Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Cyclicity of multistage anatexis of deeply subducted continental crust during the North Qaidam orogeny: Tracing the source, timescale, and evolution of pulsed melts

Xin Chen, Hans-Peter Schertl, Aitor Cambeses, Emma Hart, Chenggui Lin, Rongke Xu and Youye Zheng
American Journal of Science February 2022, 322 (2) 225-279; DOI: https://doi.org/10.2475/02.2022.05
Xin Chen
* School of Earth Resources, China University of Geosciences, Wuhan 430074, China
** Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: chenxin68@cug.edu.cn zhyouye@163.com
Hans-Peter Schertl
***Ruhr-Universität Bochum, Fakultät für Geowissenschaften, Institut für Geologie, Mineralogie & Geophysik, 44780 Bochum, Germany
§College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aitor Cambeses
***Ruhr-Universität Bochum, Fakultät für Geowissenschaften, Institut für Geologie, Mineralogie & Geophysik, 44780 Bochum, Germany
§§Department of Mineralogy and Petrology, University of Granada (UGR), Av/Fuentenueva s/n, E-18002 Granada, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emma Hart
§§§School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chenggui Lin
‡Development Research Center, China Geological Survey, Beijing, 100037
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rongke Xu
* School of Earth Resources, China University of Geosciences, Wuhan 430074, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Youye Zheng
* School of Earth Resources, China University of Geosciences, Wuhan 430074, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: chenxin68@cug.edu.cn zhyouye@163.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Angiboust S.,
    2. Glodny J.,
    3. Oncken O.,
    4. Chopin C.
    , 2014a, In search of transient subduction interfaces in the Dent Blanche–Sesia tectonic system (W. Alps): Lithos, v. 205, p. 298–321, doi:https://doi.org/10.1016/j.lithos.2014.07.001
    OpenUrlCrossRefGeoRef
  2. ↵
    1. Angiboust S.,
    2. Pettke T.,
    3. de Hoog J. C. M.,
    4. Caron B.,
    5. Oncken O.
    , 2014b, Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone: Journal of Petrology, v. 55, n. 5, p. 883–916, doi:https://doi.org/10.1093/petrology/egu010
    OpenUrlCrossRefGeoRef
  3. ↵
    1. Auzanneau E.,
    2. Vielzeuf D.,
    3. Schmidt M. W.
    , 2006, Experimental evidence of decompression melting during exhumation of subducted continental crust: Contributions to Mineralogy and Petrology, v. 152, p. 125–148, doi:https://doi.org/10.1007/s00410-006-0104-5
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Bea F.,
    2. Montero P.,
    3. Molina J. F.,
    4. Scarrow J. H.,
    5. Cambeses A.,
    6. Moreno J. A.
    , 2018, Lu-Hf ratios of crustal rocks and their Bearing on zircon Hf isotope model ages: the effects of accessories: Chemical Geology, v. 484, p. 179–190, doi:https://doi.org/10.1016/j.chemgeo.2017.11.034
    OpenUrlCrossRef
  5. ↵
    1. Bea F.,
    2. Morales I.,
    3. Molina J. F.,
    4. Montero P.,
    5. Cambeses A.
    , 2021, Zircon stability grids in crustal partial melts: implications for zircon inheritance: Contributions to Mineralogy and Petrology, v. 176, n. 3, p. 1–13, doi:https://doi.org/10.1007/s00410-021-01772-x
    OpenUrlCrossRef
  6. ↵
    1. Bebout G. E.,
    2. Penniston-Dorland S. C.
    , 2016, Fluid and mass transfer at subduction interfaces—The field metamorphic record: Lithos, v. 240–243, p. 228–258, doi:https://doi.org/10.1016/j.lithos.2015.10.007
    OpenUrlCrossRef
  7. ↵
    1. Bouvier A.,
    2. Vervoort J. D.,
    3. Patchett P. J.
    , 2008, The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets: Earth Planetary Science Letter, v. 273, n. 1–2, p. 48–57, doi:https://doi.org/10.1016/j.epsl.2008.06.010
    OpenUrlCrossRef
  8. ↵
    1. Brown M.
    , 1973, The definition of metatexis, diatexis and migmatite: Proceedings of the Geologists' Association, v. 84, Part 4, p. 371–382, doi:https://doi.org/10.1016/S0016-7878(73)80021-5
    OpenUrlCrossRef
  9. ↵
    1. Gupta A. K.,
    2. Dasgupta S.
    1. Brown M.,
    2. Korhonen F. J.
    , 2009, Some remarks on melting and extreme metamorphism of crustal rocks, in Gupta A. K., Dasgupta S., editors, Physics and Chemistry of the Earth's Interior: New York, Springer, p. 67–88, doi:https://doi.org/10.1007/978-1-4419-0346-4_4
    OpenUrlCrossRef
  10. ↵
    1. Brown M.,
    2. Rushmer T.
    , 2006, Evolution and differentiation of the continental crust: Cambridge, United Kingdom, Cambridge University Press, 553 p., doi:https://doi.org/10.1017/S0016756806273059
    OpenUrlCrossRef
  11. ↵
    1. Brown M.,
    2. Korhonen F. J.,
    3. Siddoway C. S.
    , 2011, Organizing melt flow through the crust: Elements, v. 7, n. 4, p. 261–266, doi:https://doi.org/10.2113/gselements.7.4.261
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Burg J. P.,
    2. Vanderhaeghe O.
    , 1993, Structures and way-up criteria in migmatites, with application to the Velay dome (French Massif Central): Journal of Structural Geology, v. 15, n. 11, p. 1293–1301, doi:https://doi.org/10.1016/0191-8141(93)90103-H
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Cai P. J.,
    2. Chen X.,
    3. Majka J.,
    4. Klonowska I.,
    5. Jeanneret P.,
    6. Xu R.,
    7. Zheng Y. Y.
    , 2020, Two stages of crust-mantle interaction during oceanic subduction to continental collision: Insights from mafic-ultramafic complexes in the North Qaidam orogen: Gondwana Research, v. 89, p. 247–264, doi:https://doi.org/10.1016/j.gr.2020.08.018
    OpenUrlCrossRef
  14. ↵
    1. Cao S.,
    2. Neubauer F.,
    3. Bernroider M.,
    4. Liu J.
    , 2013, The lateral boundary of a metamorphic core complex: The Moutsounas shear zone on Naxos, Cyclades, Greece: Journal of structural geology, v. 54, p. 103–128, doi:https://doi.org/10.1016/j.jsg.2013.07.002
    OpenUrlCrossRefGeoRef
  15. ↵
    1. Cao Y. T.,
    2. Liu L.,
    3. Chen D. L.,
    4. Wang C.,
    5. Yang W. Q.,
    6. Kang L.,
    7. Zhu X. H.
    , 2017, Partial melting during exhumation of Paleozoic retrograde eclogite in North Qaidam, western China: Journal of Asian Earth Sciences, v. 148, p. 223–240, doi:https://doi.org/10.1016/j.jseaes.2017.09.009
    OpenUrlCrossRef
  16. ↵
    1. Chen D. L.,
    2. Liu L.,
    3. Sun Y.,
    4. Liou J. G.
    , 2009, Geochemistry and zircon U–Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China: Journal of Asian Earth Sciences, v. 35, n. 3–4, p.259–272, doi:https://doi.org/10.1016/j.jseaes.2008.12.001
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Chen D. L.,
    2. Liu L.,
    3. Sun Y.,
    4. Sun W. D.,
    5. Zhu X. H.,
    6. Liu X. M.,
    7. Guo C. L.
    , 2012, Felsic veins within UHP eclogite at Xitieshan in North Qaidam, NW China: Partial melting during exhumation: Lithos, v.136–139, p.187–200, doi:https://doi.org/10.1016/j.lithos.2011.11.006
    OpenUrlCrossRef
  18. ↵
    1. Chen R. X.,
    2. Li H. Y.,
    3. Zheng Y F.,
    4. Zhang L.,
    5. Gong B.,
    6. Hu Z. C.,
    7. Yang Y. H.
    , 2017, Crust-Mantle Interaction in a Continental Subduction Channel: Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet: Journal of Petrology, v. 58, n. 2, p.191–226, doi:https://doi.org/10.1093/petrology/egx011
    OpenUrlCrossRef
  19. ↵
    1. Chen X.,
    2. Xu R.,
    3. Schertl H. P.,
    4. Zheng Y.
    , 2018a, Eclogite-facies metamorphism in impure marble from North Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision: Lithos, v. 310–311, p. 201–224, doi:https://doi.org/10.1016/j.lithos.2018.04.005
    OpenUrlCrossRef
  20. ↵
    1. Chen X.,
    2. Xu R. K.,
    3. Zheng Y. Y.,
    4. Cai P. J.
    , 2018b, Petrology and geochemistry of high niobium eclogite in the North Qaidam orogeny, Western China: Implications for an eclogite facies metamorphosed island arc slice: Journal of Asian Earth Sciences, v. 164, p. 380–397, doi:https://doi.org/10.1016/j.jseaes.2018.07.003
    OpenUrlCrossRef
  21. ↵
    1. Chen X.,
    2. Schertl H. P.,
    3. Cambeses A.,
    4. Gu P. Y.,
    5. Xu R.,
    6. Zheng Y.,
    7. Jiang X.,
    8. Cai P.
    , 2019, From magmatic generation to UHP metamorphic overprint and subsequent exhumation: A rapid cycle of plate movement recorded by the supra-subduction zone ophiolite from the North Qaidam orogen: Lithos, v. 350–351, 105238, doi:https://doi.org/10.1016/j.lithos.2019.105238
    OpenUrlCrossRef
  22. ↵
    1. Chen X.,
    2. Zheng Y.,
    3. Xu R.,
    4. Gu P.,
    5. Yu J.,
    6. Bai J.,
    7. Cai P.,
    8. Jiang X.
    , 2020, Subduction channel fluid-rock interaction: Indications from rutile-quartz veins within eclogite from the Yuka terrane, North Qaidam orogen: Geoscience Frontiers, v. 11, n. 2, p. 635–650, doi:https://doi.org/10.1016/j.gsf.2019.07.009
    OpenUrlCrossRef
  23. ↵
    1. Chen Y. X.,
    2. Zheng Y. F.,
    3. Hu Z. C.
    , 2013, Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen: Lithos, v. 156–159, p.69–96, doi:https://doi.org/10.1016/j.lithos.2012.10.008
    OpenUrlCrossRef
  24. ↵
    1. Chen Y. X.,
    2. Zheng Y. F.,
    3. Li L.,
    4. Chen R. X.
    , 2014, Fluid-rock interaction and geochemical transport during protolith emplacement and continental collision: A tale from Qinglongshan ultrahigh- pressure metamorphic rocks in the Sulu orogen: American Journal of Sciences, v. 314, n. 1, p. 357–399, doi:https://doi.org/10.2475/01.2014.10
    OpenUrlCrossRef
  25. ↵
    1. Chen Y. X.,
    2. Gao P.,
    3. Zheng Y. F.
    , 2015, The anatectic effect on the zircon Hf isotope composition of migmatites and associated granites: Lithos, v. 238, p.174–184, doi:https://doi.org/10.1016/j.lithos.2015.09.026
    OpenUrlCrossRefGeoRef
  26. ↵
    1. Chopin C.
    , 2003, Ultrahigh-pressure metamorphism: tracing continental crust into the mantle: Earth and Planetary Science Letters, v. 212, n. 1–2, p. 1–14, doi:https://doi.org/10.1016/S0012-821X(03)00261-9
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Clemens J. D.,
    2. Stevens G.
    , 2016, Melt segregation and magma interactions during crustal melting: breaking out of the matrix: Earth-Science Reviews, v. 160, p.333–349, doi:https://doi.org/10.1016/j.earscirev.2016.07.012
    OpenUrlCrossRef
  28. ↵
    1. Coleman D. S.,
    2. Gray W.,
    3. Glazner A. F.
    , 2004, Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the tuolumne intrusive suite, California: Geology, v. 32, p. 433–436, doi:https://doi.org/10.1130/G20220.1
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Crameri F.,
    2. Magni V.,
    3. Domeier M.,
    4. Shephard G. E.,
    5. Chotalia K.,
    6. Cooper G.,
    7. Eakin C. M.,
    8. Grima A. G.,
    9. Gürer D.,
    10. Király Á.,
    11. Mulyukova E.,
    12. Peters K.,
    13. Robert B.,
    14. Thielmann M.
    , 2020, A transdisciplinary and community-driven database to unravel subduction zone initiation: Nature Communications v. 11, p. 3750, doi:https://doi.org/10.1038/s41467-020-17522-9
    OpenUrlCrossRef
  30. ↵
    1. Dai L. Q.,
    2. Zhao Z. F.,
    3. Zheng Y. F.,
    4. An Y. J.,
    5. Zheng F.
    , 2017, Geochemical distinction between carbonate and silicate metasomatism in generating the mantle sources of alkali basalts: Journal of Petrology, v. 58, n. 5, p. 863–884, doi:https://doi.org/10.1093/petrology/egx038
    OpenUrlCrossRef
  31. ↵
    1. Defant M. J.,
    2. Drummond M. S.
    , 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere: Nature, v. 347, p. 662–665, doi:https://doi.org/10.1038/347662a0
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. DePaolo D. J.
    , 1981, Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic: Nature, v. 291, p. 193–196, doi:https://doi.org/10.1038/291193a0
    OpenUrlCrossRefGeoRefWeb of Science
  33. ↵
    1. de Saint Blanquat M.,
    2. Horsman E.,
    3. Habert G.,
    4. Morgan S.,
    5. Vanderhaeghe O.,
    6. Law R.,
    7. Tikoff B.
    , 2011, Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs: Tectonophysics, v. 500, n. 1–4, p. 20–33, doi:https://doi.org/10.1016/j.tecto.2009.12.009
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Dohmen R.,
    2. Faak K.,
    3. Blundy J. D.
    , 2017, Chronometry and speedometry of magmatic processes using chemical diffusion in olivine, plagioclase and pyroxenes: Reviews in Mineralogy and Geochemistry, v. 83, n. 1, p. 535–575, doi:https://doi.org/10.2138/rmg.2017.83.16
    OpenUrlFREE Full Text
  35. ↵
    1. Farina F.,
    2. Stevens G.,
    3. Gerdes A.,
    4. Frei D.
    , 2014, Small-scale Hf isotopic variability in the Peninsula pluton (South Africa): the processes that control inheritance of source 176Hf/177Hf diversity in S-type granites: Contributions to Mineralogy and Petrology, v. 168, p. 1065, doi:https://doi.org/10.1007/s00410-014-1065-8
    OpenUrlCrossRef
  36. ↵
    1. Ferrero S.,
    2. Wunder B.,
    3. Walczak K.,
    4. O'Brien P. J.,
    5. Ziemann M. A.
    , 2015, Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths: Geology, v. 43, p. 447–450, doi:https://doi.org/10.1130/G36534.1
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Ferry J. M.,
    2. Watson E. B.
    , 2007, New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers: Contributions to Mineralogy and Petrology, v. 154, n. 4, p.429–437, doi:https://doi.org/10.1007/s00410-007-0201-0
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Flowerdew M. J.,
    2. Millar I. L.,
    3. Vaughan A. P. M.,
    4. Horstwood M. S. A.,
    5. Fanning C. M.
    , 2006, The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons: Contributions to Mineralogy and Petrology, v. 151, p. 751–768, doi:https://doi.org/10.1007/s00410-006-0091-6
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Gabriel K. R.
    , 1971, The biplot graphic display of matrices with application to principal component analysis: Biometrika, v. 58, n. 3, p. 453–467, doi:https://doi.org/10.1093/biomet/58.3.453
    OpenUrlCrossRefWeb of Science
  40. ↵
    1. Gao S. B.,
    2. Chen X.,
    3. Xu R.,
    4. Cai P. J.,
    5. Lu L. H.,
    6. Hou W. D.,
    7. Guo X. Z.
    , 2019, Tracking the timing and nature of protolith, metamorphism, and partial melting of tourmaline‐Bearing migmatites by zircon U–Pb and Hf isotopic compositions in the Yuka terrane, North Qaidam UHP metamorphic belt: Geological Journal, v. 54, n. 2, p. 1013–1036, doi:https://doi.org/10.1002/gj.3362
    OpenUrlCrossRef
  41. ↵
    1. Gao X. Y.,
    2. Zheng Y. F.,
    3. Chen Y. X.,
    4. Hu Z.
    , 2013, Trace element composition of continentally subducted slab‐derived melt: insight from multiphase solid inclusions in ultrahigh‐pressure eclogite in the Dabie orogen: Journal of Metamorphic Geology, v. 31, n. 4, p. 453–468, doi:https://doi.org/10.1111/jmg.12029
    OpenUrlCrossRefGeoRef
  42. ↵
    1. Garrett R. G.
    2013, The ‘rgr’ package for the R Open Source statistical computing and graphics environment-a tool to support geochemical data interpretation: Geochemistry: Exploration, Environment, Analysis, v. 13, n. 4, p. 355–378, doi:https://doi.org/10.1144/geochem2011-106
    OpenUrlCrossRef
  43. ↵
    1. Gilotti J. A.,
    2. McClelland W. C.,
    3. Wooden J. L.
    , 2014, Zircon captures exhumation of an ultrahigh-pressure terrane, North-East Greenland Caledonides: Gondwana Research, v. 25, n. 1, p. 235–256, doi:https://doi.org/10.1016/j.gr.2013.03.018
    OpenUrlCrossRefGeoRef
  44. ↵
    1. Goldstein S. L.,
    2. Onions R. K.,
    3. Hamilton P. J.
    , 1984, A Sm-Nd isotopic study of Atmospheric dusts and Particulates from major river Systems: Earth and Planetary Science Letters, v. 70, n. 2, p. 221–236, doi:https://doi.org/10.1016/0012-821X(84)90007-4
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Guergouz C.,
    2. Martin L.,
    3. Vanderhaeghe O.,
    4. Thébaud N.,
    5. Fiorentini M.
    , 2018, Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea-Verbano and Strona-Ceneri Zones, NW Italy: Lithos, v. 308–309, p.1–18, doi:https://doi.org/10.1016/j.lithos.2018.02.014
    OpenUrlCrossRef
  46. ↵
    1. Hart E.,
    2. Storey C.,
    3. Harley S. L.,
    4. Fowler M.
    , 2018, A window into the lower crust: trace element systematics and the occurrence of inclusions/intergrowths in granulite-facies rutile: Gondwana Research, v. 59, p. 76–86, doi:https://doi.org/10.1016/j.gr.2018.02.021
    OpenUrlCrossRef
  47. ↵
    1. Hermann J.,
    2. Green D. H.
    , 2001, Experimental constraints on high pressure melting in subducted crust: Earth and Planetary Science Letters, v. 188, n. 1–2, p. 149–168, doi:https://doi.org/10.1016/S0012-821X(01)00321-1
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Hermann J.,
    2. Spandler C.,
    3. Hack A.,
    4. Korsakov A. V.
    , 2006, Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones: Lithos, v. 92, n. 3–4, p. 399–417, doi:https://doi.org/10.1016/j.lithos.2006.03.055
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Hermann J.,
    2. Zheng Y. F.,
    3. Rubatto D.
    , 2013, Deep fluids in subducted continental crust: Elements, v. 9, n. 4, p. 281–287, doi:https://doi.org/10.2113/gselements.9.4.281
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Hoskin P. W. O.,
    2. Schaltegger U.
    , 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in Mineralogy and Geochemistry, v. 53, n. 1, p. 27–62, doi:https://doi.org/10.2113/0530027
    OpenUrlFREE Full Text
  51. ↵
    1. Hu Z. C.,
    2. Liu Y. S.,
    3. Gao S.,
    4. Xiao S. Q.,
    5. Zhao L. S.,
    6. Gunther D.,
    7. Li M.,
    8. Zhang W.,
    9. Zong K. Q.
    , 2012, A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis: Spectrochimica Acta Part B: Atomic Spectroscopy, v. 78, p.50–57, doi:https://doi.org/10.1016/j.sab.2012.09.007
    OpenUrlCrossRef
  52. ↵
    1. Hu Z. C.,
    2. Zhang W.,
    3. Liu Y. S.,
    4. Gao S.,
    5. Li M.,
    6. Zong K. Q.,
    7. Chen H. H.,
    8. Hu S. H.
    , 2015, “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis: Analytical Chemistry, v. 87, n. 2, p. 1152–1157, doi:https://doi.org/10.1021/ac503749k
    OpenUrlCrossRef
  53. ↵
    1. Huang J.,
    2. Guo S.,
    3. Jin Q. Z.,
    4. Huang F.
    , 2020, Iron and magnesium isotopic compositions of subduction-zone fluids and implications for arc volcanism: Geochimica et Cosmochimica Acta, v. 278, p. 376–391, doi:https://doi.org/10.1016/j.gca.2019.06.020
    OpenUrlCrossRef
  54. ↵
    1. Huang W. L.,
    2. Wyllie P. J.
    , 1981, Phase relationships of S‐type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota: Journal of Geophysical Research: Solid Earth, v. 86, n. B11, p. 10515–10529, doi:https://doi.org/10.1029/JB086iB11p10515
    OpenUrlCrossRef
  55. ↵
    1. Huangfu P. P.,
    2. Wang Y. J.,
    3. Li Z. H.,
    4. Fan W. M.,
    5. Zhang Y.
    , 2016, Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision: Journal of Earth Science, v. 27, p. 727–739, doi:https://doi.org/10.1007/s12583-016-0701-9
    OpenUrlCrossRef
  56. ↵
    1. Hyndman R. D.,
    2. Peacock S. M.
    , 2003, Serpentinization of the forearc mantle: Earth and Planetary Science Letters, v. 212, n. 3–4, p.417–432, doi:https://doi.org/10.1016/S0012-821X(03)00263-2
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Ihaka R.,
    2. Gentleman R.
    , 1996, R: a language for data analysis and graphics: Journal of computational and graphical statistics, v. 5, n. 3, p. 299–314, doi:https://doi.org/10.1080/10618600.1996.10474713
    OpenUrlCrossRef
  58. ↵
    1. John T.,
    2. Gussone N.,
    3. Podladchikov Y. Y.,
    4. Bebout G. E.,
    5. Dohmen R.,
    6. Halama R.,
    7. Klemd R.,
    8. Magna T.,
    9. Seitz H. M.
    , 2012, Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs: Nature Geoscience, v. 5, p. 489–492, doi:https://doi.org/10.1038/ngeo1482
    OpenUrlCrossRef
  59. ↵
    1. Kemp A. I. S.,
    2. Hawkesworth C. J.,
    3. Foster G. L.,
    4. Paterson B. A.,
    5. Woodhead J. D.,
    6. Hergt J. M.,
    7. Gray C. M.,
    8. Whitehouse M. J.
    , 2007, Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon: Science, v. 315, p. 980–983, doi:https://doi.org/10.1126/science.1136154
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Keppler H.
    , 2017, Fluids and trace element transport in subduction zones: American Mineralogist, v. 102, p. 5–20, doi:https://doi.org/10.2138/am-2017-5716
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Kessel R.,
    2. Schmidt M. W.,
    3. Ulmer P.,
    4. Pettke T.
    , 2005, Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth: Nature, v. 437, p. 724–727, doi:https://doi.org/10.1038/nature03971
    OpenUrlCrossRefPubMedWeb of Science
  62. ↵
    1. Korsakov A. V.,
    2. Hermann J.
    , 2006, Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks: Earth and Planetary Science Letters, v. 241, n. 1–2, p. 104–118, doi:https://doi.org/10.1016/j.epsl.2005.10.037
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Labrousse L.,
    2. Jolivet L.,
    3. Agard P.,
    4. Hébert R.,
    5. Andersen T. B.
    , 2002, Crustal-scale boudinage and migmatization of gneiss during their exhumation in the UHP province of western Norway: Terra Nova, v. 14, n. 4, p.263–270, doi:https://doi.org/10.1046/j.1365-3121.2002.00422.x
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Labrousse L.,
    2. Prouteau G.,
    3. Ganzhorn A. C.
    , 2011, Continental exhumation triggered by partial melting at ultrahigh pressure: Geology, v. 39, p.1171–1174, doi:https://doi.org/10.1130/G32316.1
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Lang H. M.,
    2. Gilotti J. A.
    , 2015, Modeling the exhumation path of partially melted ultrahigh-pressure metapelites, North-East Greenland Caledonides: Lithos, v. 226, p.131–146, doi:https://doi.org/10.1016/j.lithos.2014.10.010
    OpenUrlCrossRefGeoRef
  66. ↵
    1. Liebscher A.,
    2. Franz G.,
    3. Frei D.,
    4. Dulski P.
    , 2007, High-pressure melting of eclogite and the P–T–X history of tonalitic to trondhjemitic zoisite–pegmatites. Münchberg Massif, Germany. Journal of Petrology, v. 48, n. 5, p. 1001–1019, doi:https://doi.org/10.1093/petrology/egm008
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Liew T. C.,
    2. Hofmann A. W.
    , 1988, Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study: Contributions to Mineralogy and Petrology, v. 98, n. 2, p. 129–138, doi:https://doi.org/10.1007/BF00402106
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    1. Liu X. C.,
    2. Wu Y. B.,
    3. Gao S.,
    4. Liu Q.,
    5. Wang H.,
    6. Qin Z.,
    7. Li Q.,
    8. Li X. H.,
    9. Gong H.
    , 2012. First record and timing of UHP metamorphism from zircon in the Xitieshan terrane: Implications for the evolution of the entire North Qaidam metamorphic belt: American Mineralogist, v. 97, n. 7, p. 1083–1093, doi:https://doi.org/10.2138/am.2012.4048
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Liu X.,
    2. Wu Y.,
    3. Gao S.,
    4. Wang H.,
    5. Zheng J.,
    6. Hu Z.,
    7. Zhou L.,
    8. Yang S.
    , 2014, Record of multiple stage channelized fluid and melt activities in deeply subducted slab from zircon U–Pb age and Hf–O isotope compositions: Geochimica Et Cosmochimica Acta, v. 144, p. 1–24, doi:https://doi.org/10.1016/j.gca.2014.08.016
    OpenUrlCrossRefGeoRef
  70. ↵
    1. Liu Y. S.,
    2. Hu Z. C.,
    3. Gao S.,
    4. Günther D.,
    5. Xu J.,
    6. Gao C. G.,
    7. Chen H. H.
    , 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard: Chemical Geology, v. 257, n. 1–2, p.34–43, doi:https://doi.org/10.1016/j.chemgeo.2008.08.004
    OpenUrlCrossRefGeoRefWeb of Science
  71. ↵
    1. Liu Y. S.,
    2. Gao S.,
    3. Hu Z. C.,
    4. Gao C. G.,
    5. Zong K. Q.,
    6. Wang D. B.
    , 2010, Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths: Journal of Petrology, v. 51, n. 1–2, p. 537–571, doi:https://doi.org/10.1093/petrology/egp082
    OpenUrlCrossRefGeoRefWeb of Science
  72. ↵
    1. Ludwig K. R.
    , 2003, User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology Center, California, Berkeley, n. 4, 74 p.
  73. ↵
    1. Maki K.,
    2. Yui T. F.,
    3. Miyazaki K.,
    4. Fukuyama M.,
    5. Wang K. L.,
    6. Martens U.,
    7. Grove M.,
    8. Liou J. G.
    , 2014, Petrogenesis of metatexite and diatexite migmatites determined using zircon U–Pb age, trace element and Hf isotope data, Higo metamorphic terrane, central Kyushu, Japan: Journal of Metamorphic Geology, v. 32, p. 301–323, doi:https://doi.org/10.1111/jmg.12073
    OpenUrlCrossRefGeoRef
  74. ↵
    1. Manning C. E.
    , 2004, The chemistry of subduction-zone fluids, Earth and Planetary Science Letters, v. 223, n. 1–2, p.1–16, doi:https://doi.org/10.1016/j.epsl.2004.04.030
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Martin H.,
    2. Smithies R. H.,
    3. Rapp R.,
    4. Moyen J. F.,
    5. Champion D.
    , 2005, An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution: Lithos, v. 79, n. 1–2, p.1–24, doi:https://doi.org/10.1016/j.lithos.2004.04.048
    OpenUrlCrossRefGeoRefWeb of Science
  76. ↵
    1. Mattinson C. G.,
    2. Wooden J. L.,
    3. Liou J. G.,
    4. Bird D.,
    5. Wu C.
    , 2006, Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, western China: American Journal of Science, v. 306, n. 9, p. 683–711, doi:https://doi.org/10.2475/09.2006.01
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Mattinson C. G.,
    2. Wooden J. L.,
    3. Zhang J. X.,
    4. Bird D. K.
    , 2009, Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China: Journal of Asian Earth Sciences v. 35, n. 3–4, p. 298–309, doi:https://doi.org/10.1016/j.jseaes.2008.12.007
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Matzel J. E. P.,
    2. Bowring S. A.,
    3. Miller R. B.
    , 2006, Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington: Geological Society of America Bulletin, v. 118, n. 11–12, p.1412–1430, doi:https://doi.org/10.1130/B25923.1
    OpenUrlCrossRefWeb of Science
  79. ↵
    1. Meng F. C.,
    2. Zhang J. X.
    , 2008, Contemporaneous of Early Palaeozoic granite and high temperature metamorphism, North Qaidam Mountains, western China: Acta Petrologica Sinica, v. 24, p. 1585–1594.
    OpenUrl
  80. ↵
    1. Mibe K.,
    2. Kawamoto T.,
    3. Matsukage K. N.,
    4. Fei Y. W.,
    5. Ono S.
    , 2011, Slab melting versus slab dehydration in subduction-zone magmatism: Proceedings of the National Academy of Sciences, v. 108, n. 20, p.8177–8182, doi:https://doi.org/10.1073/pnas.1010968108
    OpenUrlAbstract/FREE Full Text
  81. ↵
    1. Michel J.,
    2. Baumgartner L.,
    3. Putlitz B.,
    4. Schaltegger U.,
    5. Ovtcharova M.
    , 2008, Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y.: Geology, v. 36, n. 6, p.459–462, doi:https://doi.org/10.1130/G24546A.1
    OpenUrlAbstract/FREE Full Text
  82. ↵
    1. Peacock S. M.
    , 1990, Fluid processes in subduction zones: Science, v. 248, n. 4953, p. 329–337, doi:https://doi.org/10.1126/science.248.4953.329
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. Plümper O.,
    2. John T.,
    3. Podladchikov Y. Y.,
    4. Vrijmoed J. C.,
    5. Scambelluri M.
    , 2017, Fluid escape from subduction zones controlled by channel-forming reactive porosity: Nature Geoscience, v. 10, p. 150–156, doi:https://doi.org/10.1038/ngeo2865
    OpenUrlCrossRef
  84. ↵
    1. Rapp R. P.,
    2. Watson E. B.
    , 1995, Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling: Journal of Petrology, v.36, n. 4, p. 891–931, doi:https://doi.org/10.1093/petrology/36.4.891
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Ringwood A. E.
    , 1974, The petrological evolution of island arc systems: Twenty-seventh William Smith Lecture: Journal of the Geological Society, v. 130, n. 3, p. 183–204, doi:https://doi.org/10.1144/gsjgs.130.3.0183
    OpenUrlAbstract/FREE Full Text
  86. ↵
    1. Rosenberg C. L.,
    2. Handy M. R.
    , 2005, Experimental deformation of partially melted granite revisited: implications for the continental crust: Journal of Metamorphic Geology, v. 23, n. 1, p.19–28, doi:https://doi.org/10.1111/j.1525-1314.2005.00555.x
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Rubatto D.
    , 2002, Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism: Chemical Geology, v. 184, n. 1–2, p. 123–138, doi:https://doi.org/10.1016/S0009-2541(01)00355-2
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Rubatto D.
    , 2017, Zircon: the metamorphic mineral: Reviews in Mineralogy and Geochemistry, v. 83, n. 1, p. 261–2965, doi:https://doi.org/10.2138/rmg.2017.83.9
    OpenUrlFREE Full Text
  89. ↵
    1. Rubatto D.,
    2. Hermann J.
    , 2003, Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones: Geochimica et Cosmochimica Acta, v. 67, n. 12, p. 2173–2187, doi:https://doi.org/10.1016/S0016-7037(02)01321-2
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Rubatto D.,
    2. Hermann J.
    , 2007, Zircon behaviour in deeply subducted rocks: Elements, v. 3, n. 1, p. 31–35, doi:https://doi.org/10.2113/gselements.3.1.31
    OpenUrlAbstract/FREE Full Text
  91. ↵
    1. Rubatto D.,
    2. Hermann J.,
    3. Berger A.,
    4. Engi M.
    , 2009, Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps: Contributions to Mineralogy and Petrology, v. 158, n. 6, p.703–722, doi:https://doi.org/10.1007/s00410-009-0406-5
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    1. Holland H. D.,
    2. Turekian K. K.
    1. Rudnick R. L.,
    2. Gao S.
    , 2003, Composition of the continental crust, in Holland H. D., Turekian K. K., editors, Treatise on Geochemistry: Pergamon, The crust, v. 3, p. 1–64, doi:https://doi.org/10.1016/B0-08-043751-6/03016-4
    OpenUrlCrossRef
  93. ↵
    1. Rudnick R. L.,
    2. Gao S.,
    3. Ling W. L.,
    4. Liu Y. S.,
    5. McDonough W. F.
    , 2004, Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton: Lithos, v. 77, n. 1–4, p. 609–637, doi:https://doi.org/10.1016/j.lithos.2004.03.033
    OpenUrlCrossRefGeoRefWeb of Science
  94. ↵
    1. Sawyer E. W.
    , 1998, Formation and evolution of granite magmas during crustal reworking: the significance of diatexites: Journal of Petrology, v. 39, n. 6, p. 1147–1167, doi:https://doi.org/10.1093/petroj/39.6.1147
    OpenUrlCrossRefGeoRefWeb of Science
  95. ↵
    1. Sawyer E.
    , 2008, Atlas of migmatites The Canadian Mineralogist Special Publication: Ottawa, Canada, NRC Research Press and Mineralogical Association of Canada, v. 9, p. 1–18.
  96. ↵
    1. Sawyer E. W.
    , 2010, Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith: Microstructures in the residual rocks and source of the fluid: Lithos, v. 116, n. 3–4, p. 273–286, doi:https://doi.org/10.1016/j.lithos.2009.07.003
    OpenUrlCrossRefGeoRefWeb of Science
  97. ↵
    1. Scherer E.,
    2. Münker C.,
    3. Mezger K.
    , 2001, Calibration of the lutetium-hafnium clock: Science, v. 293, n. 5530, p. 683–687, doi:https://doi.org/10.1126/science.1061372
    OpenUrlAbstract/FREE Full Text
  98. ↵
    1. Schmidt M. W.,
    2. Vielzeuf D.,
    3. Auzanneau E.
    , 2004, Melting and dissolution of subducting crust at high pressures: the key role of white mica: Earth and Planetary Science Letters, v. 228, n. 1–2, p. 65–84, doi:https://doi.org/10.1016/j.epsl.2004.09.020
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Sen C.,
    2. Dunn T.
    , 1994, Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implication for the origin of adakites: Contributions to Mineralogy and Petrology, v. 117, p. 394–409, doi:https://doi.org/10.1007/BF00307273
    OpenUrlCrossRefGeoRefWeb of Science
  100. ↵
    1. Skjerlie K. P.,
    2. Patiño Douce A. E.
    , 2002, The fluid-absent partial melting of a zoisite Bearing quartz eclogite from 1.0 to 3.2 GPa; implications for melting in thickened continental crust and for subduction-zone processes: Journal of Petrology, v. 43, n. 2, p. 291–314, doi:https://doi.org/10.1093/petrology/43.2.291
    OpenUrlCrossRefGeoRefWeb of Science
  101. ↵
    1. Söderlund U.,
    2. Patchett P. J.,
    3. Vervoort J. D.,
    4. Isachsen C. E.
    , 2004, The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions: Earth Planetary Science Letter, v. 219, n. 3–4, p. 311–324, doi:https://doi.org/10.1016/S0012-821X(04)00012-3
    OpenUrlCrossRef
  102. ↵
    1. Song S. G.,
    2. Yang J. S.,
    3. Xu Z. Q.,
    4. Liou J. G.,
    5. Shi R. D.
    , 2003, Metamorphic evolution of the coesite-Bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China: Journal of Metamorphic Geology, v. 21, n. 6, p. 631–644, doi:https://doi.org/10.1046/j.1525-1314.2003.00469.x
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Song S. G.,
    2. Zhang L. F.,
    3. Niu Y. L.
    , 2004, Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China: American Mineralogist, v. 89, p.1330–1336, doi:https://doi.org/10.2138/am-2004-8-922
    OpenUrlAbstract/FREE Full Text
  104. ↵
    1. Song S. G.,
    2. Zhang L. F.,
    3. Niu Y. L.,
    4. Su L.,
    5. Jian P.,
    6. Liu D. Y.
    , 2005, Geochronology of diamond Bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: a record of complex histories from oceanic lithosphere subduction to continental collision: Earth and Planetary Science Letters, v. 234, n. 1–2, p. 99–118, doi:https://doi.org/10.1016/j.epsl.2005.02.036
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Song S. G.,
    2. Su L.,
    3. Li X. H.,
    4. Zhang G. B.,
    5. Niu Y. L.,
    6. Zhang L.F.
    , 2010, Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China: Precambrian Research, v. 183, n. 4, p. 805–816, doi:https://doi.org/10.1016/j.precamres.2010.09.008
    OpenUrlCrossRefGeoRefWeb of Science
  106. ↵
    1. Song S. G.,
    2. Niu Y. L.,
    3. Su L.,
    4. Wei C. J.,
    5. Zhang L. F.
    , 2014a, Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision: Geochimica et Cosmochimica Acta, v. 130, p. 42–62, doi:https://doi.org/10.1016/j.gca.2014.01.008
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. Song S. G.,
    2. Niu Y. L.,
    3. Su L.,
    4. Zhang C.,
    5. Zhang L. F.
    , 2014b, Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China: Earth-Science Reviews, v. 129, p. 59–84, doi:https://doi.org/10.1016/j.earscirev.2013.11.010
    OpenUrlCrossRefGeoRef
  108. ↵
    1. Song S. G.,
    2. Wang M. J.,
    3. Wang C.,
    4. Niu Y. L.
    , 2015, Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: a perspective: Science China Earth Sciences, v. 58, p. 1284–1304, doi:https://doi.org/10.1007/s11430-015-5102-x
    OpenUrlCrossRef
  109. ↵
    1. Song S. G.,
    2. Niu Y. L.,
    3. Zhang G. B.,
    4. Zhang L. F.
    , 2018, Two epochs of eclogite metamorphism link ‘cold’ oceanic subduction and ‘hot’ continental subduction, the North Qaidam UHP belt, NW China: Geological Society, London, Special Publications, v. 474, p. 275–289, doi:https://doi.org/10.1144/SP474.2
    OpenUrlCrossRef
  110. ↵
    1. Stepanov A. S.,
    2. Hermann J.,
    3. Rubatto D.,
    4. Korsakov A. V.,
    5. Danyushevsky L. V.
    , 2016, Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in garnet, Kokchetav Massif, Kazakhstan: Journal of Petrology, v. 57, p. 1531–1554, doi:https://doi.org/10.1093/petrology/egw049
    OpenUrlCrossRef
  111. ↵
    1. Sun S. S.,
    2. Hanson G. N.
    , 1975, Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites: Contributions to Mineralogy and Petrology, v. 52, n. 2, p. 77–106, doi:https://doi.org/10.1007/BF00395006
    OpenUrlCrossRefGeoRefWeb of Science
  112. ↵
    1. Sun S. S.,
    2. McDonough W. F.
    , 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, n. 1, p. 313–345, doi:https://doi.org/10.1144/GSL.SP.1989.042.01.19
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Tanaka T.,
    2. Togashi S.,
    3. Kamioka H.,
    4. Amakawa H.,
    5. Kagami H.,
    6. Hamamoto T.,
    7. Yuhara M.,
    8. Orihashi Y.,
    9. Yoneda S.,
    10. Shimizu H.,
    11. Kunimaru T.,
    12. Takahashi K.,
    13. Yanagi T.,
    14. Nakano T.,
    15. Fujimaki H.,
    16. Shinjo R.,
    17. Asahara Y.,
    18. Tanimizu M.,
    19. Dragusunu C.
    , 2000, JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium: Chemical Geology, v. 168, p. 279–281, doi:https://doi.org/10.1016/S0009-2541(00)00198-4
    OpenUrlCrossRefGeoRefWeb of Science
  114. ↵
    1. Tang M.,
    2. Wang X. L.,
    3. Shu X. J.,
    4. Wang D.,
    5. Yang T.,
    6. Gopon P.
    , 2014, Hafnium isotopic heterogeneity in zircons from granitic rocks: geochemical evaluation and modeling of “zircon effect” in crustal anatexis: Earth and Planetary Science Letters, v. 389, p. 188–199, doi:https://doi.org/10.1016/j.epsl.2013.12.036
    OpenUrlCrossRefGeoRef
  115. ↵
    1. Pawlowsky-Glahn A.,
    2. Buccianti A.
    1. Templ M.,
    2. Hron K.,
    3. Filzmoser P.
    , 2011, robCompositions: an R-package for robust statistical analysis of compositional data, in Pawlowsky-Glahn A., Buccianti A., editors, Compositional Data Analysis: Theory and Applicatons: Wiley, p. 341–354, doi:https://doi.org/10.1002/9781119976462.ch25
    OpenUrlCrossRef
  116. ↵
    1. Thirlwall M. F.
    , 1991, Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis: Chemical Geology, v. 94, n. 2, p. 85–104, doi:https://doi.org/10.1016/S0009-2541(10)80021-X
    OpenUrlCrossRefWeb of Science
  117. ↵
    1. Turlin F.,
    2. Deruy C.,
    3. Eglinger A.,
    4. Vanderhaeghe O.,
    5. André-Mayer A. S.,
    6. Poujol M.,
    7. Moukhsil A.,
    8. Solgadi F.
    , 2018, A 70 Ma record of suprasolidus conditions in the large, hot, long‐duration Grenville Orogen: Terra Nova, v. 30, n. 3, p. 233–243, doi:https://doi.org/10.1111/ter.12330
    OpenUrlCrossRef
  118. ↵
    1. Vanderhaeghe O.
    , 2001, Melt segragation, pervasive melt migration and magma mobility in the continental crust: the structural record from pores to orogens: Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, v. 26, n. 4–5, p. 213–223, doi:https://doi.org/10.1016/S1464-1895(01)00048-5
    OpenUrlCrossRefWeb of Science
  119. ↵
    1. Vanderhaeghe O.
    , 2009, Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts: Tectonophysics, v. 477, n. 3–4, p. 119–134, doi:https://doi.org/10.1016/j.tecto.2009.06.021
    OpenUrlCrossRefGeoRefWeb of Science
  120. ↵
    1. Vanderhaeghe O.,
    2. Duchêne S.
    , 2010, Crustal-scale mass transfer, geotherm and topography at convergent plate boundaries: Crustal dynamics at convergent plate boundaries: Terra Nova, v. 22, n. 5, p. 315–323, doi:https://doi.org/10.1111/j.1365-3121.2010.00952.x
    OpenUrlCrossRefGeoRefWeb of Science
  121. ↵
    1. Vanderhaeghe O.,
    2. Laurent O.,
    3. Gardien V.,
    4. Moyen J.-F.,
    5. Gébelin A.,
    6. Chelle-Michou C.,
    7. Couzinié S.,
    8. Villaros A.,
    9. BelLanger M.
    , 2020, Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central: Bulletin de la Société Géologique de France, v. 191, doi:https://doi.org/10.1051/bsgf/2020013
    OpenUrlCrossRef
  122. ↵
    1. Vervoort J. D.,
    2. Kemp A. I. S.
    , 2016, Clarifying the zircon Hf isotope record of crust-mantle evolution: Chemical Geology, v. 425, p.65–75, doi:https://doi.org/10.1016/j.chemgeo.2016.01.023
    OpenUrlCrossRefGeoRef
  123. ↵
    1. Walczak K.,
    2. Barnes C. J.,
    3. Majka J.,
    4. Gee D. G.,
    5. Klonowska I.
    , 2020, Zircon age depth-profiling sheds light on the early Caledonian evolution of Seve Nappe Complex in west-central Jämtland: Geoscience Frontiers, doi:https://doi.org/10.1016/j.gsf.2020.11.009
    OpenUrlCrossRef
  124. ↵
    1. Wang L.,
    2. Kusky T. M.,
    3. Polat A.,
    4. Wang S. J.,
    5. Jiang X. F.,
    6. Zong K. Q.,
    7. Wang J. P.,
    8. Deng H.,
    9. Fu J. M.
    , 2014, Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nature Communications, v. 5, p. 1–11, doi:https://doi.org/10.1038/ncomms6604
    OpenUrlCrossRef
  125. ↵
    1. Weinberg R. F.,
    2. Hasalová P.
    , 2015, Water-fluxed melting of the continental crust: A review: Lithos, v. 212–215, p. 158–188, doi:https://doi.org/10.1016/j.lithos.2014.08.021
    OpenUrlCrossRef
  126. ↵
    1. Weis D.,
    2. Kieffer B.,
    3. Maerschalk C.,
    4. Barling J.,
    5. de Jong J.,
    6. Williams G. A.,
    7. Hanano D.,
    8. Pretorius W.,
    9. Matteielli N.,
    10. Scoates J. S.,
    11. Goolaerts A.,
    12. Friedman R. M.,
    13. Mahoney B.
    , 2006, High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS: Geochemistry, Geophysics, Geosystems, v. 7, n. 8, doi:https://doi.org/10.1029/2006GC001283
    OpenUrlCrossRef
  127. ↵
    1. Whitehouse M. J.,
    2. Platt J. P.
    , 2003, Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet: Contributions to Mineralogy and Petrology, v. 145, p. 61–74, doi:https://doi.org/10.1007/s00410-002-0432-z
    OpenUrlCrossRefGeoRefWeb of Science
  128. ↵
    1. Whitney D. L.,
    2. Irving A. J.
    , 1994, Origin of K-poor leucosomes in a metasedimentary migmatite complex by ultrametamorphism, syn-metamorphic magmatism and subsolidus processes.: Lithos, v. 32, n. 3–4, p. 173–192, doi:https://doi.org/10.1016/0024-4937(94)90038-8
    OpenUrlCrossRefGeoRefWeb of Science
  129. ↵
    1. Whitney D. L.,
    2. Evans B. W.
    , 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, n. 1, p. 185–187, doi:https://doi.org/10.2138/am.2010.3371
    OpenUrlCrossRefGeoRefWeb of Science
  130. ↵
    1. Whitney D. L.,
    2. Teyssier C.,
    3. Fayon A. K.,
    4. Hamilton M. A.,
    5. Heizler M.
    , 2003, Tectonic controls on metamorphism, partial melting, and intrusion: timing and duration of regional metamorphism and magmatism in the Nigde Massif, Turkey: Tectonophysics, v. 376, n. 1–2, p. 37–60, doi:https://doi.org/10.1016/j.tecto.2003.08.009
    OpenUrlCrossRefGeoRefWeb of Science
  131. ↵
    1. Willbold M.,
    2. Stracke A.
    , 2010, Formation of enriched mantle components by recycling of upper and lower continental crust: Chemical Geology, v. 276, n. 3–4, p. 188–197, doi:https://doi.org/10.1016/j.chemgeo.2010.06.005
    OpenUrlCrossRefGeoRefWeb of Science
  132. ↵
    1. Wu C. L.,
    2. Gao Y. H.,
    3. Wu S. P.,
    4. Chen Q. L.,
    5. Wooden J. L.,
    6. Mazadab F. K.,
    7. Mattinson C.
    , 2007b, Zircon SHRIMP U–Pb dating of granites from the Da Qaidam area in the north margin of Qaidam basin, NW China: Acta Petrologica Sinica, v. 23, p.1861–1875.
    OpenUrl
  133. ↵
    1. Wu C. L.,
    2. Wooden J. L.,
    3. Robinson P. T.,
    4. Gao Y. H.,
    5. Wu S. P.,
    6. Chen Q. L.,
    7. Mazdab F. K.,
    8. Mattinson C.
    , 2009b, Geochemistry and zircon SHRIMP U–Pb dating of granitoids from the west segment of the North Qaidam: Science in China Series D: Earth Sciences, v. 52, p. 1771–1790, doi:https://doi.org/10.1007/s11430-009-0147-3
    OpenUrlCrossRef
  134. ↵
    1. Wu C. L.,
    2. Gao Y. H.,
    3. Li Z. L.,
    4. Lei M.,
    5. Qin H. P.,
    6. Li M. Z.,
    7. Liu C. H.,
    8. Frost R. B.,
    9. Robinson P. T.,
    10. Wooden J. L.
    , 2014, Zircon SHRIMP U–Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China: Science China: Earth Sciences, v. 57, p. 2945–2965, doi:https://doi.org/10.1007/s11430-014-4958-5
    OpenUrlCrossRef
  135. ↵
    1. Wu Y. B.,
    2. Zheng Y. F.
    , 2004, Genesis of zircon and its constraints on interpretation of U-Pb age: Chinese Science Bulletin, v. 49, p. 1554–1569, doi:https://doi.org/10.1007/BF03184122
    OpenUrlCrossRef
  136. ↵
    1. Wu Y. B.,
    2. Zheng Y. F.,
    3. Zhao Z. F.,
    4. Gong B.,
    5. Liu X. M.,
    6. Wu F. Y.
    , 2006, U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen: Geochimica et Cosmochimica Acta, v. 70, n. 14, p. 3743–3761, doi:https://doi.org/10.1016/j.gca.2006.05.011
    OpenUrlCrossRefGeoRefWeb of Science
  137. ↵
    1. Wu Y. B.,
    2. Zheng Y. F.,
    3. Zhang S. B.,
    4. Zhao Z. F.,
    5. Wu F. Y.,
    6. Liu X. M.
    , 2007a, Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting: Journal of Metamorphic Geology, v. 25, n. 9, p. 991–1009, doi:https://doi.org/10.1111/j.1525-1314.2007.00738.x
    OpenUrlCrossRefGeoRefWeb of Science
  138. ↵
    1. Wu Y. B.,
    2. Gao S.,
    3. Zhang H. F.,
    4. Yang S. H.,
    5. Liu X. C.,
    6. Jiao W. F.,
    7. Liu Y. S.,
    8. Yuan H. L.,
    9. Gong H. J.,
    10. He M. C.
    , 2009a, U–Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains: constraints on fluid flow during early exhumation of ultrahigh-pressure rocks: American Mineralogist, v. 94, n. 2–3, p. 303–312, doi:https://doi.org/10.2138/am.2009.3042
    OpenUrlAbstract/FREE Full Text
  139. ↵
    1. Xia Q. X.,
    2. Zheng Y. F.,
    3. Yuan H. L.,
    4. Wu F. Y.
    , 2009, Contrasting Lu–Hf and U–Th–Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China: Lithos, v. 112, n. 3–4, p. 477−496, doi:https://doi.org/10.1016/j.lithos.2009.04.015
    OpenUrlCrossRefGeoRefWeb of Science
  140. ↵
    1. Xia Q. X.,
    2. Zheng Y. F.,
    3. Chen Y. X.
    , 2013, Protolith control on fluid availability for zircon growth during continental subduction-zone metamorphism in the Dabie orogen: Journal of Asian Earth Sciences, v. 67–68, p. 93–113, doi:https://doi.org/10.1016/j.jseaes.2013.02.014
    OpenUrlCrossRef
  141. ↵
    1. Xiong Q.,
    2. Zheng J.,
    3. Griffin W. L.,
    4. O'Reilly S. Y.,
    5. Zhao J.
    , 2011, Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam terrane (western China): Meso-Neoproterozoic crust–mantle coupling and early Paleozoic convergent plate-margin processes: Precambrian Research, v. 187, n. 1–2, p. 33–57, doi:https://doi.org/10.1016/j.precamres.2011.02.003
    OpenUrlCrossRefGeoRefWeb of Science
  142. ↵
    1. Yakymchuk C.,
    2. Brown M.
    , 2014, Behaviour of zircon and monazite during crustal melting: Journal of the Geological Society, v. 171, n. 4, p. 465–479, doi:https://doi.org/10.1144/jgs2013-115
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Yang J. J.,
    2. Zhu H.,
    3. Deng J.,
    4. Lai S.
    , 1994, The Discovery of Garnet Peridotite in Northem Chaidam Mountains and Its Significance: Acta Petrrologica et Mineralogica, v. 13, p. 97–105.
    OpenUrl
  144. ↵
    1. Yang J. J.,
    2. Powell R.
    , 2008, Ultrahigh-pressure garnet peridotites from the devolatilization of sea-floor hydrated ultramafic rocks: Journal of Metamorphic Geology, v. 26, n. 6, p. 695–716, doi:https://doi.org/10.1111/j.1525-1314.2008.00780.x
    OpenUrlCrossRefGeoRefWeb of Science
  145. ↵
    1. Yang J. S.,
    2. Xu Z. Q.,
    3. Song S. G.,
    4. Zhang J. X.,
    5. Wu C. L.,
    6. Shi R. D.,
    7. Li H. B.,
    8. Brunel M.
    , 2001, Discovery of coesite in the North Qaidam Early Palaeozoic ultrahigh pressure (UHP) metamorphic belt, NW China: Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science, v. 333, n. 11, p. 719–724, doi:https://doi.org/10.1016/S1251-8050(01)01718-9
    OpenUrlCrossRef
  146. ↵
    1. Yang J. S,
    2. Liu F. L.,
    3. Wu C. L.,
    4. Xu Z. Q.,
    5. Shi R. D.,
    6. Chen S. Y.,
    7. Deloule E.,
    8. Wooden J. L.
    , 2003, Two Ultrahigh Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons: International Geology Review, v. 47, n. 4, p. 327–343, doi:https://doi.org/10.2747/0020-6814.47.4.327
    OpenUrlCrossRef
  147. ↵
    1. Yang S. J.
    , ms, 2016, The genesis and formation mechanism of Lvlaignshan composite granite body and enclosed gneiss and garnet amphibolite lenses (M): Ph.D. thesis, Northeast University, Xian, China.
  148. ↵
    1. Yu S. Y.,
    2. Zhang J. X.,
    3. Del Real P. G.
    , 2012. Geochemistry and zircon U/Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: constraints on the timing and nature of regional tectonothermal events accociated with collisional orogeny: Gondwana Research, v. 21, n. 1, p. 167–179, doi:https://doi.org/10.1016/j.gr.2011.07.024
    OpenUrlCrossRefGeoRef
  149. ↵
    1. Yu S. Y.,
    2. Zhang J. X.,
    3. Li H. K.,
    4. Hou K.,
    5. Mattinson C. G.,
    6. Gong J. H.
    , 2013a, Geochemistry, zircon U–Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane: New evidence for deep continental subduction: Gondwana Research v. 23, n. 3, p. 901–919, doi:https://doi.org/10.1016/j.gr.2012.07.018
    OpenUrlCrossRefGeoRef
  150. ↵
    1. Yu S.Y.,
    2. Zhang J.X.,
    3. Gong J.H.,
    4. Li Y.S.
    , 2013b, Research on HP granulite–facies metamorphism and anatexis: a case study on Dulan area in the North Qaidam Mountains: Acta Petrologica Sinica, v. 29, p. 2061–2072 (in Chinese with English abstract).
    OpenUrl
  151. ↵
    1. Yu S. Y.,
    2. Zhang J. X.,
    3. Mattinson C. G.,
    4. Del Real P. G.,
    5. Li Y. S.,
    6. Gong J. H.
    , 2014, Paleozoic HP granulite-facies metamorphism and anatexis in the Dulan area of the North Qaidam UHP terrane, western China: constraints from petrology, zircon U-Pb and amphibole Ar–Ar geochronology: Lithos, v. 198–199, p. 58–76, doi:https://doi.org/10.1016/j.lithos.2014.03.016
    OpenUrlCrossRef
  152. ↵
    1. Yu S. Y.,
    2. Zhang J. X.,
    3. Sun D.,
    4. Li Y. S.,
    5. Gong J.
    , 2015a, Anatexis of ultrahigh-pressure eclogite during exhumation in the North Qaidam ultrahigh-pressure terrane: Constraints from petrology, zircon U-Pb dating, and geochemistry: Geological Society of America Bulletin, v. 127, p. 1290–1312, doi:https://doi.org/10.1130/B31162.1
    OpenUrlAbstract/FREE Full Text
  153. ↵
    1. Yu S.,
    2. Zhang J.,
    3. Sun D.,
    4. Real P. G. D.,
    5. Li Y.,
    6. Zhao X.,
    7. Hou K.
    , 2015b, Petrology, geochemistry, zircon U–Pb dating and Lu–Hf isotope of granitic leucosomes within felsic gneiss from the North Qaidam UHP terrane: constraints on the timing and nature of partial melting: Lithos, v. 218–219, p. 1–21, doi:https://doi.org/10.1016/j.lithos.2015.01.008
    OpenUrlCrossRef
  154. ↵
    1. Yu S.,
    2. Li S.,
    3. Zhang J. X.,
    4. Peng Y. B.,
    5. Somerville I.,
    6. Liu Y. J.,
    7. Wang Z. Y.,
    8. Li Z. F.,
    9. Yao Y.,
    10. Li Y.
    , 2019, Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China: Earth-Science Reviews, v. 191, p.190–211, doi:https://doi.org/10.1016/j.earscirev.2019.02.016
    OpenUrlCrossRef
  155. ↵
    1. Zeng L. S.,
    2. Liang F. H.,
    3. Asimow P.,
    4. Chen F. Y.,
    5. Chen J.
    , 2009, Partial melting of deeply subducted continental crust and the formation of quartzofeldspathic polyphase inclusions in the Sulu UHP eclogites: Chinese Science Bulletin, v. 54, n. 15, p. 2580–2594, doi:https://doi.org/10.1007/s11434-009-0426-6
    OpenUrlCrossRefGeoRefWeb of Science
    1. Zhang C.,
    2. Zhang L.,
    3. Bader T.,
    4. Song S.,
    5. Lou Y.
    , 2013, Geochemistry and trace element behaviors of eclogite during its exhumation in the Xitieshan terrane, North Qaidam UHP belt, NW China: Journal of Asian Earth Sciences, v. 63, p. 81–97, doi:https://doi.org/10.1016/j.jseaes.2012.09.021
    OpenUrlCrossRefGeoRef
  156. ↵
    1. Zhang G. B.,
    2. Song S. G.,
    3. Zhang L. F.,
    4. Niu Y. L.
    , 2008a, The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology: Lithos, v. 104, n. 1–4, p. 99–118, doi:https://doi.org/10.1016/j.lithos.2007.12.001
    OpenUrlCrossRefGeoRefWeb of Science
  157. ↵
    1. Zhang G. B.,
    2. Zhang L. F.,
    3. Song S. G.,
    4. Niu Y. L.
    , 2009, UHP metamorphic evolution and SHRIMP geochronology of a coesite-Bearing meta-ophiolitic gabbro in the North Qaidam, NW China: Journal of Asian Earth Sciences, v. 35, p. 310–322, doi:https://doi.org/10.1016/j.jseaes.2008.11.013
    OpenUrlCrossRefGeoRefWeb of Science
  158. ↵
    1. Zhang G. B.,
    2. Ellis D. J.,
    3. Christy A. G.,
    4. Zhang L. F.,
    5. Niu Y. L.,
    6. Song S. G.
    , 2010a, UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China: European Journal of Mineralogy v. 21, p. 1287–1300, doi:https://doi.org/10.1127/0935-1221/2009/0021-1989
    OpenUrlCrossRef
  159. ↵
    1. Zhang G. B.,
    2. Zhang L. F.,
    3. Christy A. G.,
    4. Song S. G.,
    5. Li Q. L.
    , 2014, Differential exhumation and cooling history of North Qaidam UHP metamorphic rocks, NW China: Constraints from zircon and rutile thermometry and U-Pb geochronology: Lithos, v. 205, p. 15–27, doi:https://doi.org/10.1016/j.lithos.2014.06.018
    OpenUrlCrossRef
  160. ↵
    1. Zhang G. B.,
    2. Ireland T.,
    3. Zhang L. F.,
    4. Gao Z.,
    5. Song S. G.
    , 2016b. Zircon geochemistry of two contrasting types of eclogite: Implications for the tectonic evolution of the North Qaidam UHPM belt, northern Tibet: Gondwana Research, v. 35, p. 27–39, doi:https://doi.org/10.1016/j.gr.2016.04.002
    OpenUrlCrossRef
  161. ↵
    1. Zhang J. X.,
    2. Yang J. S.,
    3. Mattinson C. G.,
    4. Xu Z. Q.,
    5. Meng F. C.,
    6. Shi R. D.
    , 2005, Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: petrological and isotopic constraints: Lithos, v. 84, n. 1–2, p. 51–76, doi:https://doi.org/10.1016/j.lithos.2005.02.002
    OpenUrlCrossRefGeoRefWeb of Science
  162. ↵
    1. Zhang J.,
    2. Meng F.,
    3. Yu S.
    , 2007, Metamorphic history recorded in high pressure mafic granulites in the Luliangshan Mountains to the north of Qaidam Basin, northwest China: evidence from petrology and zircon SHRIMP geochronology: Earth Science Frontiers, v. 14, p. 85–97.
    OpenUrlCrossRef
  163. ↵
    1. Zhang J. X.,
    2. Mattinson C. G.,
    3. Meng F. C.
    , 2008b, Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP/UHP metamorphic terrane, western China: evidence from zircon U-Pb geochronology: Geological Society of America Bulletin, v. 120, n. 5–6, p. 732–749, doi:https://doi.org/10.1130/B26093.1
    OpenUrlAbstract/FREE Full Text
  164. ↵
    1. Zhang J. X.,
    2. Mattinson C. G.,
    3. Yu S. Y.,
    4. Li J. P.,
    5. Meng F. C.
    , 2010b, U–Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction: Journal of Metamorphic Geology, v. 28, n. 9, p. 955–978, doi:https://doi.org/10.1111/j.1525-1314.2010.00901.x
    OpenUrlCrossRefGeoRefWeb of Science
  165. ↵
    1. Zhang L.,
    2. Chen R. X.,
    3. Zheng Y. F.,
    4. Hu Z.
    , 2015, Partial melting of deeply subducted continental crust during exhumation: insights from felsic veins and host UHP metamorphic rocks in North Qaidam, northern Tibet: Journal of Metamorphic Geology, v. 33, n. 7, p. 671–694, doi:https://doi.org/10.1111/jmg.12146
    OpenUrlCrossRefGeoRef
  166. ↵
    1. Zhang L.,
    2. Chen R. X.,
    3. Zheng Y. F.,
    4. Li W. C.,
    5. Hu Z.,
    6. Yang Y.,
    7. Tang H.
    , 2016a, The tectonic transition from oceanic subduction to continental subduction: Zirconological constraints from two types of eclogites in the North Qaidam orogen, northern Tibet, Lithos, v. 244, p. 122–139, doi:https://doi.org/10.1016/j.lithos.2015.12.003
    OpenUrlCrossRef
  167. ↵
    1. Zhang L.,
    2. Chen R. X.,
    3. Zheng Y. F.,
    4. Hu Z. C.,
    5. Xu L. J.
    , 2017, Whole-rock and zircon geochemical distinction between oceanic- and continental-type eclogites in the North Qaidam orogen, northern Tibet: Gondwana Research, v. 44, p. 67–88, doi:https://doi.org/10.1016/j.gr.2016.10.021
    OpenUrlCrossRef
  168. ↵
    1. Zhao Z.,
    2. Dai L.,
    3. Zheng Y.
    , 2015, Two types of the crust-mantle interaction in continental subduction zones, Science China Earth Sciences, v. 58, n. 8, p. 1269–1283, doi:https://doi.org/10.1007/s11430-015-5136-0
    OpenUrlCrossRef
  169. ↵
    1. Zhao Z. F.,
    2. Zheng Y. F.,
    3. Chen Y. X.,
    4. Sun G. C.
    , 2017, Partial melting of subducted continental crust: geochemical evidence from synexhumation granite in the Sulu orogen: Geological Society of America Bulletin, v. 129, n. 11–12, p. 1692–1707, doi:https://doi.org/10.1130/B31675.1
    OpenUrlCrossRef
  170. ↵
    1. Zheng J.,
    2. Xiong Q.,
    3. Zhao Y.,
    4. Li W.
    , 2019, Subduction-zone peridotites and their records of crust-mantle interaction: Science China Earth Sciences, v. 62, p. 1033–1052, doi:https://doi.org/10.1007/s11430-018-9346-6
    OpenUrlCrossRef
  171. ↵
    1. Zheng Y. F.
    , 2012, Metamorphic chemical geodynamics in continental subduction zones: Chemical Geology, v. 328, p. 5–48, doi:https://doi.org/10.1016/j.chemgeo.2012.02.005
    OpenUrlCrossRefGeoRefWeb of Science
  172. ↵
    1. Zheng Y. F.,
    2. Xia Q. X.,
    3. Chen R. X.,
    4. Gao X. Y.
    , 2011, Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision: Earth-Science Reviews v. 107, n. 3–4, p. 342–374, doi:https://doi.org/10.1016/j.earscirev.2011.04.004
    OpenUrlCrossRefGeoRef
  173. ↵
    1. Zheng Y. F.,
    2. Chen R. X.,
    3. Xu Z.,
    4. Zhang S. B.
    , 2016, The transport of water in subduction zones: Science China Earth Science, v. 59, p. 651–682, doi:https://doi.org/10.1007/s11430-015-5258-4
    OpenUrlCrossRef
  174. ↵
    1. Zong K. Q.,
    2. Chen J. Y.,
    3. Hu Z. C.,
    4. Liu Y. S.,
    5. Li M.,
    6. Fan H. H.,
    7. Meng Y. N.
    , 2015, In-situ U-Pb dating of uraninite by fs-LA-ICP-MS: Science China Earth Sciences. v. 58, p.1731–1740, doi:https://doi.org/10.1007/s11430-015-5154-y
    OpenUrlCrossRef
    1. Zong K. Q.,
    2. Klemd R.,
    3. Yuan Y.,
    4. He Z. Y.,
    5. Guo J. L.,
    6. Shi X. L.,
    7. Liu Y. S.,
    8. Hu Z. C.,
    9. Zhang Z. M.
    , 2017, The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB): Precambrian Research. v. 290, p.32–48, doi:https://doi.org/10.1016/j.precamres.2016.12.010
    OpenUrlCrossRef
    1. Zhou B.,
    2. Zheng Y.,
    3. Tong H.,
    4. Xu R.,
    5. Nie X.,
    6. Ma C.,
    7. Liu Q.
    , 2014, Zircon Dating of Early Paleozoic Adakitic Granite on the Northern Margin of Qaidam Basin and Its Geological Significance: Geoscience, v. 28, n. 5, p. 875–888 (in Chinese with English abstract)
    OpenUrl
  175. ↵
    1. Zhou K.,
    2. Chen Y. X.,
    3. Zheng Y. F.,
    4. Xu L. J.
    , 2019, Migmatites record multiple episodes of crustal anatexis and geochemical differentiation in the Sulu ultrahigh‐pressure metamorphic zone, eastern China: Journal of Metamorphic Geology, v. 37, n. 8, p. 1099–1127, doi:https://doi.org/10.1111/jmg.12503
    OpenUrlCrossRef
  176. ↵
    1. Zhou K.,
    2. Chen Y. X.,
    3. Ma H. Z.,
    4. Zheng Y. F.,
    5. Xia X. P.
    , 2020, Geochemistry of high-pressure to ultrahigh-pressure granitic melts produced by decompressional melting of deeply subducted continental crust in the Sulu orogen, east-central China: Geochimica et Cosmochimica Acta. v. 288, p. 214–247, doi:https://doi.org/10.1016/j.gca.2020.08.005
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (2)
American Journal of Science
Vol. 322, Issue 2
1 Feb 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cyclicity of multistage anatexis of deeply subducted continental crust during the North Qaidam orogeny: Tracing the source, timescale, and evolution of pulsed melts
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Cyclicity of multistage anatexis of deeply subducted continental crust during the North Qaidam orogeny: Tracing the source, timescale, and evolution of pulsed melts
Xin Chen, Hans-Peter Schertl, Aitor Cambeses, Emma Hart, Chenggui Lin, Rongke Xu, Youye Zheng
American Journal of Science Feb 2022, 322 (2) 225-279; DOI: 10.2475/02.2022.05

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Cyclicity of multistage anatexis of deeply subducted continental crust during the North Qaidam orogeny: Tracing the source, timescale, and evolution of pulsed melts
Xin Chen, Hans-Peter Schertl, Aitor Cambeses, Emma Hart, Chenggui Lin, Rongke Xu, Youye Zheng
American Journal of Science Feb 2022, 322 (2) 225-279; DOI: 10.2475/02.2022.05
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL SETTING
    • METHODS
    • FIELD OCCURRENCE, PETROGRAPHY, AND MATERIALS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Multistage anatexis
  • pulsed melts
  • melt generation-migration
  • eclogite
  • continental deep subduction

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire