j.lithos.2011.04.007
    OpenUrlCrossRefGeoRefWeb of Science
  74. ↵
    1. Liu J. F.,
    2. Li J. Y.,
    3. Chi X. G.,
    4. Qu J. F.,
    5. Hu Z. C.,
    6. Fang S.,
    7. Zhang Z.
    , 2013, A late-Carboniferous to early early-Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin: Lithos, v. 177, p. 285–296, doi:https://doi.org/10.1016/j.lithos.2013.07.008
    OpenUrlCrossRefGeoRef
  75. ↵
    1. Liu X. M.,
    2. Gao S.,
    3. Diwu C. R.,
    4. Ling W. L.
    , 2008, Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies: American Journal of Science, v. 308, n. 4, p. 421–468, doi:https://doi.org/10.2475/04.2008.02
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Liu Y. J.,
    2. Li W. M.,
    3. Feng Z. Q.,
    4. Wen Q. B.,
    5. Neubauer F.,
    6. Liang C. Y.
    , 2017, A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt: Gondwana Research, v. 43, p. 123–148, doi:https://doi.org/10.1016/j.gr.2016.03.013
    OpenUrlCrossRef
  77. ↵
    1. Liu Y. S.,
    2. Hu Z. C.,
    3. Zong K. Q.,
    4. Gao C. G.,
    5. Gao S.,
    6. Xu J.,
    7. Chen H. H.
    , 2010, Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS: Chinese Science Bulletin, v. 55, n. 15, p. 1535–1546, doi:https://doi.org/10.1007/s11434-010-3052-4
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Ludwig K. R.
    , 2003, A geochronological toolkit for Microsoft Excel. Berkeley, California, Geochronology Center: Special Publication, v. 4, p. 25–32.
  79. ↵
    1. Maniar P. D.,
    2. Piccoli P. M.
    , 1989, Tectonic discrimination of granitoids: Geological Society of America Bulletin, v. 101, n. 5, p. 635–643, doi:https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Zhai M. G.,
    2. Windley B. F.,
    3. Kusky T. M.,
    4. Meng Q. R.
    1. Miao L.,
    2. Zhang F.,
    3. Fan W.-M.,
    4. Liu D.
    , 2007, Phanerozoic evolution of the Inner Mongolia–Daxinganling Orogenic Belt in North China: Constraints from geochronology of ophiolites and associated formations, in Zhai M. G., Windley B. F., Kusky T. M., Meng Q. R., editors, Mesozoic Sub-continental Lithospheric Thinning Under Eastern Asia: Geological Society, London, Special Publications, v. 280, p. 223–237, doi:https://doi.org/10.1144/SP280.11
    OpenUrlCrossRef
  81. ↵
    1. Miao L.,
    2. Fan W.,
    3. Liu D.,
    4. Zhang E.,
    5. Shi Y.,
    6. Guo F.
    , 2008, Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia–Daxinganling Orogenic Belt, China: Journal of Asian Earth Sciences, v. 32, n. 5–6, p. 348–370, doi:https://doi.org/10.1016/j.jseaes.2007.11.005
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. Nie F.,
    2. Bjørlykke A.
    , 1999, Nd and Sr isotope constraints on the age and origin of Proterozoic meta-mafic volcanic rocks in the Bainaimiao-Wenduermiao district, south-central Inner Mongolia, China: Continental Dynamics, v. 4, p. 1–14.
    OpenUrlGeoRef
  83. ↵
    1. Nozaka T.,
    2. Liu Y.
    , 2002, Petrology of the Hegenshan ophiolite and its implications for the tectonic evolution of northern China: Earth and Planetary Science Letters, v. 202, n. 1, p. 89–104, doi:https://doi.org/10.1016/S0012-821X(02)00774-4
    OpenUrlCrossRefGeoRefWeb of Science
  84. ↵
    1. Patiño Douce A. E.,
    2. Humphreys E. D.,
    3. Johnston A. D.
    , 1990, Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America: Earth and Planetary Science Letters, v. 97, n. 3–4, p. 290–315, doi:https://doi.org/10.1016/0012-821X(90)90048-3
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Pearce J.
    , 1996, Sources and settings of granitic rocks: Episodes, v. 19, n. 4, p. 120–125, doi:https://doi.org/10.18814/epiiugs/1996/v19i4/005
    OpenUrlCrossRefGeoRefWeb of Science
  86. ↵
    1. Pearce J. A.,
    2. Harris N. B.,
    3. Tindle A. G.
    , 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, n. 4, p. 956–983, doi:https://doi.org/10.1093/petrology/25.4.956
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Peccerillo A.,
    2. Taylor S. R.
    1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey: Contributions to Mineralogy and Petrology, v. 58, p. 63–81, doi:https://doi.org/10.1007/BF00384745
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Peck W. H.,
    2. Valley J. W.,
    3. Corriveau L.,
    4. Davidson A.,
    5. McLelland J.,
    6. Farber D. A.
    , 2004, Oxygen-isotope constraints on terrane boundaries and origin of 1.18–1.13 Ga granitoids in the southern Grenville Province: Geological Society of America Memoirs, v. 197, p. 163–182, doi:https://doi.org/10.1130/0-8137-1197-5.163
    OpenUrlAbstract/FREE Full Text
  89. ↵
    1. Ren J. S.,
    2. Jiang C. F.,
    3. Zhang Z. K.,
    4. Qin D. Y.
    , 1980, The Geotectonic Evolution of China: Science Press, Beijing, p. 89–104 (in Chinese).
  90. ↵
    1. Ren J. S.,
    2. Wang Z. X.,
    3. Chen B. W.,
    4. Jiang C. F.,
    5. Niu B. G.,
    6. Li J. Y.,
    7. Xie G. L.,
    8. He Z. J.,
    9. Liu Z. G.
    , 1999, The Tectonics of China from a Global View – A Guide to the Tectonic Map of China and Adjacent Region: Beijing, China, Geological Publishing House, 32 p. (in Chinese).
  91. ↵
    1. Roberts M. P.,
    2. Clemens J. D.
    , 1993, Origin of high-potassium, calc-alkaline, I-type granitoids: Geology, v. 21, n. 9, p. 825–828, doi:https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Robinson P. T.,
    2. Zhou M. F.,
    3. Hu X. F.,
    4. Reynolds P.,
    5. Bai W. J.,
    6. Yang J.
    , 1999, Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China: Journal of Asian Earth Sciences, v. 17, n. 4, p. 423–442, doi:https://doi.org/10.1016/S1367-9120(99)00016-4
    OpenUrlCrossRefGeoRefWeb of Science
  93. ↵
    1. Santosh M.,
    2. Hu C. N.,
    3. He X. F.,
    4. Li S. S.,
    5. Tsunogae T.,
    6. Shaji E.,
    7. Indu G.
    , 2017, Neoproterozoic arc magmatism in the southern Madurai Block, India: Subduction, relamination, continental outbuilding, and the growth of Gondwana: Gondwana Research, v. 45, p. 1–42, doi:https://doi.org/10.1016/j.gr.2016.12.009
    OpenUrlCrossRef
  94. ↵
    1. Yin A.,
    2. Harrison M.
    1. Sengör A. M. C.,
    2. Natal'in B. A.
    , 1996a, Paleotectonics of Asia: fragments of a synthesis, in Yin A., Harrison M., editors, The Tectonic Evolution of Asia: Cambridge, United Kingdom, Cambridge University Press, p. 486–640.
  95. ↵
    1. Sengör A. M. C.,
    2. Natal'in B. A.
    , 1996b, Turkic-type orogeny and its role in the making of the continental crust: Annual Review of Earth and Planetary Sciences, v. 24, p. 263–337, doi:https://doi.org/10.1146/annurev.earth.24.1.263
    OpenUrlCrossRefWeb of Science
  96. ↵
    1. Sengör A. M. C.,
    2. Natal'in B. A.,
    3. Burtman V. S.
    , 1993, Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia: Nature, v. 364, p. 299–307, doi:https://doi.org/10.1038/364299a0
    OpenUrlCrossRefGeoRefWeb of Science
  97. ↵
    1. Shao J. A.
    , 1989, Continental crust accretion and tectono-magmatic activity at the northern margin of the Sino-Korean plate: Journal of Southeast Asian Earth Sciences, v. 3, v. 1–4, p. 57–62, doi:https://doi.org/10.1016/0743-9547(89)90009-3
    OpenUrlCrossRef
  98. ↵
    1. Shao J. A.,
    2. Tang K. D.,
    3. He G. Q.
    , 2014, Early Permian tectono-paleogeographic reconstruction of Inner Mongolia, China: Acta Petrologica Sinica, v. 30, p. 1858–1866 (in Chinese with English abstract).
    OpenUrl
  99. ↵
    1. Shen S. Z.,
    2. Zhang H.,
    3. Shang Q. H.,
    4. Li W. Z.
    , 2006, Permian stratigraphy and correlation of Northeast China: A review: Journal of Asian Earth Sciences, v. 26, n. 3–4, p. 304–326, doi:https://doi.org/10.1016/j.jseaes.2005.07.007
    OpenUrlCrossRefGeoRefWeb of Science
  100. ↵
    1. Shi G. H.,
    2. Liu D. Y.,
    3. Zhang F. Q.,
    4. Jian P.,
    5. Miao L. C.,
    6. Shi Y. R.,
    7. Tao H.
    , 2003, SHRIMP U-Pb zircon geochronology and its implications of the Xilin Gol Complex, Inner Mongolia, China,: Chinese Science Bulletin, v. 48, p. 2742–2748, doi:https://doi.org/10.1007/BF02901768
    OpenUrlCrossRefGeoRefWeb of Science
  101. ↵
    1. Shi G. H.,
    2. Miao L. C.,
    3. Zhang F. Q.,
    4. Jian P.,
    5. Fan W. M.,
    6. Liu D. Y.
    , 2004, Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China: Chinese Science Bulletin, v. 49, p. 723–729, doi:https://doi.org/10.1007/BF03184272
    OpenUrlCrossRefGeoRef
  102. ↵
    1. Sisson T. W.,
    2. Ratajeski K.,
    3. Hankins W. B.,
    4. Glazner A. F.
    , 2005, Voluminous granitic magmas from common basaltic sources: Contributions to Mineralogy and Petrology, v. 148, p. 635–661, doi:https://doi.org/10.1007/s00410-004-0632-9
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Söderlund U.,
    2. Patchett P. J.,
    3. Vervoort J. D.,
    4. Isachsen C. E.
    , 2004, The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions: Earth and Planetary Science Letters, v. 219, n. 3–4, p. 311–324, doi:https://doi.org/10.1016/S0012-821X(04)00012-3
    OpenUrlCrossRefGeoRefWeb of Science
  104. ↵
    1. Soesoo A.
    , 2000, Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: An example from Lachlan Fold Belt, Australia: Journal of the Geological Society, London, v. 157, n. 1, p. 135–149, doi:https://doi.org/10.1144/jgs.157.1.135
    OpenUrlAbstract/FREE Full Text
  105. ↵
    1. Song S. G.,
    2. Wang M. M.,
    3. Xu X.,
    4. Wang C.,
    5. Niu Y. L.,
    6. Allen M. B.,
    7. Su L.
    , 2015, Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events: Tectonics, v. 34, n. 10, p. 2221–2248, doi:https://doi.org/10.1002/2015TC003948
    OpenUrlCrossRef
  106. ↵
    1. Stern R. A.,
    2. Hanson G. N.
    , 1991, Archean high-Mg granodiorite — A derivative of light rare-earth element-enriched monzodiorite of mantle origin: Journal of Petrology, v. 32, n. 1, p. 201–238, doi:https://doi.org/10.1093/petrology/32.1.201
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. Streckeisen A.
    , 1976, To each plutonic rock its proper name: Earth-Science Reviews, v. 12, n. 1, p. 1–33, doi:https://doi.org/10.1016/0012-8252(76)90052-0
    OpenUrlCrossRefGeoRef
  108. ↵
    1. Su Y.,
    2. Zheng J.,
    3. Griffin W. L.,
    4. Zhao J.,
    5. Tang H.,
    6. Ma Q.,
    7. Lin X.
    , 2012, Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition: Gondwana Research, v. 22, n. 3–4, p. 1009–1029, doi:https://doi.org/10.1016/j.gr.2012.01.004
    OpenUrlCrossRefGeoRefWeb of Science
  109. ↵
    1. Saunders A. D.,
    2. Norry M. J.
    1. Sun S. S.,
    2. McDonough W. F.
    1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders A. D., Norry M. J., editors, Magmatism in the Ocean Basins: Geological Society of London, Special Publications, v. 42, p. 313–345, doi:https://doi.org/10.1144/GSL.SP.1989.042.01.19
    OpenUrlCrossRef
  110. ↵
    1. Sylvester P. J.
    , 1998, Postcollisional strongly peraluminous granites: Lithos, v. 45, n. 1–4, p. 29–44, doi:https://doi.org/10.1016/S0024-4937(98)00024-3
    OpenUrlCrossRefGeoRefWeb of Science
  111. ↵
    1. Tong Y.,
    2. Jahn B. M.,
    3. Wang T.,
    4. Hong D. W.,
    5. Smith E. I.,
    6. Sun M.,
    7. Gao J. F.,
    8. Yang Q. D.,
    9. Huang W.
    , 2015, Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance: Journal of Asian Earth Sciences, v. 97, p. 320–336, doi:https://doi.org/10.1016/j.jseaes.2014.10.011
    OpenUrlCrossRefGeoRef
  112. ↵
    1. Torsvik T. H.,
    2. Cocks R. M.
    , 2004, Earth geography from 400 to 250 Ma: a paleomagnetic, faunal and facies review: Journal of the Geological Society, London, v. 161, p. 555–572, doi:https://doi.org/10.1144/0016-764903-098
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Wainwright A. J.,
    2. Tosdal R. M.,
    3. Forster C. N.,
    4. Kirwin D. J.,
    5. Lewis P. D.,
    6. Wooden J. L.
    , 2011, Devonian and Carboniferous arcs of the Oyu Tolgoi porphyry Cu-Au district, South Gobi region, Mongolia: Geological Society of America Bulletin, v. 123, n. 1–2, p. 306–328, doi:https://doi.org/10.1130/B30137.1
    OpenUrlAbstract/FREE Full Text
  114. ↵
    1. Wang H. Z.
    , 1982, The main stages of crustal development of China: Earth Science-Journal of Wuhan College of Geology, v. 18, p. 155–177 (in Chinese with English abstract).
    OpenUrl
  115. ↵
    1. Wang Q.,
    2. Liu X. Y.
    , 1986, Paleoplate tectonics between Cathaysia and Angaraland in inner Mongolia of China: Tectonics, v. 5, n. 7, p. 1073–1088, doi:https://doi.org/10.1029/TC005i007p01073
    OpenUrlCrossRefGeoRefWeb of Science
  116. ↵
    1. Wang T.,
    2. Tong Y.,
    3. Zhang L.,
    4. Li S.,
    5. Huang H.,
    6. Zhang J. J.,
    7. Guo L.,
    8. Yang Q. D.,
    9. Hong D. W.,
    10. Donskaya T.,
    11. Gladkochub D.,
    12. Tserendash N.
    , 2017, Phanerozoic granitoids in the central and eastern parts of central Asia and their tectonic significance: Journal of Asian Earth Sciences, v. 145, p. 368–392, doi:https://doi.org/10.1016/j.jseaes.2017.06.029
    OpenUrlCrossRef
  117. ↵
    1. Wang Y.,
    2. Zhang Q.
    , 2001, A granitoid complex from Badaling area, North China: composition, geochemical characteristcs and its implications: Acta Petrologica Sinica, v. 17, n. 4, p. 533–540 (in Chinese with English abstract).
    OpenUrlGeoRef
  118. ↵
    1. Wang Y. J.,
    2. Fan W. M.,
    3. Sun M.,
    4. Liang X. Q.,
    5. Zhang Y. H.,
    6. Peng T. P.
    , 2007, Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province: Lithos, v. 96, n. 3–4, p. 475–502, doi:https://doi.org/10.1016/j.lithos.2006.11.010
    OpenUrlCrossRefGeoRefWeb of Science
  119. ↵
    1. Wang Y. J.,
    2. Xing X. W.,
    3. Cawood P. A.,
    4. Lai S. C.,
    5. Xia X. P.,
    6. Fan W. M.,
    7. Liu H. C.,
    8. Zhang F. F.
    , 2013, Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana: Lithos, v. 182–183, p. 67–85, doi:https://doi.org/10.1016/j.lithos.2013.09.010
    OpenUrlCrossRef
  120. ↵
    1. Wei R. H.,
    2. Gao Y. F.,
    3. Xu S. C.,
    4. Xin H. T.,
    5. Santosh M.,
    6. Liu Y. F.,
    7. Lei S. H.
    , 2017, The volcanic succession of Baoligaomiao, central Inner Mongolia: Evidence for Carboniferous continental arc in the Central Asian Orogenic Belt: Gondwana Research, v. 51, p. 234–254, doi:https://doi.org/10.1016/j.gr.2017.08.005
    OpenUrlCrossRef
  121. ↵
    1. Wei R. H.,
    2. Gao Y. F.,
    3. Xu S. C.,
    4. Santosh M.,
    5. Xin H. T.,
    6. Zhang Z. M.,
    7. Li W. L.,
    8. Liu Y. F.
    , 2018, Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia: Lithos, v. 308–309, p. 242–261, doi:https://doi.org/10.1016/j.lithos.2018.03.010
    OpenUrlCrossRef
  122. ↵
    1. Weis D.,
    2. Kieffer B.,
    3. Maerschalk C.,
    4. Barling J.,
    5. de Jong J.,
    6. Williams G. A.,
    7. Hanano D.,
    8. Pretorius W.,
    9. Mattielli N.,
    10. Scoates J. S.,
    11. Goolaerts A.,
    12. Friedman R. M.,
    13. Mahoney J. B.
    , 2006, High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS: Geochemistry Geophysics Geosystems, v. 7, n. 8, p. 139–149, doi:https://doi.org/10.1029/2006GC001283
    OpenUrlCrossRef
  123. ↵
    1. Whalen J. B.,
    2. Currie K. L.,
    3. Chappell B. W.
    , 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, p. 407–419, doi:https://doi.org/10.1007/BF00402202
    OpenUrlCrossRefGeoRefWeb of Science
  124. ↵
    1. Whitaker M. L.,
    2. Nekvasil H.,
    3. Lindsley D. H.,
    4. McCurry M.
    , 2008, Can crystallization of olivine tholeiite give rise to potassic rhyolites?—an experimental investigation: Bulletin of Volcanology, v. 70, p. 417–434, doi:https://doi.org/10.1007/s00445-007-0146-1
    OpenUrlCrossRefGeoRefWeb of Science
  125. ↵
    1. Windley B. F.,
    2. Alexeiev D.,
    3. Xiao W. J.,
    4. Kröner A.,
    5. Badarch G.
    , 2007, Tectonic models for accretion of the Central Asian Orogenic Belt: Journal of the Geological Society, London, v. 164, n. 1, p. 31–47, doi:https://doi.org/10.1144/0016-76492006-022
    OpenUrlAbstract/FREE Full Text
  126. ↵
    1. Woodhead J. D.,
    2. Hergt J. M.
    , 2005, Preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination: Geostandards and Geoanalytical Reserch, v. 29, n. 2, p. 183–195, doi:https://doi.org/10.1111/j.1751-908X.2005.tb00891.x
    OpenUrlCrossRef
  127. ↵
    1. Wu F. Y.,
    2. Jahn B. M.,
    3. Wilde S. A.,
    4. Sun D. Y.
    , 2000, Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China: Tectonophysics, v. 328, n. 1–2, p. 89–113, doi:https://doi.org/10.1016/S0040-1951(00)00179-7
    OpenUrlCrossRefGeoRefWeb of Science
  128. ↵
    1. Wu F. Y.,
    2. Sun D. Y.,
    3. Li H. M.,
    4. Jahn B. M.,
    5. Wilde S. A.
    , 2002, A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis: Chemical Geology, v. 187, n. 1–2, p. 143–173, doi:https://doi.org/10.1016/S0009-2541(02)00018-9
    OpenUrlCrossRefGeoRefWeb of Science
  129. ↵
    1. Wu F. Y.,
    2. Jahn B. M.,
    3. Wilde S. A.,
    4. Lo C. H.,
    5. Yui T. F.,
    6. Lin Q.,
    7. Ge W. C.,
    8. Sun D. Y.
    , 2003, Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis: Lithos, v. 66, n. 3–4, p. 241–273, doi:https://doi.org/10.1016/S0024-4937(02)00222-0
    OpenUrlCrossRefGeoRefWeb of Science
  130. ↵
    1. Wu F. Y.,
    2. Yang Y. H.,
    3. Xie L. W.,
    4. Yang J. H.,
    5. Xu P.
    , 2006a, Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology: Chemical Geology, v. 234, n. 1, p. 105–126, doi:https://doi.org/10.1016/j.chemgeo.2006.05.003
    OpenUrlCrossRefGeoRefWeb of Science
  131. ↵
    1. Wu F. Y.,
    2. Sun D. Y.,
    3. Ge W. C.,
    4. Zhang Y. B.,
    5. Grant M. L.,
    6. Wilde S. A.,
    7. Jahn B. M.
    , 2011, Geochronology of the Phanerozoic granitoids in northeastern China: Journal of Asian Earth Sciences, v. 41, n. 1, p. 1–30, doi:https://doi.org/10.1016/j.jseaes.2010.11.014
    OpenUrlCrossRefGeoRefWeb of Science
  132. ↵
    1. Wu F. Y.,
    2. Liu X. C.,
    3. Ji W. Q,
    4. Wang J. M.,
    5. Yang L.
    , 2017, Highly fractionated granites: recognition and research: Science China Earth Sciences, v. 60, p. 1201–1219, doi:https://doi.org/10.1007/s11430-016-5139-1
    OpenUrlCrossRef
  133. ↵
    1. Wu R. X.,
    2. Zheng Y. F.,
    3. Wu Y. B.,
    4. Zhao Z. F.,
    5. Zhang S. B.,
    6. Liu X. M.,
    7. Wu F. Y.
    , 2006b, Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China: Precambrian Research, v. 146, n. 3–4, p. 179–212, doi:https://doi.org/10.1016/j.precamres.2006.01.012
    OpenUrlCrossRefGeoRefWeb of Science
  134. ↵
    1. Xiao W. J.,
    2. Santosh M.
    , 2014, The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth: Gondwana Research, v. 25, n. 4, p. 1429–1444, doi:https://doi.org/10.1016/j.gr.2014.01.008
    OpenUrlCrossRefGeoRef
  135. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Hao J.,
    4. Zhai M. G.
    , 2003, Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt: Tectonics, v. 22, n. 6, 1069, doi:https://doi.org/10.1029/2002TC001484
    OpenUrlCrossRef
  136. ↵
    1. Xiao W. J.,
    2. Zhang L. C.,
    3. Qin K. Z.,
    4. Sun S.,
    5. Li J. L.
    , 2004, Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia: American Journal of Science, v. 304, n. 4, p. 370–395, doi:https://doi.org/10.2475/ajs.304.4.370
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Xiao W. J.,
    2. Kröner A.,
    3. Windley B.
    , 2009a, Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic: International Journal of Earth Sciences, v. 98, p. 1185–1188, doi:https://doi.org/10.1007/s00531-009-0418-4
    OpenUrlCrossRefWeb of Science
  138. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Huang B. C.,
    4. Han C. M.,
    5. Yuan C.,
    6. Chen H. L.,
    7. Sun M.,
    8. Sun S.,
    9. Li J. L.
    , 2009b, End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia: International Journal of Earth Sciences, v. 98, p. 1189–1217, doi:https://doi.org/10.1007/s00531-008-0407-z
    OpenUrlCrossRefGeoRefWeb of Science
  139. ↵
    1. Xiao W. J.,
    2. Huang B. C.,
    3. Han C. M.,
    4. Sun S.,
    5. Li J. L.
    , 2010, A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens: Gondwana Research, v. 18, n. 2–3, p. 253–273, doi:https://doi.org/10.1016/j.gr.2010.01.007
    OpenUrlCrossRefGeoRefWeb of Science
  140. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Allen M. B.,
    4. Han C.
    , 2013, Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage: Gondwana Research, v. 23, n. 4, p. 1316–1341, doi:https://doi.org/10.1016/j.gr.2012.01.012
    OpenUrlCrossRefGeoRefWeb of Science
  141. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Sun S.,
    4. Li J. L.,
    5. Huang B. C.,
    6. Han C. M.,
    7. Yuan C.,
    8. Sun M.,
    9. Chen H. L.
    , 2015, A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion: Annual Review of Earth and Planetary Sciences, v. 43, p. 477–507, doi:https://doi.org/10.1146/annurev-earth-060614-105254
    OpenUrlCrossRef
  142. ↵
    1. Xu B.,
    2. Chen B.
    , 1997, Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China plates in northern Inner Mongolia: Science in China Series D: Earth Sciences, v. 40, p. 463–469 (in Chinese), doi:https://doi.org/10.1007/BF02877610
    OpenUrlCrossRefGeoRef
  143. ↵
    1. Xu B.,
    2. Charvet J.,
    3. Chen Y.,
    4. Zhao P.,
    5. Shi G. Z.
    , 2013, Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt: Gondwana Research, v. 23, n. 4, p. 1342–1364, doi:https://doi.org/10.1016/j.gr.2012.05.015
    OpenUrlCrossRefGeoRefWeb of Science
  144. ↵
    1. Xu B.,
    2. Zhao P.,
    3. Wang Y. Y.,
    4. Liao W.,
    5. Luo Z. W.,
    6. Bao Q. Z.,
    7. Zhou Y. H.
    , 2015, The pre-Devonian tectonic framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China: Journal of Asian Earth Sciences, v. 97, p. 183–196, doi:https://doi.org/10.1016/j.jseaes.2014.07.020
    OpenUrlCrossRefGeoRef
  145. ↵
    1. Xu B.,
    2. Zhao G. C.,
    3. Li J. H.,
    4. Liu D. X.,
    5. Wang B.,
    6. Han Y. G.,
    7. Eizenhöfer P. R.,
    8. Zhang X. R.,
    9. Hou W. Z.,
    10. Liu Q.
    , 2017, Ages and Hf isotopes of detrital zircons from Paleozoic strata in the Chagan Obo Temple area, Inner Mongolia: Implications for the evolution of the Central Asian Orogenic Belt: Gondwana Research, v. 43, p. 149–163, doi:https://doi.org/10.1016/j.gr.2016.08.004
    OpenUrlCrossRef
  146. ↵
    1. Xu B.,
    2. Zhao G. C.,
    3. Li J. H.,
    4. Liu D. X.,
    5. Wang B.,
    6. Han Y. G.,
    7. Eizenhöfer P. R.,
    8. Zhang X. R.,
    9. Hou W. Z.,
    10. Liu Q.
    , 2019, Ages and Hf isotopes of detrital zircons from the Permian strata in the Bengbatu area (Inner Mongolia) and tectonic implications: Geoscience Frontiers, v. 10, n. 1, p. 195–212, doi:https://doi.org/10.1016/j.gsf.2018.08.003
    OpenUrlCrossRef
  147. ↵
    1. Yang J. F.,
    2. Zhang Z. C.,
    3. Chen Y.,
    4. Yu H. F.,
    5. Qian X. Y.
    , 2017, Ages and origin of felsic rocks from the Eastern Erenhot ophiolitic complex, southeastern Central Asian Orogenic Belt, Inner Mongolia China: Journal of Asian Earth Sciences, v. 144, p. 126–140, doi:https://doi.org/10.1016/j.jseaes.2016.12.049
    OpenUrlCrossRef
  148. ↵
    1. Yang J. H.,
    2. Peng J. T.,
    3. Zhao J. H.,
    4. Fu Y. Z.,
    5. Yang C.,
    6. Hong Y. L.
    , 2012, Petrogenesis of the Xihuashan granite in southern Jiangxi Province, South China: constraints from zircon U-Pb geochronology, geochemistry and Nd isotopes: Acta Geologica Sinica, v. 86, n. 1, p. 131–152, doi:https://doi.org/10.1111/j.1755-6724.2012.00617.x
    OpenUrlCrossRef
  149. ↵
    1. Yang Z. Y.,
    2. Liu H.,
    3. Zhang D. J.,
    4. Li X.,
    5. Sun Y. W.
    , 2015, Detrital zircon U-Pb dating of Upper Carboniferous-Lower Permian Amushan Formation in Bayan Obo area, Inner Mongolia and its geological implications: Global Geology, v. 34, p. 259–272 (in Chinese with English abstract).
    OpenUrl
  150. ↵
    1. Yin A.,
    2. Harrison T. M.
    1. Yin A,
    2. Nie S.
    , 1996, A Phanerozoic palinspastic reconstruction of China and its neighboring regions, in Yin A., Harrison T. M., editors, The tectonic evolution of Asia: Cambridge, United Kingdom, Cambridge University Press, p. 442–485.
  151. ↵
    1. Yuan H. L.,
    2. Gao S.,
    3. Dai M. N.,
    4. Zong C. L.,
    5. Günther D.,
    6. Fontaine G. H.,
    7. Liu X. M.,
    8. Diwu C. R.
    , 2008, Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS: Chemical Geology, v. 247, n. 1–2, p. 100–118, doi:https://doi.org/10.1016/j.chemgeo.2007.10.003
    OpenUrlCrossRefWeb of Science
  152. ↵
    1. Yuan L. L.,
    2. Zhang X. H.,
    3. Xue F. H.,
    4. Liu F. L.
    , 2016, Juvenile crustal recycling in an accretionary orogen: Insights from contrasting early Permian granites from central Inner Mongolia, North China: Lithos, v. 264, p. 524–539, doi:https://doi.org/10.1016/j.lithos.2016.09.017
    OpenUrlCrossRef
  153. ↵
    1. Zhang J.,
    2. Sun M.,
    3. Schulmann K.,
    4. Zhao G. C.,
    5. Wu Q.,
    6. Jiang Y. D.,
    7. Guy A.,
    8. Wang Y. J.
    , 2015a, Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process: Journal of Structural Geology, v. 73, p. 64–82, doi:https://doi.org/10.1016/j.jsg.2015.02.007
    OpenUrlCrossRefGeoRef
  154. ↵
    1. Zhang S.,
    2. Gao R.,
    3. Li H.,
    4. Hou H.,
    5. Wu H.,
    6. Li Q.,
    7. Yang K.,
    8. Li C.,
    9. Li W.,
    10. Zhang J.,
    11. Yang T.,
    12. Keller G. R.,
    13. Liu M.
    , 2014, Crustal structures revealed from a deep seismic reflection profile across the Solonker suture zone of the Central Asian Orogenic Belt, northern China: An integrated interpretation: Tectonophysics, v. 612–613, n. 3, p. 26–39, doi:https://doi.org/10.1016/j.tecto.2013.11.035
    OpenUrlCrossRef
  155. ↵
    1. Zhang X. H.,
    2. Zhang H. F.,
    3. Tang Y. J.,
    4. Wilde S. A.,
    5. Hu Z. C.
    , 2008, Geochemistry of Permian bimodal volcanic rocks from Central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt: Chemical Geology, v. 249, n. 3–4, p. 261–281, doi:https://doi.org/10.1016/j.chemgeo.2008.01.005
    OpenUrlCrossRefWeb of Science
  156. ↵
    1. Zhang X. H.,
    2. Wilde S. A.,
    3. Zhang H. F.,
    4. Zhai M. G.
    , 2011, Early Permian high-K calc-alkaline volcanic rocks from NW Inner Mongolia, North China: Geochemistry, origin and tectonic implications: Journal of the Geological Society, v. 168, p. 525–543, doi:https://doi.org/10.1144/0016-76492010-094
    OpenUrlAbstract/FREE Full Text
  157. ↵
    1. Zhang X. H.,
    2. Yuan L. L.,
    3. Xue F. H.,
    4. Yan X.,
    5. Mao Q.
    , 2015b, Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling: Gondwana Research, v. 28, n. 1, p. 311–327, doi:https://doi.org/10.1016/j.gr.2014.02.011
    OpenUrlCrossRef
  158. ↵
    1. Zhang Z. C.,
    2. Li K.,
    3. Li J. F.,
    4. Tang W. H.,
    5. Chen Y.,
    6. Luo Z. W.
    , 2015c, Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex: Implications for the tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt: Journal of Asian Earth Sciences, v. 97, p. 279–293, doi:https://doi.org/10.1016/j.jseaes.2014.06.008
    OpenUrlCrossRefGeoRef
  159. ↵
    1. Zhang Z. C.,
    2. Chen Y.,
    3. Li K.,
    4. Li J. F.,
    5. Yang J. F.,
    6. Qian X. Y.
    , 2017, Geochronology and geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, China: Implications for the late Paleozoic tectonic evolution of the south-eastern Central Asian Orogenic Belt: Journal of Asian Earth Sciences, v. 135, p. 370–389, doi:https://doi.org/10.1016/j.jseaes.2017.01.012
    OpenUrlCrossRef
  160. ↵
    1. Zhou J. B.,
    2. Wilde S. A.
    , 2013, The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt: Gondwana Research, v. 23, n. 4, p. 1365–1377, doi:https://doi.org/10.1016/j.gr.2012.05.012
    OpenUrlCrossRefGeoRef
  161. ↵
    1. Zhou J. B.,
    2. Han J.,
    3. Zhao G. C.,
    4. Zhang X. Z.,
    5. Cao J. L.,
    6. Wang B.,
    7. Pei S. H.
    , 2015, The emplacement time of the Hegenshan ophiolite: Constraints from the unconformably overlying Paleozoic strata: Tectonophysics, v. 662, p. 398–415, doi:https://doi.org/10.1016/j.tecto.2015.03.008
    OpenUrlCrossRefGeoRef
  162. ↵
    1. Zhu W. P.,
    2. Tian W.,
    3. Wei C. J.,
    4. Shao J. A.,
    5. Fu B.,
    6. Fanning C. M.,
    7. Chen M. M.,
    8. Wang B.
    , 2017, Late Paleozoic rift-related basalts from central Inner Mongolia, China: Journal of Asian Earth Sciences, v. 144, p. 155–170, doi:https://doi.org/10.1016/j.jseaes.2017.04.007
    OpenUrlCrossRef
  163. ↵
    1. Zhu Y. F.,
    2. Sun S. H.,
    3. Gu L. B.,
    4. Ogasawara Y.,
    5. Jiang N.,
    6. Honma H.
    , 2001, Permian volcanism in the Mongolian orogenic zone, northeast China: geochemistry, magma sources and petrogenesis: Geological Magazine, v. 138, n. 2, p. 101–115, doi:https://doi.org/10.1017/S0016756801005210
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (2)
American Journal of Science
Vol. 322, Issue 2
1 Feb 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Late carboniferous continental arc magmatism in the southeastern Central Asian Orogenic Belt: insights from the Erenhot granitic pluton, Inner Mongolia
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Late carboniferous continental arc magmatism in the southeastern Central Asian Orogenic Belt: insights from the Erenhot granitic pluton, Inner Mongolia
Bing Xu, Guochun Zhao, Jinlong Yao, Peng Wang, Yanhong He, Yigui Han, Hai Zhou, Bo Wang
American Journal of Science Feb 2022, 322 (2) 351-379; DOI: 10.2475/02.2022.08

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Late carboniferous continental arc magmatism in the southeastern Central Asian Orogenic Belt: insights from the Erenhot granitic pluton, Inner Mongolia
Bing Xu, Guochun Zhao, Jinlong Yao, Peng Wang, Yanhong He, Yigui Han, Hai Zhou, Bo Wang
American Journal of Science Feb 2022, 322 (2) 351-379; DOI: 10.2475/02.2022.08
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL BACKGROUND AND SAMPLE DESCRIPTIONS
    • ANALYTICAL METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • SUPPLMENTARY DATA
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Geochemistry
  • Petrogenesis
  • Erenhot granitic pluton
  • Hegenshan Ocean
  • Central Asian Orogenic Belt

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire