Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticle

Early carboniferous rifting of the Harlik arc in the Eastern Tianshan (NW China): Response to rollback in the southern Altaids?

Liang Li, Wenjiao Xiao, Brian F. Windley, He Yang, Xiaoliang Jia, Miao Sang, Nijiati Abuduxun and Yin Liu
American Journal of Science February 2022, 322 (2) 313-350; DOI: https://doi.org/10.2475/02.2022.07
Liang Li
*Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
**College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenjiao Xiao
*Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
**College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
***State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
§China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wj-xiao@mail.iggcas.ac.cn
Brian F. Windley
§§Department of Geology, University of Leicester, Leicester LE1 7RH, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
He Yang
*Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoliang Jia
*Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miao Sang
*Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nijiati Abuduxun
*Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
**College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yin Liu
*Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFENRENCES

  1. ↵
    1. Annen C.,
    2. Blundy J. D.,
    3. Sparks R. S. J.
    , 2006, The genesis of intermediate and silicic magmas in deep crustal hot zones: Journal of Petrology, v. 47, n. 3, p. 505–539, doi:https://doi.org/10.1093/petrology/egi084
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Arai R.,
    2. Dunn R. A.
    , 2014, Seismological study of Lau back arc crust: Mantle water, magmatic differentiation, and a compositionally zoned basin: Earth and Planetary Science Letters, v. 390, p. 304–317, doi:https://doi.org/10.1016/j.epsl.2014.01.014
    OpenUrlCrossRefGeoRef
  3. ↵
    1. Bai X. Y.,
    2. Chen Y. C.,
    3. Song D. F.,
    4. Xiao W. J.,
    5. Windley B. F.,
    6. Ao S. J.,
    7. Li L.,
    8. Xiang D. F.
    , 2020, A new Carboniferous–Permian intra‐oceanic subduction system in the North Tianshan (NW China): Implications for multiple accretionary tectonics of the southern Altaids: Geological Journal, v. 55, n. 3, p. 2232–2253, doi:https://doi.org/10.1002/gj.3787
    OpenUrlCrossRef
  4. ↵
    1. Bergantz G. W.
    , 2000, On the dynamics of magma mixing by reintrusion: implications for pluton assembly processes: Journal of Structural Geology, v. 22, n. 9, p. 1297–1309, doi:https://doi.org/10.1016/S0191-8141(00)00053-5
    OpenUrlCrossRefWeb of Science
  5. ↵
    1. Buys J.,
    2. Spandler C.,
    3. Holm R. J.,
    4. Richards S. W.
    , 2014, Remnants of ancient Australia in Vanuatu: Implications for crustal evolution in island arcs and tectonic development of the southwest Pacific: Geology, v. 42, n. 11, p. 939–942, doi:https://doi.org/10.1130/G36155.1
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Carmichael I. S.
    , 2002, The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico: Contributions to Mineralogy and Petrology, v. 143, p. 641–663, doi:https://doi.org/10.1007/s00410-002-0370-9
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Carvalho B. B.,
    2. Sawyer E. W.,
    3. Janasi V. A.
    , 2017, Enhancing maficity of granitic magma during anatexis: entrainment of infertile mafic lithologies: Journal of Petrology, v. 58, p. 1333–1362, doi:https://doi.org/10.1093/petrology/egx056
    OpenUrlCrossRef
  8. ↵
    1. Charvet J.,
    2. Shu L. S.,
    3. Laurent-Charvet S.
    , 2007, Paleozoic structural and geodynamic evolution of Eastern Tianshan (NW China): welding of the Tarim and Junggar plates: Episodes Journal of International Geoscience, v. 30, n. 3, p. 162–185.
    OpenUrl
  9. ↵
    1. Chen X. J.,
    2. Shu L. S.,
    3. Santosh M.,
    4. Zhao X. X.
    , 2013, Island arc-type bimodal magmatism in the eastern Tianshan Belt, Northwest China: Geochemistry, zircon U–Pb geochronology and implications for the Paleozoic crustal evolution in Central Asia: Lithos, v. 168–169, p. 48–66, doi:https://doi.org/10.1016/j.lithos.2012.10.006
    OpenUrlCrossRef
  10. ↵
    1. Chen X. J.,
    2. Shu L. S.,
    3. Santosh M.,
    4. Xu Z. Q.
    , 2014, The provenance and tectonic affinity of the Paleozoic meta-sedimentary rocks in the Chinese Tianshan belt: New insights from detrital zircon U–Pb geochronology and Hf–isotope analysis: Journal of Asian Earth Sciences, v. 94, p. 12–27, doi:https://doi.org/10.1016/j.jseaes.2014.07.024
    OpenUrlCrossRefGeoRef
  11. ↵
    1. Chen Z. Y.,
    2. Xiao W. J.,
    3. Windley B. F.,
    4. Schulmann K.,
    5. Mao Q. G.,
    6. Zhang Z. Y.,
    7. Zhang J. E.,
    8. Deng C.,
    9. Song S. H.
    , 2019, Composition, provenance, and tectonic setting of the southern Kangurtag accretionary complex in the Eastern Tianshan, NW China: Implications for the late Paleozoic evolution of the north Tianshan ocean: Tectonics, v. 38, n. 8, p. 2779–2802, doi:https://doi.org/10.1029/2018TC005385
    OpenUrlCrossRef
  12. ↵
    1. Chiaradia M.
    , 2014, Copper enrichment in arc magmas controlled by overriding plate thickness: Nature Geoscience, v. 7, p. 43–46, doi:https://doi.org/10.1038/ngeo2028
    OpenUrlCrossRef
  13. ↵
    1. Clemens J. D.,
    2. Stevens G.
    , 2012, What controls chemical variation in granitic magmas? Lithos, v. 134–135, p. 317–329, doi:https://doi.org/10.1016/j.lithos.2012.01.001
    OpenUrlCrossRef
  14. ↵
    1. Clemens J. D.,
    2. Stevens G.
    , 2016, Melt segregation and magma interactions during crustal melting: Breaking out of the matrix: Earth-Science Reviews, v. 160, p. 333–349, doi:https://doi.org/10.1016/j.earscirev.2016.07.012
    OpenUrlCrossRef
  15. ↵
    1. Cocks L. R. M.,
    2. Torsvik T. H.
    , 2007, Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic: Earth-Science Reviews, v. 82, n. 1–2, p. 29–74, doi:https://doi.org/10.1016/j.earscirev.2007.02.001
    OpenUrlCrossRefGeoRef
  16. ↵
    1. Collins W. J.
    , 2002a, Hot orogens, tectonic switching, and creation of continental crust: Geology, v. 30, n. 6, p. 535, doi:https://doi.org/10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Collins W. J.
    , 2002b, Nature of extensional accretionary orogens: Tectonics, v. 21, p. 6-1–6-12, doi:https://doi.org/10.1029/2000TC001272
    OpenUrlCrossRef
  18. ↵
    1. Collins W. J.,
    2. Richards S. W.
    , 2008, Geodynamic significance of S-type granites in circum-Pacific orogens: Geology, v. 36, n. 7, p. 559–562, doi:https://doi.org/10.1130/G24658A.1
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Collins W. J.,
    2. Beams S. D.,
    3. White A. J. R.,
    4. Chappell B. W.
    , 1982, Nature and origin of A-type granites with particular reference to southeastern Australia: Contributions to Mineralogy and Petrology, v. 80, p. 189–200, doi:https://doi.org/10.1007/BF00374895
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Collins W. J.,
    2. Belousova E. A.,
    3. Kemp A. I. S.,
    4. Murphy J. B.
    , 2011, Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data: Nature Geoscience, v. 4, p. 333–337, doi:https://doi.org/10.1038/ngeo1127
    OpenUrlCrossRef
  21. ↵
    1. Crawford A. J.,
    2. Meffre S.,
    3. Symonds P. A.
    , 2003, 120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System: Geological Society of America Special Papers, v. 372, p. 383–403, doi:https://doi.org/10.1130/0-8137-2372-8.383
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Davidson J.,
    2. Turner S.,
    3. Handley H.,
    4. Macpherson C.,
    5. Dosseto A.
    , 2007, Amphibole “sponge” in arc crust?: Geology, v. 35, n. 9, p. 787–790, doi:https://doi.org/10.1130/G23637A.1
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Drummond M. S.,
    2. Defant M. J.
    , 1990, A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons: Journal of Geophysical Research: Solid Earth, v. 95, p. 21503, doi:https://doi.org/10.1029/JB095iB13p21503
    OpenUrlCrossRef
  24. ↵
    1. Du L.,
    2. Long X. P.,
    3. Yuan C.,
    4. Zhang Y. Y.,
    5. Huang Z. Y.,
    6. Sun M.,
    7. Xiao W. J.
    , 2018, Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt: Journal of Asian Earth Sciences, v. 153, p. 139–153, doi:https://doi.org/10.1016/j.jseaes.2017.03.026
    OpenUrlCrossRef
  25. ↵
    1. Dungan M. A.,
    2. Davidson J.
    , 2004, Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: An example from the Chilean Andes: Geology, v. 32, n. 9, p. 773–776, doi:https://doi.org/10.1130/G20735.1
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Falloon T. J.,
    2. Danyushevsky L. V.,
    3. Crawford A. J.,
    4. Meffre S.,
    5. Woodhead J. D.,
    6. Bloomer S. H.
    , 2008, Boninites and adakites from the northern termination of the Tonga trench: Implications for adakite petrogenesis: Journal of Petrology, v. 49, n. 4, p. 697–715, doi:https://doi.org/10.1093/petrology/egm080
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Fiannacca P.,
    2. Cirrincione R.,
    3. Bonanno F.,
    4. Carciotto M. M.
    , 2015, Source-inherited compositional diversity in granite batholiths: The geochemical message of Late Paleozoic intrusive magmatism in central Calabria (southern Italy): Lithos, v. 236–237, p. 123–140, doi:https://doi.org/10.1016/j.lithos.2015.09.003
    OpenUrlCrossRef
  28. ↵
    1. Floyd P. A.
    , 1993, Geochemical discrimination and petrogenesis of alkalic basalt sequences in part of the Ankara melange, central Turkey: Journal of the Geological Society, v. 150, n. 3, p. 541–550, doi:https://doi.org/10.1144/gsjgs.150.3.0541
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Gao J.,
    2. Klemd R.
    , 2003, Formation of HP–LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints: Lithos, v. 66, n. 1–2, p. 1–22, doi:https://doi.org/10.1016/S0024-4937(02)00153-6
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Gao S.,
    2. Rudnick R. L.,
    3. Yuan H. L.,
    4. Liu X. M.,
    5. Liu Y. S.,
    6. Xu W. L.,
    7. Ling W. L.,
    8. Ayers J.,
    9. Wang X. C.,
    10. Wang Q. H.
    , 2004, Recycling lower continental crust in the North China craton: Nature, v. 432, p. 892–897, doi:https://doi.org/10.1038/nature03162
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    1. Garcia-Arias M.,
    2. Stevens G.
    , 2017, Phase equilibrium modelling of granite magma petrogenesis: A. An evaluation of the magma compositions produced by crystal entrainment in the source: Lithos, v. 277, p. 131–153, doi:https://doi.org/10.1016/j.lithos.2016.09.028
    OpenUrlCrossRef
  32. ↵
    1. Ge R. F.,
    2. Zhu W. B.,
    3. Wu H. L.,
    4. Zheng B. H.,
    5. Zhu X. Q.,
    6. He J. W.
    , 2012, The Paleozoic northern margin of the Tarim Craton: Passive or active?: Lithos, v. 142–143, p. 1–15, doi:https://doi.org/10.1016/j.lithos.2012.02.010
    OpenUrlCrossRef
  33. ↵
    1. Gerdes A.,
    2. Montero P.,
    3. Bea F.,
    4. Fershater G.,
    5. Borodina N.,
    6. Osipova T.,
    7. Shardakova G.
    , 2002, Peraluminous granites frequently with mantle-like isotope compositions: the continental-type Murzinka and Dzhabyk batholiths of the eastern Urals: International Journal of Earth Sciences, v. 91, p. 3–19, doi:https://doi.org/10.1007/s005310100195
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Gill J.,
    2. Whelan P.
    , 1989, Early rifting of an oceanic island arc (Fiji) produced shoshonitic to tholeiitic basalts: Journal of Geophysical Research: Solid Earth, v. 94, p. 4561–4578, doi:https://doi.org/10.1029/JB094iB04p04561
    OpenUrlCrossRef
  35. ↵
    1. Grove T.,
    2. Parman S.,
    3. Bowring S.,
    4. Price R.,
    5. Baker M.
    , 2002, The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California: Contributions to Mineralogy and Petrology, v. 142, p. 375–396, doi:https://doi.org/10.1007/s004100100299
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Guivel C.,
    2. Lagabrielle Y.,
    3. Bourgois J.,
    4. Martin H.,
    5. Arnaud N.,
    6. Fourcade S.,
    7. Cotten J.,
    8. Maury R. C.
    , 2003, Very shallow melting of oceanic crust during spreading ridge subduction: Origin of near-trench Quaternary volcanism at the Chile Triple Junction: Journal of Geophysical Research: Solid Earth, v. 108, n. B7, p. 2345, doi:https://doi.org/10.1029/2002JB002119
    OpenUrlCrossRef
  37. ↵
    1. Han Y. G.,
    2. Zhao G. C.
    , 2018, Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean: Earth-Science Reviews, v. 186, p. 129–152, doi:https://doi.org/10.1016/j.earscirev.2017.09.012
    OpenUrlCrossRef
  38. ↵
    1. Hawkesworth C. J.,
    2. Turner S. P.,
    3. McDermott F.,
    4. Peate D. W.,
    5. van Calsteren P.
    , 1997, U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust: Science, v. 276, n. 5312, p. 551–555, doi:https://doi.org/10.1126/science.276.5312.551
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. He D. F.,
    2. Li D.,
    3. Fan C.,
    4. Yang X. F.
    , 2013, Geochronology, geochemistry and tectonostratigraphy of Carboniferous strata of the deepest Well Moshen-1 in the Junggar Basin, northwest China: Insights into the continental growth of Central Asia: Gondwana Research, v. 24, n. 2, p. 560–577, doi:https://doi.org/10.1016/j.gr.2012.10.015
    OpenUrlCrossRefGeoRef
  40. ↵
    1. Hernández-Uribe D.,
    2. Palin R. M.
    , 2019, A revised petrological model for subducted oceanic crust: Insights from phase equilibrium modelling: Journal of Metamorphic Geology, v. 37, n. 6, p. 745–768, doi:https://doi.org/10.1111/jmg.12483
    OpenUrlCrossRef
  41. ↵
    1. Hidalgo P. J.,
    2. Rooney T. O.
    , 2014, Petrogenesis of a voluminous Quaternary adakitic volcano: the case of Baru volcano: Contributions to Mineralogy and Petrology, v. 168, p. 1011, doi:https://doi.org/10.1007/s00410-014-1011-9
    OpenUrlCrossRef
  42. ↵
    1. Hildreth W.,
    2. Moorbath S.
    , 1988, Crustal contributions to arc magmatism in the Andes of Central Chile: Contributions to Mineralogy and Petrology, v. 98, p. 455–489, doi:https://doi.org/10.1007/BF00372365
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Hirai Y.,
    2. Yoshida T.,
    3. Okamura S.,
    4. Tamura Y.,
    5. Sakamoto I.,
    6. Shinjo R.
    , 2018, Breakdown of residual zircon in the Izu arc subducting slab during backarc rifting: Geology, v. 46, n. 4, p. 371–374, doi:https://doi.org/10.1130/G39856.1
    OpenUrlCrossRef
  44. ↵
    1. Huang H.,
    2. Wang T.,
    3. Qin Q.,
    4. Hou J. Y.,
    5. Tong Y.,
    6. Guo L.,
    7. Zhang L.,
    8. Wang J.,
    9. Liang Z. Y.
    , 2015, Zircon Hf isotopic characteristics of granitoids from Baluntai region, Central Tianshan: Implications for Tectonic evolution and continental growth: Acta Geological Sinica, v. 89, p. 2286–2313 (in Chinese with English abstract).
    OpenUrl
  45. ↵
    1. Huang J.,
    2. Zhu Z. X.,
    3. Li P.,
    4. Jin L. Y.,
    5. Sun Y. Y.
    , 2016, Geochemical features of lower-middle Ordovician volcanic rocks of Qiaganbulake formation in the south Koumenzi area, Xinjiang, and its tectonic significances: Xinjiang Geology, v. 34, p. 100–105 (in Chinese with English abstract).
    OpenUrl
  46. ↵
    1. Hyndman R. D.,
    2. Currie C. A.,
    3. Mazzotti S. P.
    , 2005, Subduction zone backarcs, mobile belts, and orogenic heat: GSA today, v. 15, p. 4, doi:https://doi.org/10.1130/1052-5173(2005)015<4:SZBMBA>2.0.CO;2
    OpenUrlCrossRefGeoRef
  47. ↵
    1. Irvine T. N.,
    2. Baragar W. R. A.
    , 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences, v. 8, p. 523–548, doi:https://doi.org/10.1139/e71-055
    OpenUrlAbstract
  48. ↵
    1. Jagoutz O. E.,
    2. Burg J. P.,
    3. Hussain S.,
    4. Dawood H.,
    5. Pettke T.,
    6. Iizuka T.,
    7. Maruyama S.
    , 2009, Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan): Contributions to Mineralogy and Petrology, v. 158, p. 739–755, doi:https://doi.org/10.1007/s00410-009-0408-3
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Jahn B. M.,
    2. Windley B.,
    3. Natal'in B.,
    4. Dobretsov N.
    , 2004, Phanerozoic continental growth in Central Asia: Journal of Asian Earth Sciences, v. 23, n. 5, p. 599–603, doi:https://doi.org/10.1016/S1367-9120(03)00124-X
    OpenUrlCrossRefWeb of Science
  50. ↵
    1. Kay S. M.,
    2. Ramos V. A.,
    3. Marquez M.
    , 1993, Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern south America: The Journal of Geology, v. 101, n. 6, p. 703–714, doi:https://doi.org/10.1086/648269
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Kemp A. I. S.,
    2. Hawkesworth C. J.,
    3. Collins W. J.,
    4. Gray C. M.,
    5. Blevin P. L.
    , 2009, Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia: Earth and Planetary Science Letters, v. 284, n. 3–4, p. 455–466, doi:https://doi.org/10.1016/j.epsl.2009.05.011
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Khain E. V.,
    2. Bibikova E. V.,
    3. Salnikova E. B.,
    4. Kroner A.,
    5. Gibsher A. S.,
    6. Didenko A. N.,
    7. Degtyarev K. E.,
    8. Fedotova A. A.
    , 2003, The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions: Precambrian Research, v. 122, n. 1–4, p. 329–358, doi:https://doi.org/10.1016/S0301-9268(02)00218-8
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Hatcher R. D. Jr..,
    2. Carlson M. P.,
    3. McBride J. H.,
    4. Martínez Catalán J. R.
    1. Kröner A.,
    2. Windley B. F.,
    3. Badarch G.,
    4. Tomurtogoo O.,
    5. Hegner E.,
    6. Jahn B. M.,
    7. Gruschka S.,
    8. Khain E. V.,
    9. Demoux A.,
    10. Wingate M. T. D.
    , 2007, Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield, in Hatcher R. D. Jr.., Carlson M. P., McBride J. H., Martínez Catalán J. R., editors., 4-D Framework of Continental Crust: Geological Society of America Memoirs, Geological Society of America, v. 200, p. 181–209, doi:https://doi.org/10.1130/2007.1200(11)
    OpenUrlCrossRef
  54. ↵
    1. Kröner A.,
    2. Kovach V.,
    3. Belousova E.,
    4. Hegner E.,
    5. Armstrong R.,
    6. Dolgopolova A.,
    7. Seltmann R.,
    8. Alexeiev D. V.,
    9. Hoffmann J. E.,
    10. Wong J.,
    11. Sun M.,
    12. Cai K. D.,
    13. Wang T.,
    14. Tong Y.,
    15. Wilde S. A.,
    16. Degtyarev K. E.,
    17. Rytsk E.
    , 2014, Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt: Gondwana Research, v. 25, n. 1, p. 103–125, doi:https://doi.org/10.1016/j.gr.2012.12.023
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Kröner A.,
    2. Kovach V.,
    3. Alexeiev D.,
    4. Wang K. L.,
    5. Wong J.,
    6. Degtyarev K.,
    7. Kozakov I.
    , 2017, No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data: Gondwana Research, v. 50, p. 135–166, doi:https://doi.org/10.1016/j.gr.2017.04.006
    OpenUrlCrossRef
  56. ↵
    1. Landenberger B.,
    2. Collins W. J.
    , 1996, Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the chaelundi complex, eastern Australia: Journal of Petrology, v. 37, n. 1, p. 145–170, doi:https://doi.org/10.1093/petrology/37.1.145
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Lee C. T. A.,
    2. Bachmann O.
    , 2014, How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics: Earth and Planetary Science Letters, v. 393, p. 266–274, doi:https://doi.org/10.1016/j.epsl.2014.02.044
    OpenUrlCrossRefGeoRef
  58. ↵
    1. Li D.,
    2. He D. F.,
    3. Santosh M.,
    4. Ma D. L.
    , 2015, Tectonic framework of the northern Junggar Basin Part II: The island arc basin system of the western Luliang Uplift and its link with the West Junggar terrane: Gondwana Research, v. 27, n. 3, p. 1110–1130, doi:https://doi.org/10.1016/j.gr.2014.08.019
    OpenUrlCrossRefGeoRef
  59. ↵
    1. Li J. T.,
    2. He X. F.,
    3. Liu L.,
    4. Yang P. T.,
    5. Liang B.,
    6. Su H.,
    7. Yang Y. D.,
    8. Han H. M.,
    9. Liu Y. Z.,
    10. Dai Z. H.
    , 2017, Ordovician tectonic evolution of Harlik in Eastern Tianshan of Xinjiang: Constraints from LA-ICP-MS zircon U-Pb geochronology and geochemistry of volcanic rocks: Geoscience, v. 31, p. 460–473 (in Chinese with English abstract).
    OpenUrl
  60. ↵
    1. Li J. Y.,
    2. Wang K. Z.,
    3. Sun G. H.,
    4. Mo S. G.,
    5. Li W. Q.,
    6. Yang T. N.,
    7. Gao L. M.
    , 2006, Paleozoic active margin slices in the southern Turfan-Hami basin: geological records of subduction of the Paleo-Asian Ocean plate in central Asian regions: Acta Petrologica Sinica, v. 22, p. 1087–1102 (in Chinese with English abstract).
    OpenUrl
  61. ↵
    1. Liu Y. S.,
    2. Gao S.,
    3. Hu Z. C.,
    4. Gao C. G.,
    5. Zong K. Q.,
    6. Wang D. B.
    , 2010, Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths: Journal of Petrology, v. 51, n. 1–2, p. 537–571, doi:https://doi.org/10.1093/petrology/egp082
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Ludwig K. R.
    , 2011. Isoplot v. 4.15: a geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication 4, p. 75.
    OpenUrl
  63. ↵
    1. Ma H. D.,
    2. He W. D.,
    3. Tu Q. J.,
    4. Chen J.,
    5. Cao F. G.,
    6. Ren Y.
    , 2008, Characteristics of the Tashuihe ductile shear zone, Eastern Tianshan, Xinjiang: Geotectonica et Metallogenia, v. 32, p. 1–10 (in Chinese with English abstract).
    OpenUrl
  64. ↵
    1. Ma J. C.
    , 1999, Study on the Huangcaopo Group in the eastern Junggar: Journal of Mineralogy and Petrology, v. 19, p. 52–55 (in Chinese with English abstract).
    OpenUrlGeoRef
  65. ↵
    1. Ma R. S.,
    2. Shu L. S.,
    3. Sun J.
    , 1997, Tectonic evolution and metallogeny of Eastern Tianshan mountains: Geological Publishing House, Beijing, China, 202 p.
  66. ↵
    1. Ma X. H.,
    2. Chen B.,
    3. Wang C.,
    4. Yan X. L.
    , 2015, Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang: Acta Petrologica Sinica, v. 31, p. 89–104 (in Chinese with English abstract).
    OpenUrl
  67. ↵
    1. Ma X. X.,
    2. Shu L. S.,
    3. Meert J. G.,
    4. Li J. Y.
    , 2014, The Paleozoic evolution of Central Tianshan: Geochemical and geochronological evidence: Gondwana Research, v. 25, n. 2, p. 797–819, doi:https://doi.org/10.1016/j.gr.2013.05.015
    OpenUrlCrossRefGeoRef
  68. ↵
    1. Macpherson C. G.,
    2. Dreher S. T.,
    3. Thirlwall M. F.
    , 2006, Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines: Earth and Planetary Science Letters, v. 243, n. 3–4, p. 581–593, doi:https://doi.org/10.1016/j.epsl.2005.12.034
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Maniar P. D.,
    2. Piccoli P. M.
    , 1989, Tectonic discrimination of granitoids: Geological Society of America Bulletin, v. 101, n. 5, p. 635–643, doi:https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Mao Q. G.,
    2. Xiao W. J.,
    3. Han C. M.,
    4. Fang T. H.,
    5. Sun M.,
    6. Yuan C.
    , 2010, The study of Early-Paleozoic peraluminous granites (SP) and its tectonic significance in the Xingxingxia suture zone, eastern Tianshan Mountains, Xinjiang, northwest China: Chinese Journal of Geology, v. 45, p. 41–56 (in Chinese with English abstract).
    OpenUrl
  71. ↵
    1. Meng L. F.,
    2. Li Z. X.,
    3. Chen H. L.,
    4. Li X. H.,
    5. Wang X. C.
    , 2012, Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model: Lithos, v. 132–133, p. 127–140, doi:https://doi.org/10.1016/j.lithos.2011.11.022
    OpenUrlCrossRef
  72. ↵
    1. Middlemost E. A. K.
    , 1994, Naming materials in the magma/igneous rock system: Earth-Science Reviews, v. 37, p. 215–224, doi:https://doi.org/10.1016/0012-8252(94)90029-9
    OpenUrlCrossRefGeoRef
  73. ↵
    1. Nandedkar R. H.,
    2. Ulmer P.,
    3. Müntener O.
    , 2014, Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa: Contributions to Mineralogy and Petrology, v. 167, p. 1015, doi:https://doi.org/10.1007/s00410-014-1015-5
    OpenUrlCrossRef
  74. ↵
    1. Palin R. M.,
    2. White R. W.,
    3. Green E. C. R.,
    4. Diener J. F. A.,
    5. Powell R.,
    6. Holland T. J. B.
    , 2016, High-grade metamorphism and partial melting of basic and intermediate rocks: Journal of Metamorphic Geology, v. 34, n. 9, p. 871–892, doi:https://doi.org/10.1111/jmg.12212
    OpenUrlCrossRef
  75. ↵
    1. Patiño Douce A. E.
    , 1999, What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?: Geological Society, London, special publication, v. 168, n. 1, p. 55–75, doi:https://doi.org/10.1144/GSL.SP.1999.168.01.05
    OpenUrlCrossRef
  76. ↵
    1. Pearce J.A.
    , 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, p. 14–48, doi:https://doi.org/10.1016/j.lithos.2007.06.016
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    1. Pearce J. A.,
    2. Norry M. J.
    , 1979, Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks: Contributions to Mineralogy and Petrology, v. 69, p. 33–47, doi:https://doi.org/10.1007/BF00375192
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Peacock S. M.,
    2. Rushmer T.,
    3. Thompson A. B.
    , 1994, Partial melting of subducting oceanic crust: Earth and Planetary Science Letters, v. 121, n. 1–2, p. 227–244, doi:https://doi.org/10.1016/0012-821X(94)90042-6
    OpenUrlCrossRefGeoRefWeb of Science
  79. ↵
    1. Petterson M. G.,
    2. Babbs T.,
    3. Neal C. R.,
    4. Mahoney J. J.,
    5. Saunders A. D.,
    6. Duncan R. A.,
    7. Tolia D.,
    8. Magu R.,
    9. Qopoto C.,
    10. Mahoa H.,
    11. Natogga D.
    , 1999, Geological–tectonic framework of Solomon Islands, SW Pacific: crustal accretion and growth within an intra-oceanic setting: Tectonophysics, v. 301, n. 1–2, p. 35–60, doi:https://doi.org/10.1016/S0040-1951(98)00214-5
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Plank T.,
    2. Kelley K. A.,
    3. Zimmer M. M.,
    4. Hauri E. H.,
    5. Wallace P. J.
    , 2013, Why do mafic arc magmas contain ∼4wt% water on average? Earth and Planetary Science Letters, v. 364, p. 168–179, doi:https://doi.org/10.1016/j.epsl.2012.11.044
    OpenUrlCrossRefGeoRefWeb of Science
  81. ↵
    1. Rapp R. P.,
    2. Shimizu N.,
    3. Norman M. D.,
    4. Applegate G. S.
    , 1999, Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa: Chemical Geology, v. 160, n. 4, p. 335–356, doi:https://doi.org/10.1016/S0009-2541(99)00106-0
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. Rong W.,
    2. Zhang S. B.,
    3. Zheng Y. F.
    , 2017, Back-reaction of peritectic garnet as an explanation for the origin of mafic enclaves in S-type granite from the jiuling batholith in South China: Journal of Petrology, v. 58, n. 3, p. 569–598, doi:https://doi.org/10.1093/petrology/egx029
    OpenUrlCrossRef
  83. ↵
    1. Sato M.,
    2. Shuto K.,
    3. Uematsu M.,
    4. Takahashi T.,
    5. Ayabe M.,
    6. Takanashi K.,
    7. Ishimoto H.,
    8. Kawabata H.
    , 2013, Origin of late Oligocene to middle Miocene adakitic andesites, high magnesian andesites and basalts from the back-arc margin of the SW and NE japan arcs: Journal of Petrology, v. 54, n. 3, p. 481–524, doi:https://doi.org/10.1093/petrology/egs075
    OpenUrlCrossRefGeoRefWeb of Science
  84. ↵
    1. Schellart W. P.,
    2. Lister G. S.,
    3. Toy V. G.
    , 2006, A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes: Earth-Science Reviews, v. 76, n. 3–4, p. 191–233, doi:https://doi.org/10.1016/j.earscirev.2006.01.002
    OpenUrlCrossRefGeoRef
  85. ↵
    1. Yin A.,
    2. Harrison T.
    1. Şengör A. M. C.,
    2. Natal'in B. A.
    , 1996, Paleotectonics of Asia: fragments of a synthesi s, in Yin A., Harrison T. editors, The Tectonic Evolution of Asia: Cambridge University Press, Cambridge, United Kingdom, p. 486–640.
  86. ↵
    1. Şengör A. M. C.,
    2. Natal'in B. A.,
    3. Burtman V. S.
    , 1993, Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia: Nature, v. 364, p. 299–307, doi:https://doi.org/10.1038/364299a0
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Shu L. S.,
    2. Zhu W. B.,
    3. Wu C. Z.,
    4. Ma D. S.,
    5. Ma X. X.,
    6. Ding H. F.
    , 2013, The formation and evolution of ancient blocks in Xinjiang: Geology in China, v. 40, p. 43–60 (in Chinese with English abstract).
    OpenUrl
  88. ↵
    1. Sisson T. W.,
    2. Grove T. L.
    , 1993, Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism: Contributions to Mineralogy and Petrology, v. 113, p. 143–166, doi:https://doi.org/10.1007/BF00283225
    OpenUrlCrossRefGeoRefWeb of Science
  89. ↵
    1. Song P.,
    2. Tong Y.,
    3. Wang T.,
    4. Huang H.,
    5. Zhang J. J.,
    6. Huang W.
    , 2018, Zircon U-Pb ages, genetic evolution and geological significance of Carboniferous granites in the Harlik mountain, East Tianshan, Xinjiang: Geological Bulletin of China, v. 37, p. 790–804 (in Chinese with English abstract).
    OpenUrl
  90. ↵
    1. Stevens G.,
    2. Villaros A.,
    3. Moyen J. F.
    , 2007, Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites: Geology, v. 35, p. 9–12, doi:https://doi.org/10.1130/G22959A.1
    OpenUrlAbstract/FREE Full Text
    1. Sun G. H.
    , ms 2007, Structural deformation and tectonic evolution of Harlik mountain in Xinjiang since the Paleozoic: PhD thesis, Chinese Academy of Geological Sciences, Beijing, China, 25 p. (in Chinese with English abstract).
  91. ↵
    1. Saunders A. D.,
    2. Norry M. J.
    1. Sun S. S.,
    2. McDonough W. F.
    , 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Saunders A. D., Norry M. J., editors, Magmatism in ocean basins: Geological Society, London, Special Publication, v. 42, p. 313–345, doi:https://doi.org/10.1144/GSL.SP.1989.042.01.19
    OpenUrlCrossRef
  92. ↵
    1. Sun Y.,
    2. Wang J. B.,
    3. Li Y. C.,
    4. Wang Y. W.,
    5. Yu M. J.,
    6. Long L. L,
    7. Lü X. Q.,
    8. Chen L.
    , 2018, Recognition of Late Ordovician Yudai porphyry Cu (Au, Mo) mineralization in the Kalatag district, Eastern Tianshan terrane, NW China: Constraints from geology, geochronology, and petrology: Ore Geology Reviews, v. 100, p. 220–236, doi:https://doi.org/10.1016/j.oregeorev.2017.07.011
    OpenUrlCrossRef
  93. ↵
    1. Sun Y.,
    2. Wang J. B.,
    3. Wang Y. W.,
    4. Long L. L.,
    5. Mao Q. G.,
    6. Yu M. J.
    , 2019, Ages and origins of granitoids from the Kalatag Cu cluster in Eastern Tianshan, NW China: Constraints on Ordovician–Devonian arc evolution and porphyry Cu fertility in the Southern Central Asian orogenic belt: Lithos, v. 330–331, p. 55–73, doi:https://doi.org/10.1016/j.lithos.2019.02.002
    OpenUrlCrossRef
  94. ↵
    1. Taylor S. R.
    , 1967, The origin and growth of continents: Tectonophysics, v. 4, n. 1, p. 17–34, doi:https://doi.org/10.1016/0040-1951(67)90056-X
    OpenUrlCrossRefGeoRefWeb of Science
  95. ↵
    1. Tian Z. H.,
    2. Xiao W. J.,
    3. Windley B. F.,
    4. Zhang J. E.,
    5. Zhang Z. Y.,
    6. Song D. F.
    , 2017, Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan–Tianshan orogenic collages (NW China): International Journal of Earth Sciences, v. 106, p. 2319–2342, doi:https://doi.org/10.1007/s00531-016-1428-7
    OpenUrlCrossRef
  96. ↵
    1. Villaros A.,
    2. Stevens G.,
    3. Buick I. S.
    , 2009, Tracking S-type granite from source to emplacement: Clues from garnet in the Cape Granite Suite: Lithos, v. 112, n. 3–4, p. 217–235, doi:https://doi.org/10.1016/j.lithos.2009.02.011
    OpenUrlCrossRefGeoRefWeb of Science
  97. ↵
    1. Wakita K.,
    2. Pubellier M.,
    3. Windley B. F.
    , 2013, Tectonic processes, from rifting to collision via subduction, in SE Asia and the western Pacific: A key to understanding the architecture of the Central Asian Orogenic Belt: Lithosphere, v. 5, n. 3, p. 265–276, doi:https://doi.org/10.1130/L234.1
    OpenUrlAbstract/FREE Full Text
  98. ↵
    1. Walowski K. J.,
    2. Wallace P. J.,
    3. Hauri E. H.,
    4. Wada I.,
    5. Clynne M. A.
    , 2015, Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite: Nature Geoscience, v. 8, p. 404–408, doi:https://doi.org/10.1038/ngeo2417
    OpenUrlCrossRef
  99. ↵
    1. Wang B. Y.,
    2. Jiang C. Y.,
    3. Li Y. J.,
    4. Wu H. E.,
    5. Xia Z. D.,
    6. Lu R. H.
    , 2009, Geochemistry and tectonic implications of Karamaili ophiolite in East Junggar of Xinjiang: Journal of Mineralogy and Petrology, v. 29, p. 74–82 (in Chinese with English abstract).
    OpenUrlGeoRef
  100. ↵
    1. Wang B.,
    2. Zhai Y. Y.,
    3. Kapp P.,
    4. de Jong K.,
    5. Zhong L. L.,
    6. Liu H. S.,
    7. Ma Y. Z.,
    8. Gong H. J.,
    9. Geng H. Y.
    , 2018, Accretionary tectonics of back-arc oceanic basins in the South Tianshan: Insights from structural, geochronological, and geochemical studies of the Wuwamen ophiolite mélange: Geological Society of America Bulletin, v. 130, n. 1–2, p. 284–306, doi:https://doi.org/10.1130/B31397.1
    OpenUrlCrossRef
  101. ↵
    1. Wang C.,
    2. Ma X. H.,
    3. Chen B.,
    4. Yan X. L.
    , 2017, Late Carboniferous volcanism of the Harlik orogenic belt, Xinjiang: Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence: Acta Petrologica Sinica, v. 33, p. 440–454 (in Chinese with English abstract).
    OpenUrl
  102. ↵
    1. Wang L. Y.,
    2. Liao Q. A.,
    3. Xiao D.,
    4. Luo T.,
    5. Zhao H.,
    6. Liu H. F.,
    7. Wang G. C.
    , 2016, Petrogenesis and tectonic significance of early Carboniferous A-type granite in Harlik, Xinjiang: Journal of Geomechanics, v. 22, p. 1032–1048 (in Chinese with English abstract).
    OpenUrl
  103. ↵
    1. Wang X. J.,
    2. Wang G. H.,
    3. Zhuan S. P.,
    4. Li G. D.,
    5. Wang D. G.,
    6. Wu L. H.
    , 2011, Late Ordovician collision and orogen in middle Tianshan: Evidences of geochemical analyses and geochronology on metamorphosed granitoid rock: Acta Petrologica Sinica, v. 27, p. 2203–2212 (in Chinese with English abstract).
    OpenUrlGeoRef
  104. ↵
    1. Wang Y. H.,
    2. Xue C. J.,
    3. Liu J. J.,
    4. Wang J. P.,
    5. Yang J. T.,
    6. Zhang F. F.,
    7. Zhao Z. N.,
    8. Zhao Y. J.,
    9. Liu B.
    , 2015, Early Carboniferous adakitic rocks in the area of the Tuwu deposit, eastern Tianshan, NW China: Slab melting and implications for porphyry copper mineralization: Journal of Asian Earth Sciences, v. 103, p. 332–349, doi:https://doi.org/10.1016/j.jseaes.2014.09.032
    OpenUrlCrossRefGeoRef
  105. ↵
    1. Wang Y. X.,
    2. Gu L. X.,
    3. Zhang Z. Z.,
    4. Wu C. Z.,
    5. Zhang K. J.,
    6. Li H. M.,
    7. Yang J. D.
    , 2006, Geochronology and Nd-Sr-Pb isotopes of the bimodal volcanic rocks of Bogda rift: Acta Petrologica Sinica, v. 22, p. 1215–1224 (in Chinese with English abstract).
    OpenUrl
  106. ↵
    1. Weis D.,
    2. Kieffer B.,
    3. Maerschalk C.,
    4. Barling J.,
    5. de Jong J.,
    6. Williams G. A.,
    7. Hanano D.,
    8. Pretorius W.,
    9. Mattielli N.,
    10. Scoates J. S.,
    11. Goolaerts A.,
    12. Friedman R. M.,
    13. Mahoney J. B.
    , 2006, High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS: Geochemistry, Geophysics, Geosystems, v. 7, n. 8, Q08006, doi:https://doi.org/10.1029/2006GC001283
    OpenUrlCrossRef
    1. Wilhem C.,
    2. Windley B. F.,
    3. Stampfli G. M.
    , 2012, The Altaids of Central Asia: A tectonic and evolutionary innovative review: Earth-Science Reviews, v. 113, n. 3–4, p. 303–341, doi:https://doi.org/10.1016/j.earscirev.2012.04.001
    OpenUrlCrossRefGeoRef
  107. ↵
    1. Windley B. F.,
    2. Allen M. B.,
    3. Zhang C.,
    4. Zhao Z. Y.,
    5. Wang G. R.
    , 1990, Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia: Geology, v. 18, n. 2, p. 128–131, doi:https://doi.org/10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  108. ↵
    1. Windley B. F.,
    2. Alexeiev D.,
    3. Xiao W. J.,
    4. Kröner A.,
    5. Badarch G.
    , 2007, Tectonic models for accretion of the Central Asian Orogenic Belt: Journal of the Geological Society, v. 164, n. 1, p. 31–47, doi:https://doi.org/10.1144/0016-76492006-022
    OpenUrlAbstract/FREE Full Text
  109. ↵
    1. Wood D. A.
    , 1980, The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province: Earth and Planetary Science Letters, v. 50, n. 1, p. 11–30, doi:https://doi.org/10.1016/0012-821X(80)90116-8
    OpenUrlCrossRefGeoRefWeb of Science
  110. ↵
    1. Wu F. Y.,
    2. Liu Z. C.,
    3. Liu X. C.,
    4. Ji W.Q.
    , 2015, Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift: Acta Petrologica Sinica, v. 31, p. 1–36 (in Chinese with English abstract).
    OpenUrl
  111. ↵
    1. Xiao B.,
    2. Chen H. Y.,
    3. Hollings P.,
    4. Han J. S.,
    5. Wang Y. F.,
    6. Yang J. T.,
    7. Cai K. D.
    , 2017, Magmatic evolution of the Tuwu–Yandong porphyry Cu belt, NW China: Constraints from geochronology, geochemistry and Sr–Nd–Hf isotopes: Gondwana Research, v. 43, p. 74–91, doi:https://doi.org/10.1016/j.gr.2015.09.003
    OpenUrlCrossRef
  112. ↵
    1. Xiao W. J.,
    2. Zhang L. C.,
    3. Qin K. Z.,
    4. Sun S.,
    5. Li J. L.
    , 2004, Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia: American Journal of Science, v. 304, n. 4, p. 370–395, doi:https://doi.org/10.2475/ajs.304.4.370
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Xiao W. J.,
    2. Han C. M.,
    3. Yuan C.,
    4. Sun M.,
    5. Lin S. F.,
    6. Chen H. L.,
    7. Li Z. L.,
    8. Li J. L.,
    9. Sun S.
    , 2008, Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia: Journal of Asian Earth Sciences, v. 32, n. 2–4, p. 102–117, doi:https://doi.org/10.1016/j.jseaes.2007.10.008
    OpenUrlCrossRefGeoRefWeb of Science
  114. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Allen M. B.,
    4. Han C. M.
    , 2013, Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage: Gondwana Research, v. 23, n. 4, p. 1316–1341, doi:https://doi.org/10.1016/j.gr.2012.01.012
    OpenUrlCrossRefGeoRefWeb of Science
  115. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Sun S.,
    4. Li J. L.,
    5. Huang B. C.,
    6. Han C. M.,
    7. Yuan C.,
    8. Sun M.,
    9. Chen H. L.
    , 2015, A tale of amalgamation of three Permo-Triassic collage systems in central Asia: Oroclines, sutures, and terminal accretion: Annual Review of Earth and Planetary Sciences, v. 43, p. 477–507, doi:https://doi.org/10.1146/annurev-earth-060614-105254
    OpenUrlCrossRef
  116. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Han C. M.,
    4. Liu W.,
    5. Wan B.,
    6. Zhang J. E.,
    7. Ao S. J.,
    8. Zhang Z. Y.,
    9. Song D. F
    , 2018, Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia: Earth-Science Reviews, v. 186, p. 94–128, doi:https://doi.org/10.1016/j.earscirev.2017.09.020
    OpenUrlCrossRef
  117. ↵
    1. Xie W.,
    2. Xu Y. G.,
    3. Chen Y. B.,
    4. Luo Z. Y.,
    5. Hong L. B.,
    6. Ma L.,
    7. Liu H. Q.
    , 2016, High-alumina basalts from the Bogda Mountains suggest an arc setting for Chinese Northern Tianshan during the Late Carboniferous: Lithos, v. 256–257, p. 165–181, doi:https://doi.org/10.1016/j.lithos.2016.04.005
    OpenUrlCrossRef
  118. ↵
    1. Xu X. Y.,
    2. Xia L. Q.,
    3. Ma Z. P.,
    4. Wang Y. B.,
    5. Xia Z. C.,
    6. Li X. M.,
    7. Wang L. S.
    , 2006, SHRIMP zircon U-Pb geochronology of the plagiogranites from Bayingou ophiolite in the North Tianshan mountains and the petrogenesis of the ophiolite: Acta Petrologica Sinica, v. 22, p. 83–94 (in Chinese with English abstract).
    OpenUrlGeoRef
  119. ↵
    1. Yang X. K.,
    2. Tao H. X.,
    3. Luo G. C.,
    4. Ji J. S.
    , 1996, Basic features of plate tectonics in Eastern Tianshan of China: Xinjiang Geology, v. 14, p. 221–227 (in Chinese with English abstract).
    OpenUrl
  120. ↵
    1. Zhang J. E.,
    2. Xiao W. J.,
    3. Windley B. F.,
    4. Wakabayashi J.,
    5. Cai F. L.,
    6. Sein K.,
    7. Wu H. H.,
    8. Naing S.
    , 2018a, Multiple alternating forearc- and backarc-ward migration of magmatism in the Indo-Myanmar Orogenic Belt since the Jurassic: Documentation of the orogenic architecture of eastern Neotethys in SE Asia: Earth-Science Reviews, v. 185, p. 704–731, doi:https://doi.org/10.1016/j.earscirev.2018.07.009
    OpenUrlCrossRef
  121. ↵
    1. Zhang Y. Y.,
    2. Yuan C.,
    3. Long X. P.,
    4. Sun M.,
    5. Huang Z. Y.,
    6. Du L.,
    7. Wang X. Y.
    , 2017, Carboniferous bimodal volcanic rocks in the Eastern Tianshan, NW China: Evidence for arc rifting: Gondwana Research, v. 43, p. 92–106, doi:https://doi.org/10.1016/j.gr.2016.02.004
    OpenUrlCrossRef
  122. ↵
    1. Zhang Y. Y.,
    2. Sun M.,
    3. Yuan C.,
    4. Long X. P.,
    5. Jiang Y. D.,
    6. Li P. F.,
    7. Huang Z. Y.,
    8. Du L.
    , 2018b, Alternating trench advance and retreat: Insights from Paleozoic magmatism in the Eastern Tianshan, central Asian orogenic belt: Tectonics, v. 37, n. 7, p. 2142–2164, doi:https://doi.org/10.1029/2018TC005051
    OpenUrlCrossRef
  123. ↵
    1. Zhao Z. Y.,
    2. Zhang Z. C.,
    3. Santosh M.,
    4. Huang H.,
    5. Cheng Z. G.,
    6. Ye J. C.
    , 2015, Early Paleozoic magmatic record from the northern margin of the Tarim Craton: Further insights on the evolution of the Central Asian Orogenic Belt: Gondwana Research, v. 28, n. 1, p. 328–347, doi:https://doi.org/10.1016/j.gr.2014.04.007
    OpenUrlCrossRef
  124. ↵
    1. Zhou J. Y.,
    2. Cui B. F.,
    3. Xiao H. L.,
    4. Chen S. Z.,
    5. Zhu D. M.
    , 2001, The Kangguertag-Huangshan collision zone of bilateral subduction and its metallogenic model and prognosis in Xinjiang, China: Volcanology and Mineral Resources, v. 22, p. 252–263 (in Chinese with English abstract).
    OpenUrl
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (2)
American Journal of Science
Vol. 322, Issue 2
1 Feb 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Early carboniferous rifting of the Harlik arc in the Eastern Tianshan (NW China): Response to rollback in the southern Altaids?
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
19 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Early carboniferous rifting of the Harlik arc in the Eastern Tianshan (NW China): Response to rollback in the southern Altaids?
Liang Li, Wenjiao Xiao, Brian F. Windley, He Yang, Xiaoliang Jia, Miao Sang, Nijiati Abuduxun, Yin Liu
American Journal of Science Feb 2022, 322 (2) 313-350; DOI: 10.2475/02.2022.07

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Early carboniferous rifting of the Harlik arc in the Eastern Tianshan (NW China): Response to rollback in the southern Altaids?
Liang Li, Wenjiao Xiao, Brian F. Windley, He Yang, Xiaoliang Jia, Miao Sang, Nijiati Abuduxun, Yin Liu
American Journal of Science Feb 2022, 322 (2) 313-350; DOI: 10.2475/02.2022.07
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • REGIONAL GEOLOGY
    • PETROLOGY AND SAMPLING
    • ANALYTICAL METHODS
    • ANALYTICAL RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFENRENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Paleo- to Mesoarchean crustal growth in the Karwar block, southern India: Constraints on TTG genesis and Archean tectonics
  • Cyclicity of multistage anatexis of deeply subducted continental crust during the North Qaidam orogeny: Tracing the source, timescale, and evolution of pulsed melts
Show more Article

Similar Articles

Keywords

  • Eastern Tianshan
  • Early Carboniferous
  • Slab rollback
  • Rifting
  • Peraluminous granitoids

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire