Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction

Tyler Kukla, Jeremy K. C. Rugenstein, Elizabeth Driscoll, Daniel E. Ibarra and C. Page Chamberlain
American Journal of Science December 2022, 322 (10) 1124-1158; DOI: https://doi.org/10.2475/10.2022.02
Tyler Kukla
*Department of Geological Sciences, Stanford University, Stanford, California, USA
**Department of Geosciences, Colorado State University, Fort Collins, Colorado, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Tyler.Kukla@colostate.edu
Jeremy K. C. Rugenstein
**Department of Geosciences, Colorado State University, Fort Collins, Colorado, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elizabeth Driscoll
**Department of Geosciences, Colorado State University, Fort Collins, Colorado, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel E. Ibarra
***Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
§Department of Earth, Environmental, and Planetary Science, Brown University, Providence, Rhode Island, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Page Chamberlain
*Department of Geological Sciences, Stanford University, Stanford, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

    1. Abels H. A.,
    2. Clyde W. C.,
    3. Gingerich P. D.,
    4. Hilgen F. J.,
    5. Fricke H. C.,
    6. Bowen G. J.,
    7. Lourens L. J.
    , 2012, Terrestrial carbon isotope excursions and biotic change during Palaeogene hyperthermals: Nature Geoscience, v. 5, p. 326–329, doi:https://doi.org/10.1038/ngeo1427
    OpenUrlCrossRef
    1. Abruzzese M. J.,
    2. Waldbauer J. R.,
    3. Chamberlain C. P.
    , 2005, Oxygen and hydrogen isotope ratios in freshwater chert as indicators of ancient climate and hydrologic regime: Geochimica et Cosmochimica Acta, v. 69, p. 1377–1390, doi:https://doi.org/10.1016/j.gca.2004.08.036
    OpenUrlCrossRefGeoRefWeb of Science
    1. Alçiçek H.,
    2. Jiménez-Moreno G.
    , 2013, Late Miocene to Plio-Pleistocene fluvio-lacustrine system in the Karacasu Basin (SW Anatolia, Turkey): Depositional, paleogeographic and paleoclimatic implications: Sedimentary Geology, v. 291, p. 62–83. doi:https://doi.org/10.1016/j.sedgeo.2013.03.014
    OpenUrlCrossRefGeoRef
    1. Alonso-Zarza A. M.,
    2. Arenas C.
    , 2004, Cenozoic calcretes from the Teruel Graben, Spain: microstructure, stable isotope geochemistry and environmental significance: Sedimentary Geology, v. 167, p. 91–108, doi:https://doi.org/10.1016/j.sedgeo.2004.02.001
    OpenUrlCrossRefGeoRefWeb of Science
  1. ↵
    1. Amundson R.,
    2. Chadwick O.,
    3. Kendall C.,
    4. Wang Y.,
    5. DeNiro M.
    , 1996, Isotopic evidence for shifts in atmospheric circulation patterns during the late Quaternary in mid–North America: Geology, v. 24, n. 1, p. 23–26, doi:https://doi.org/10.1130/0091-7613(1996)024<0023:IEFSIA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Anadón P.,
    2. Oms O.,
    3. Riera V.,
    4. Julià R.
    , 2015, The geochemistry of biogenic carbonates as a paleoenvironmental tool for the Lower Pleistocene Barranco León sequence (BL-5D, Baza Basin, Spain): Quaternary international: the journal of the International Union for Quaternary Research, v. 389, p. 70–83, doi:https://doi.org/10.1016/j.quaint.2014.09.062
    OpenUrlCrossRef
  2. ↵
    1. Anderson N. T.,
    2. Kelson J. R.,
    3. Kele S.,
    4. Daëron M.,
    5. Bonifacie M.,
    6. Horita J.,
    7. Mackey T. J.,
    8. John C. M.,
    9. Kluge T.,
    10. Petschnig P.,
    11. Jost A. B.,
    12. Huntington K. W.,
    13. Bernasconi S. M.,
    14. Bergmann K. D.
    , 2021, A unified clumped isotope thermometer calibration (0.5–1,100°C) using carbonate‐based standardization: Geophysical Research Letters, v. 48, n. 7, p. e2020GL092069, doi:https://doi.org/10.1029/2020GL092069
    OpenUrlCrossRef
    1. Andrews J. E.,
    2. Riding R.,
    3. Dennis P. F.
    , 1997, The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 129, p. 171–189, doi:https://doi.org/10.1016/S0031-0182(96)00120-4
    OpenUrlCrossRefGeoRef
    1. Swart P. K.,
    2. Lohmann K. C.,
    3. Mckenzie J.,
    4. Savin S.
    1. Arehart G. B.,
    2. O’Neil J. R.
    , 1993, D/H ratios of supergene Alunite as an indicator of paleoclimate in continental settings, in Swart P. K., Lohmann K. C., Mckenzie J., Savin S., editors, Climate Change in Continental Isotopic Records: Washington, D. C., American Geophysical Union, p. 277–284, doi:https://doi.org/10.1029/GM078p0277
    OpenUrlCrossRef
    1. Arenas C.,
    2. Casanova J.,
    3. Pardo G.
    , 1997, Stable-isotope characterization of the Miocene lacustrine systems of Los Monegros (Ebro Basin, Spain): palaeogeographic and palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, n. 1–4, p. 133–155, doi:https://doi.org/10.1016/S0031-0182(96)00052-1
    OpenUrlCrossRefGeoRefWeb of Science
    1. Arppe L.,
    2. Karhu J. A.
    , 2010, Oxygen isotope values of precipitation and the thermal climate in Europe during the middle to late Weichselian ice age: Quaternary Science Reviews, v. 29, n. 9–10, p. 1263–1275, doi:https://doi.org/10.1016/j.quascirev.2010.02.013
    OpenUrlCrossRefGeoRef
  3. ↵
    1. Atsawawaranunt K.,
    2. Comas-Bru L.,
    3. Amirnezhad Mozhdehi S.,
    4. Deininger M.,
    5. Harrison S. P.,
    6. Baker A.,
    7. Boyd M.,
    8. Kaushal N.,
    9. Ahmad S. M.,
    10. Ait Brahim Y.,
    11. Arienzo M.,
    12. Bajo P.,
    13. Braun K.,
    14. Burstyn Y.,
    15. Chawchai S.,
    16. Duan W.,
    17. Hatvani I. G.,
    18. Hu J.,
    19. Kern Z.,
    20. Labuhn I.,
    21. Lachniet M.,
    22. Lechleitner F. A.,
    23. Lorrey A.,
    24. Pérez-Mejías C.,
    25. Pickering R.,
    26. Scroxton N.
    , 2018, The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems: Earth System Science Data, v. 10, p. 1687–1713, doi:https://doi.org/10.5194/essd-10-1687-2018
    OpenUrlCrossRef
    1. Baczynski A. A.,
    2. McInerney F. A.,
    3. Wing S. L.,
    4. Kraus M. J.,
    5. Bloch J. I.,
    6. Boyer D. M.,
    7. Secord R.,
    8. Morse P. E.,
    9. Fricke H. C.
    , 2013, Chemostratigraphic implications of spatial variation in the Paleocene-Eocene Thermal Maximum carbon isotope excursion, SE Bighorn Basin, Wyoming: Bighorn Basin, Wyoming Petm Chemostratigraphy: Geochemistry, Geophysics, Geosystems, v. 14, p. 4133–4152, doi:https://doi.org/10.1002/ggge.20265
    OpenUrlCrossRefGeoRef
  4. ↵
    1. Bailey A.,
    2. Posmentier E.,
    3. Feng X.
    , 2018, Patterns of evaporation and precipitation drive global isotopic changes in atmospheric moisture: Geophysical Research Letters, v. 45, n. 14, p. 7093–7101, doi:https://doi.org/10.1029/2018GL078254
    OpenUrlCrossRef
    1. Bajnóczi B.,
    2. Horváth Z.,
    3. Demény A.,
    4. Mindszenty A.
    , 2006, Stable isotope geochemistry of calcrete nodules and septarian concretions in a Quaternary “red clay” paleovertisol from Hungary: Isotopes in Environmental and Health Studies, v. 42, n. 4, p. 335–350, doi:https://doi.org/10.1080/10256010600991045
    OpenUrlCrossRefPubMed
    1. Ballato P.,
    2. Mulch A.,
    3. Landgraf A.,
    4. Strecker M. R.,
    5. Dalconi M. C.,
    6. Friedrich A.,
    7. Tabatabaei S. H.
    , 2010, Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran: Earth and Planetary Science Letters, v. 300, n. 1–2, p. 125–138, doi:https://doi.org/10.1016/j.epsl.2010.09.043
    OpenUrlCrossRefGeoRefWeb of Science
    1. Bataille C. P.,
    2. Watford D.,
    3. Ruegg S.,
    4. Lowe A.,
    5. Bowen G. J.
    , 2016, Chemostratigraphic age model for the Tornillo Group: A possible link between fluvial stratigraphy and climate: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 457, p. 277–289, doi:https://doi.org/10.1016/j.palaeo.2016.06.023
    OpenUrlCrossRef
  5. ↵
    1. Belem A.,
    2. Bell T.,
    3. Burdett H. L.,
    4. Ibarra D.,
    5. Kaushal N.,
    6. Keenan B.,
    7. Klimaszewski-Patterson A.,
    8. Mette M.,
    9. Naeher S.,
    10. Onafeso O. D.,
    11. Panmei C.,
    12. Ratnayake A. S.,
    13. Truax O.
    , 2022, Paleoclimatology and paleoceanography perspectives on integrated, coordinated, open, networked (ICON) science: Earth and Space Science, v. 9, n. 1, p. e2021EA002115, doi:https://doi.org/10.1029/2021EA002115
    OpenUrlCrossRef
    1. Bentaleb I.,
    2. Langlois C.,
    3. Martin C.,
    4. Iacumin P.,
    5. Carré M.,
    6. Antoine P.-O.,
    7. Duranthon F.,
    8. Moussa I.,
    9. Jaeger J.-J.,
    10. Barrett N.,
    11. Kandorp R.
    , 2006, Rhinocerotid tooth enamel 18O/16O variability between 23 and 12 Ma in southwestern France: Comptes Rendus: Geoscience, v. 338, n. 3, p. 172–179, doi:https://doi.org/10.1016/j.crte.2005.11.007
    OpenUrlCrossRef
  6. ↵
    1. Bernasconi S. M.,
    2. Müller I. A.,
    3. Bergmann K. D.,
    4. Breitenbach S. F. M.,
    5. Fernandez A.,
    6. Hodell D. A.,
    7. Jaggi M.,
    8. Meckler A. N.,
    9. Millan I.,
    10. Ziegler M.
    , 2018, Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization: Geochemistry, Geophysics, Geosystems, v. 19, n. 9, p. 2895–2914, doi:https://doi.org/10.1029/2017GC007385
    OpenUrlCrossRef
  7. ↵
    1. Bernasconi S. M.,
    2. Daëron M.,
    3. Bergmann K. D.,
    4. Bonifacie M.,
    5. Meckler A. N.,
    6. Affek H. P.,
    7. Anderson N.,
    8. Bajnai D.,
    9. Barkan E.,
    10. Beverly E.,
    11. Blamart D.,
    12. Burgener L.,
    13. Calmels D.,
    14. Chaduteau C.
    , and others, 2021, InterCarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards: Geochemistry, Geophysics, Geosystems, v. 22, n. 5 doi:https://doi.org/10.1029/2020GC009588
    OpenUrlCrossRef
    1. Bershaw J.,
    2. Garzione C. N.,
    3. Schoenbohm L.,
    4. Gehrels G.,
    5. Tao L.
    , 2012, Cenozoic evolution of the Pamir plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China): Journal of Asian Earth Sciences, v. 44, p. 136–148, doi:https://doi.org/10.1016/j.jseaes.2011.04.020
    OpenUrlCrossRef
  8. ↵
    1. Bershaw J.,
    2. Cassel E. J.,
    3. Carlson T. B.,
    4. Streig A. R.,
    5. Streck M. J.
    , 2019, Volcanic Glass as a Proxy for Cenozoic Elevation and Climate in the Cascade Mountains, Oregon, USA: Journal of Volcanology and Geothermal Research, v. 381, p. 157–67, doi:https://doi.org/10.1016/j.jvolgeores.2019.05.021
    OpenUrlCrossRef
    1. Bill N. S.,
    2. Mix H. T.,
    3. Clark P. U.,
    4. Reilly S. P.,
    5. Jensen B. J. L.,
    6. Benowitz J. A.
    , 2018, A stable isotope record of late Cenozoic surface uplift of southern Alaska: Earth and Planetary Science Letters, v. 482, p. 300–311, doi:https://doi.org/10.1016/j.epsl.2017.11.029
    OpenUrlCrossRef
    1. Boardman G. S.,
    2. Secord R.
    , 2013, Stable isotope paleoecology of White River ungulates during the Eocene–Oligocene climate transition in northwestern Nebraska: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 375, p. 38–49, doi:https://doi.org/10.1016/j.palaeo.2013.02.010
    OpenUrlCrossRefGeoRef
  9. ↵
    1. Botsyun S.,
    2. Ehlers T. A.
    , 2021, How can climate models be used in paleoelevation reconstructions? Frontiers in Earth Science, v. 9, p. 624542, doi:https://doi.org/10.3389/feart.2021.624542
    OpenUrlCrossRef
    1. Bougeois L.,
    2. Dupont-Nivet G.,
    3. de Rafélis M.,
    4. Tindall J. C.,
    5. Proust J.-N.,
    6. Reichart G.-J.,
    7. de Nooijer L. J.,
    8. Guo Z.,
    9. Ormukov C.
    , 2018, Asian monsoons and aridification response to Paleogene Sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters: Earth and Planetary Science Letters, v. 485, p. 99–110, doi:https://doi.org/10.1016/j.epsl.2017.12.036
    OpenUrlCrossRef
    1. Bowen G. J.,
    2. Bowen B. B.
    , 2008, Mechanisms of PETM Global Change Constrained by a New Record from Central Utah: Geology, v. 36, n. 5, p. 379–382, doi:https://doi.org/10.1130/G24597A.1
    OpenUrlAbstract/FREE Full Text
    1. Bowen G. J.,
    2. Koch P. L.,
    3. Gingerich P. D.,
    4. Norris R. D.,
    5. Bains S.,
    6. Corfield R. M.
    , 2001, Refined Isotope Stratigraphy Across the Continental Paleocene-Eocene Boundary on Polecat Bench in the Northern Bighorn Basin: Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming, University of Michigan Papers on Paleontology, v. 33, p. 73–88.
    OpenUrl
    1. Bowen G. J.,
    2. Koch P. L.,
    3. Meng J.,
    4. Ye J.,
    5. Ting S.
    , 2005, Age and correlation of fossiliferous late Paleocene–early Eocene strata of the erlian basin, inner Mongolia, China: American Museum Novitates, v. 2005, n. 3474, doi:https://doi.org/10.1206/0003-0082(2005)474[0001:AACOFL]2.0.CO;2
    OpenUrlCrossRef
    1. Bowen G. J.,
    2. Maibauer B. J.,
    3. Kraus M. J.,
    4. Röhl U.,
    5. Westerhold T.,
    6. Steimke A.,
    7. Gingerich P. D.,
    8. Wing S. L.,
    9. Clyde W. C.
    , 2015, Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum: Nature Geoscience, v. 8, p. 44–47, doi:https://doi.org/10.1038/ngeo2316
    OpenUrlCrossRef
  10. ↵
    1. Bowen G. J.,
    2. Cai Z.,
    3. Fiorella R. P.,
    4. Putman A. L.
    , 2019, Isotopes in the water cycle: regional- to global-scale patterns and applications: Annual Review of Earth and Planetary Sciences, v. 47 n. 1, p. 453–479, doi:https://doi.org/10.1146/annurev-earth-053018-060220
    OpenUrlCrossRef
  11. ↵
    1. Breecker D. O.
    , 2013, Quantifying and understanding the uncertainty of atmospheric CO2 concentrations determined from calcic paleosols: Geochemistry, Geophysics, Geosystems, v. 14, n. 8, p. 3210–3220, doi:https://doi.org/10.1002/ggge.20189
    OpenUrlCrossRef
  12. ↵
    1. Breecker D. O.,
    2. Retallack G. J.
    , 2014, Refining the pedogenic carbonate atmospheric CO2 proxy and application to Miocene CO2: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 406, p. 1–8, doi:https://doi.org/10.1016/j.palaeo.2014.04.012
    OpenUrlCrossRefGeoRef
    1. Burgener L.,
    2. Hyland E.,
    3. Huntington K. W.,
    4. Kelson J. R.,
    5. Sewall J. O.
    , 2019, Revisiting the equable climate problem during the Late Cretaceous greenhouse using paleosol carbonate clumped isotope temperatures from the Campanian of the Western Interior Basin, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 516, p. 244–267, doi:https://doi.org/10.1016/j.palaeo.2018.12.004
    OpenUrlCrossRef
    1. Campani M.,
    2. Mulch A.,
    3. Kempf O.,
    4. Schlunegger F.,
    5. Mancktelow N.
    , 2012, Miocene paleotopography of the central alps: Earth and Planetary Science Letters, v. 337–338, p. 174–185, doi:https://doi.org/10.1016/j.epsl.2012.05.017
    OpenUrlCrossRef
  13. ↵
    1. Carolin S. A.,
    2. Ersek V.,
    3. Roberts W. H. G.,
    4. Walker R. T.,
    5. Henderson G. M.
    , 2019, Drying in the middle east during northern hemisphere cold events of the early glacial period: Geophysical Research Letters, v. 46, n. 23, p. 14003–14010, doi:https://doi.org/10.1029/2019GL084365
    OpenUrlCrossRef
    1. Carroll A. R.,
    2. Doebbert A. C.,
    3. Booth A. L.,
    4. Chamberlain C. P.,
    5. Rhodes-Carson M. K.,
    6. Smith M. E.,
    7. Johnson C. M.,
    8. Beard B. L.
    , 2008, Capture of high-altitude precipitation by a low-altitude Eocene lake, western U.S: Geology, v. 36, n. 10, p. 791–794, doi:https://doi.org/10.1130/G24783A.1
    OpenUrlAbstract/FREE Full Text
    1. Cassel E. J.,
    2. Graham S. A.,
    3. Chamberlain C. P.
    , 2009, Cenozoic Tectonic and Topographic Evolution of the Northern Sierra Nevada, California, Through Stable Isotope Paleoaltimetry in Volcanic Glass: Geology, v. 37, n. 6, p. 547–550, doi:https://doi.org/10.1130/G25572A.1
    OpenUrlAbstract/FREE Full Text
    1. Cassel E.J.,
    2. Graham S.A.,
    3. Chamberlain C.P.,
    4. Henry C.D.
    , 2012, Early Cenozoic Topography, Morphology, and Tectonics of the Northern Sierra Nevada and Western Basin and Range: Geosphere, v. 8, n. 2, p. 229–49, doi:https://doi.org/10.1130/GES00671.1
    OpenUrlAbstract/FREE Full Text
    1. Cassel E.J.,
    2. Breecker D.O.,
    3. Henry C.D.,
    4. Larson T.E.,
    5. Stockli D.F.
    , 2014. Profile of a paleo-orogen: High topography across the present-day Basin and Range from 40 to 23 Ma, Geology, v. 42, n. 11, p. 1007–1010, doi:https://doi.org/10.1130/G35924.1
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Cassel E. J.,
    2. Smith M. E.,
    3. Jicha B. R.
    , 2018, The impact of slab rollback on Earth's surface: Uplift and extension in the hinterland of the North American Cordillera: Geophysical Research Letters, v. 45, n. 20, p. 10996-11004, doi:https://doi.org/10.1029/2018GL079887
    OpenUrlCrossRef
  15. ↵
    1. Caves J. K.,
    2. Sjostrom D. J.,
    3. Mix H. T.,
    4. Winnick M. J.,
    5. Chamberlain C. P.
    , 2014, Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: Stable isotope evidence: American journal of science, v. 314, n. 8, p. 1171–1201, doi:https://doi.org/10.2475/08.2014.01
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Caves J. K.,
    2. Winnick M. J.,
    3. Graham S. A.,
    4. Sjostrom D. J.,
    5. Mulch A.,
    6. Chamberlain C. P.
    , 2015, Role of the westerlies in Central Asia climate over the Cenozoic: Earth and planetary science letters, v. 428, p. 33–43, doi:https://doi.org/10.1016/j.epsl.2015.07.023
    OpenUrlCrossRefGeoRef
  17. ↵
    1. Caves J. K.,
    2. Moragne D. Y.,
    3. Ibarra D. E.,
    4. Bayshashov B. U.,
    5. Gao Y.,
    6. Jones M. M.,
    7. Zhamangara A.,
    8. Arzhannikova A. V.,
    9. Arzhannikov S. G.,
    10. Chamberlain C. P.
    , 2016, The Neogene de-greening of central Asia: Geology, v. 44, n. 11, p. 887–890, doi:https://doi.org/10.1130/G38267.1
    OpenUrlAbstract/FREE Full Text
    1. Caves J. K.,
    2. Bayshashov B. U.,
    3. Zhamangara A.,
    4. Ritch A. J.,
    5. Ibarra D. E.,
    6. Sjostrom D. J.,
    7. Mix H. T.,
    8. Winnick M. J.,
    9. Chamberlain C. P.
    , 2017, Late Miocene Uplift of the Tian Shan and Altai and Reorganization of Central Asia Climate: GSA Today, v.27, n. 2, p. 19–26, doi:https://doi.org/10.1130/GSATG305A.1
    OpenUrlCrossRef
  18. ↵
    1. Caves Rugenstein J. K.,
    2. Chamberlain C. P.
    , 2018, The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective: Earth-Science Reviews, v. 185, p. 1129–1156, doi:https://doi.org/10.1016/j.earscirev.2018.09.003
    OpenUrlCrossRef
  19. ↵
    1. Cerling T. E.
    , 1984, The stable isotopic composition of modern soil carbonate and its relationship to climate: Earth and Planetary Science Letters, v. 71, n. 2, p. 229–240, doi:https://doi.org/10.1016/0012-821X(84)90089-X
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Thiry M.,
    2. Simon-Coinçon R.
    1. Cerling T. E.
    1999, Stable Carbon Isotopes in Palaeosol Carbonates, in Thiry M., Simon-Coinçon R., editors, Palaeoweathering, Palaeosurfaces and Related Continental Deposits: Oxford, United Kingdom, Blackwell Publishing Ltd., p. 43–60, doi:https://doi.org/10.1002/9781444304190.ch2
    OpenUrlCrossRef
  21. ↵
    1. Cerling T. E.,
    2. Wang Y.,
    3. Quade J.
    , 1993, Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene: Nature, v. 361, p. 344–345, doi:https://doi.org/10.1038/361344a0
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Chamberlain C. P.,
    2. Mix H. T.,
    3. Mulch A.,
    4. Hren M. T.,
    5. Kent-Corson M. L.,
    6. Davis S. J.,
    7. Horton T. W.,
    8. Graham S. A.
    , 2012, The Cenozoic climatic and topographic evolution of the western North American Cordillera: American journal of science, v. 312, n. 2, p. 213–262, doi:https://doi.org/10.2475/02.2012.05
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Chamberlain C. P.,
    2. Winnick M. J.,
    3. Mix H. T.,
    4. Chamberlain S. D.,
    5. Maher K.
    , 2014, The impact of neogene grassland expansion and aridification on the isotopic composition of continental precipitation: Global Biogeochemical Cycles, v. 28, n. 9, p. 992–1004, doi:https://doi.org/10.1002/2014GB004822
    OpenUrlCrossRefGeoRef
    1. Chamberlain C. P.,
    2. Ibarra D. E.,
    3. Lloyd M. K.,
    4. Kukla T.,
    5. Sjostrom D.,
    6. Gao Y.,
    7. Sharp Z. D.
    , 2020, Triple oxygen isotopes of meteoric hydrothermal systems – implications for palaeoaltimetry: Geochemical Perspectives Letters, v. 15, p. 6–9, doi:https://doi.org/10.7185/geochemlet.2026
    OpenUrlCrossRef
    1. Charreau J.,
    2. Kent-Corson M. L.,
    3. Barrier L.,
    4. Augier R.,
    5. Ritts B. D.,
    6. Chen Y.,
    7. France-Lannord C.,
    8. Guilmette C.
    , 2012, A high-resolution stable isotopic record from the Junggar Basin (NW China): Implications for the paleotopographic evolution of the Tianshan Mountains: Earth and Planetary Science Letters, v. 341–344, p. 158–169, doi:https://doi.org/10.1016/j.epsl.2012.05.033
    OpenUrlCrossRef
    1. Clyde W. C.,
    2. Ting S.,
    3. Snell K. E.,
    4. Bowen G. J.,
    5. Tong Y.,
    6. Koch P. L.,
    7. Li Q.,
    8. Wang Y.
    , 2010, New paleomagnetic and stable‐isotope results from the nanxiong basin, China: Implications for the K/T boundary and the timing of Paleocene mammalian turnover: The Journal of Geology, v. 118, n. 2, p. 131–143, doi:https://doi.org/10.1086/649893
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Comas-Bru L.,
    2. Rehfeld K.,
    3. Roesch C.,
    4. Amirnezhad-Mozhdehi S.,
    5. Harrison S. P.,
    6. Atsawawaranunt K.,
    7. Ahmad S. M.,
    8. Brahim Y. A.,
    9. Baker A.,
    10. Bosomworth M.,
    11. Breitenbach S. F. M.,
    12. Burstyn Y.,
    13. Columbu A.,
    14. Deininger M.,
    15. Demény A.,
    16. Dixon B.,
    17. Fohlmeister J.,
    18. Hatvani I. G.,
    19. Hu J.,
    20. Kaushal N.,
    21. Kern Z.,
    22. Labuhn I.,
    23. Lechleitner F. A.,
    24. Lorrey A.,
    25. Martrat B.,
    26. Novello V. F.,
    27. Oster J.,
    28. Pérez-Mejías C.,
    29. Scholz D.,
    30. Scroxton N.,
    31. Sinha N.,
    32. Ward B. M.,
    33. Warken S.,
    34. Zhang H.
    , 2020, SISALv2: a comprehensive speleothem isotope database with multiple age–depth models: Earth System Science Data, v. 12, p. 2579–2606, doi:https://doi.org/10.5194/essd-12-2579-2020
    OpenUrlCrossRef
  25. ↵
    1. Criss R. E.,
    2. Taylor H. P.
    , 1983, An 18O/16O and D/H Study of Tertiary Hydrothermal Systems in the Southern Half of the Idaho Batholith: Geological Society of America Bulletin, v. 94, n. 5, p. 640–63, doi:https://doi.org/10.1130/0016-7606(1983)94<640:AOADSO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Crowley B. E.,
    2. Koch P. L.,
    3. Davis E. B.
    , 2008, Stable Isotope Constraints on the Elevation History of the Sierra Nevada Mountains, California: Geological Society of America Bulletin, v. 120, n. 5–6, p. 588–598, doi:https://doi.org/10.1130/B26254.1
    OpenUrlAbstract/FREE Full Text
    1. Csonka D.,
    2. Bradák B.,
    3. Barta G.,
    4. Szeberényi J.,
    5. Novothny Á.,
    6. Végh T.,
    7. Süle G. T.,
    8. Horváth E.
    , 2020, A multi-proxy study on polygenetic middle-to late pleistocene paleosols in the Hévízgyörk loess-paleosol sequence (Hungary): Quaternary International: the journal of the International Union for Quaternary Research, v. 552, p. 25–35, doi:https://doi.org/10.1016/j.quaint.2019.07.021
    OpenUrlCrossRef
    1. Currie B. S.,
    2. Rowley D. B.,
    3. Tabor N. J.
    , 2005, Middle Miocene Paleoaltimetry of Southern Tibet: Implications for the Role of Mantle Thickening and Delamination in the Himalayan Orogen: Geology, v. 33, n. 3, p. 181–184, doi:https://doi.org/10.1130/G21170.1
    OpenUrlAbstract/FREE Full Text
    1. Currie B. S.,
    2. Polissar P. J.,
    3. Rowley D. B.,
    4. Ingalls M.,
    5. Li S.,
    6. Olack G.,
    7. Freeman K. H.
    , 2016, Multiproxy paleoaltimetry of the Late Oligocene-Pliocene Oiyug Basin, southern Tibet: American Journal of Science, v. 316, n. 5, p. 401–436, doi:https://doi.org/10.2475/05.2016.01
    OpenUrlAbstract/FREE Full Text
    1. Cyr A. J.,
    2. Currie B. S.,
    3. Rowley D. B.
    , 2005, Geochemical evaluation of fenghuoshan group lacustrine carbonates, north‐central Tibet: Implications for the paleoaltimetry of the Eocene Tibetan plateau: The journal of geology, v. 113, n. 5, p. 517–533, doi:https://doi.org/10.1086/431907
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Da J.,
    2. Zhang Y. G.,
    3. Li G.,
    4. Meng X.,
    5. Ji J.
    , 2019, Low CO2 levels of the entire Pleistocene epoch: Nature communications, v. 10, p. 4342, doi:https://doi.org/10.1038/s41467-019-12357-5
    OpenUrlCrossRef
  27. ↵
    1. Davidson G. R.
    , 1995, The stable isotopic composition and measurement of carbon in soil CO2: Geochimica et Cosmochimica Acta, v. 59, n. 12, p. 2485–2489, doi:https://doi.org/10.1016/0016-7037(95)00143-3
    OpenUrlCrossRefGeoRefWeb of Science
    1. Davis S. J.,
    2. Wiegand B. A.,
    3. Carroll A. R.,
    4. Chamberlain C. P.
    , 2008, The effect of drainage reorganization on paleoaltimetry studies: An example from the Paleogene Laramide foreland: Earth and Planetary Science Letters, v. 275, n. 3–4, p. 258–268, doi:https://doi.org/10.1016/j.epsl.2008.08.009
    OpenUrlCrossRefGeoRefWeb of Science
    1. Davis S. J.,
    2. Mix H. T.,
    3. Wiegand B. A.,
    4. Carroll A. R.,
    5. Chamberlain C. P.
    , 2009a, Synorogenic evolution of large-scale drainage patterns: Isotope paleohydrology of sequential Laramide basins: American Journal of Science, v. 309, n. 7, p. 549–602, doi:https://doi.org/10.2475/07.2009.02
    OpenUrlAbstract/FREE Full Text
    1. Davis S. J.,
    2. Mulch A.,
    3. Carroll A. R.,
    4. Horton T. W.,
    5. Chamberlain C. P.
    , 2009b, Paleogene landscape evolution of the central North American Cordillera: Developing topography and hydrology in the Laramide foreland: Geological Society of America Bulletin, v. 121, n. 1–2, p. 100–116, doi:https://doi.org/10.1130/B26308.1
    OpenUrlAbstract/FREE Full Text
    1. Dean J. R.,
    2. Jones M. D.,
    3. Leng M. J.,
    4. Noble S. R.,
    5. Metcalfe S. E.,
    6. Sloane H. J.,
    7. Sahy D.,
    8. Eastwood W. J.,
    9. Roberts C. N.
    , 2015, Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy: Quaternary Science Reviews, v. 124, p. 162–174, doi:https://doi.org/10.1016/j.quascirev.2015.07.023
    OpenUrlCrossRef
    1. DeCelles P. G.,
    2. Quade J.,
    3. Kapp P.,
    4. Fan M.,
    5. Dettman D. L.,
    6. Ding L.
    , 2007, High and dry in central Tibet during the Late Oligocene: Earth and planetary Science Letters, v. 253, n. 3–4, p. 389–401, doi:https://doi.org/10.1016/j.epsl.2006.11.001
    OpenUrlCrossRefGeoRefPubMedWeb of Science
    1. DeCelles P. G.,
    2. Kapp P.,
    3. Quade J.,
    4. Gehrels G. E.
    , 2011, Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone: Geological Society of America Bulletin, v. 123, n. 7–8, p. 1337–1362, doi:https://doi.org/10.1130/B30258.1
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Dee S.,
    2. Emile-Geay J.,
    3. Evans M. N.,
    4. Allam A.,
    5. Steig E. J.,
    6. Thompson D. M.
    , 2015a, PRYSM: An open-source framework for PRoxY System Modeling, with applications to oxygen-isotope systems: Journal of Advances in Modeling Earth Systems, v. 7, n. 3, p. 1220–47, doi:https://doi.org/10.1002/2015MS000447
    OpenUrlCrossRef
  29. ↵
    1. Dee S.,
    2. Noone D.,
    3. Buenning N.,
    4. Emile-Geay J.,
    5. Zhou Y.
    , 2015b, SPEEDY-IER: A fast atmospheric GCM with water isotope physics: Journal of Geophysical Research: Atmospheres, v. 120, n. 1, p. 73–91, doi:https://doi.org/10.1002/2014JD022194
    OpenUrlCrossRef
  30. ↵
    1. Dee S. G.,
    2. Russell J. M.,
    3. Morrill C.,
    4. Chen Z.,
    5. Neary A.
    , 2018, PRYSM v2.0: A proxy system model for lacustrine archives: Paleoceanography and Paleoclimatology, v. 33, n. 11, p. 1250–1269, doi:https://doi.org/10.1029/2018PA003413
    OpenUrlCrossRef
    1. Dettman D. L.,
    2. Lohmann K. C.
    , 2000, Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene, Geology, v. 28, v. 3, p. 243–246, doi:https://doi.org/10.1130/0091-7613(2000)28<243:OIEFHS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Dettman D. L.,
    2. Kohn M. J.,
    3. Quade J.,
    4. Ryerson F. J.,
    5. Ojha T. P.,
    6. Hamidullah S.
    , 2001, Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y: Geology, v. 29, n. 1, p. 31–34, doi:https://doi.org/10.1130/0091-7613(2001)029<0031:SSIEFA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Dettman D. L.,
    2. Fang X.,
    3. Garzione C. N.,
    4. Li J.
    , 2003, Uplift-driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan plateau: Earth and Planetary Science Letters, v. 214, n. 1–2, p. 267–277, doi:https://doi.org/10.1016/S0012-821X(03)00383-2
    OpenUrlCrossRefGeoRefWeb of Science
    1. Ding Z. L.,
    2. Yang S. L.
    , 2000, C3/C4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau: evidence from pedogenic carbonate δ13C: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 160, n. 3–4, p. 291–299, doi:https://doi.org/10.1016/S0031-0182(00)00076-6
    OpenUrlCrossRefGeoRefWeb of Science
    1. Ding L.,
    2. Xu Q.,
    3. Yue Y.,
    4. Wang H.,
    5. Cai F.,
    6. Li S.
    , 2014, The Andean-type gangdese mountains: Paleoelevation record from the Paleocene–Eocene linzhou basin: Earth and Planetary Science Letters, v. 392, p. 250–264, doi:https://doi.org/10.1016/j.epsl.2014.01.045
    OpenUrlCrossRefGeoRef
    1. Doebbert A. C.,
    2. Carroll A. R.,
    3. Mulch A.,
    4. Chetel L. M.,
    5. Chamberlain C. P.
    , 2010, Geomorphic controls on lacustrine isotopic compositions: Evidence from the Laney Member, Green River Formation, Wyoming: Geological Society of America Bulletin, v. 122, n. 1–2, p. 236–252, doi:https://doi.org/10.1130/B26522.1
    OpenUrlAbstract/FREE Full Text
    1. Domingo L.,
    2. Koch P. L.,
    3. Hernández Fernández M.,
    4. Fox D. L.,
    5. Domingo M. S.,
    6. Alberdi M. T.
    , 2013, Late Neogene and early Quaternary paleoenvironmental and paleoclimatic conditions in southwestern Europe: Isotopic analyses on mammalian taxa: PloS ONE, v. 8, n. 5, p. e63739, doi:https://doi.org/10.1371/journal.pone.0063739
    OpenUrlCrossRefPubMed
    1. Dong J.,
    2. Liu Z.,
    3. An Z.,
    4. Liu W.,
    5. Zhou W.,
    6. Qiang X.,
    7. Lu F.
    , 2018, Mid-Miocene C4 expansion on the Chinese Loess Plateau under an enhanced Asian summer monsoon: Journal of Asian Earth Sciences, v. 158, p. 153–159, doi:https://doi.org/10.1016/j.jseaes.2018.02.014
    OpenUrlCrossRef
  31. ↵
    1. Dzombak R. M.,
    2. Midttun N. C.,
    3. Stein R. A.,
    4. Sheldon N. D.
    , 2021, Incorporating lateral variability and extent of paleosols into proxy uncertainty: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 582, p. 110641, doi:https://doi.org/10.1016/j.palaeo.2021.110641
    OpenUrlCrossRef
  32. ↵
    1. Ekart D. D.,
    2. Cerling T. E.,
    3. Montañez I. P.,
    4. Tabor N. J.
    , 1999, A 400 Million Year Carbon Isotope Record of Pedogenic Carbonate: Implications for Paleoatmospheric Carbon Dioxide: American Journal of Science, v. 299, n. 10, p. 805–27, doi:https://doi.org/10.2475/ajs.299.10.805
    OpenUrlAbstract/FREE Full Text
    1. Eren M.
    , 2011, Stable isotope geochemistry of Quaternary calcretes in the Mersin area, southern Turkey – A comparison and implications for their origin: Geochemistry, v. 71, n. 1, p. 31–37, doi:https://doi.org/10.1016/j.chemer.2010.12.002
    OpenUrlCrossRef
  33. ↵
    1. Evans M. N.,
    2. Tolwinski-Ward S. E.,
    3. Thompson D. M.,
    4. Anchukaitis K. J.
    , 2013, Applications of proxy system modeling in high resolution paleoclimatology: Quaternary Science Reviews, v. 76, p. 16–28, doi:https://doi.org/10.1016/j.quascirev.2013.05.024
    OpenUrlCrossRefGeoRef
    1. Fan M.,
    2. Dettman D. L.
    , 2009, Late Paleocene high Laramide ranges in northeast Wyoming: Oxygen isotope study of ancient river water: Earth and Planetary Science Letters, v. 286, n. 1–2, p. 110–121, doi:https://doi.org/10.1016/j.epsl.2009.06.024
    OpenUrlCrossRefGeoRefWeb of Science
    1. Fan M.,
    2. DeCelles P.G.,
    3. Gehrels G.E.,
    4. Dettman D.L.,
    5. Quade J.,
    6. Peyton S.L.
    , 2011, Sedimentology, detrital zircon geochronology, and stable isotope geochemistry of the lower Eocene strata in the Wind River Basin, central Wyoming: Geological Society of America Bulletin, v. 123, n. 5–6, p. 979–96, doi:https://doi.org/10.1130/B30235.1
    OpenUrlAbstract/FREE Full Text
    1. Fan M.,
    2. Heller P.,
    3. Allen S. D.,
    4. Hough B. G.
    , 2014a, Middle Cenozoic Uplift and Concomitant Drying in the Central Rocky Mountains and Adjacent Great Plains: Geology, v. 42, n. 6, p. 547–50, doi:https://doi.org/10.1130/G35444.1
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Fan M.,
    2. Hough B. G.,
    3. Passey B. H.
    , 2014b, Middle to Late Cenozoic Cooling and High Topography in the Central Rocky Mountains: Constraints from Clumped Isotope Geochemistry: Earth and Planetary Science Letters, v. 408, p. 35–47, doi:https://doi.org/10.1016/j.epsl.2014.09.050
    OpenUrlCrossRefGeoRef
    1. Fan M.,
    2. Constenius K. N.,
    3. Dettman D. L.
    , 2017, Prolonged high relief in the northern Cordilleran orogenic front during middle and late Eocene extension based on stable isotope paleoaltimetry: Earth and Planetary Science Letters, v. 457, p. 376–384, doi:https://doi.org/10.1016/j.epsl.2016.10.038
    OpenUrlCrossRef
  35. ↵
    1. Fan M.,
    2. Ayyash S. A.,
    3. Tripati A.,
    4. Passey B. H.,
    5. Griffith E. M.
    , 2018, Terrestrial cooling and changes in hydroclimate in the continental interior of the United States across the Eocene-Oligocene boundary: Geological Society of America Bulletin, v. 130, n. 7–8, p. 1073–1084, doi:https://doi.org/10.1130/B31732.1
    OpenUrlCrossRef
    1. Fan M.,
    2. Constenius K. N.,
    3. Phillips R. F.,
    4. Dettman D. L.
    , 2021, Late Paleogene paleotopographic evolution of the northern Cordilleran orogenic front: Implications for demise of the orogen: Geological Society of America Bulletin, doi:https://doi.org/10.1130/B35919.1
    OpenUrlCrossRef
    1. Foreman B. Z.,
    2. Fricke H. C.,
    3. Lohmann K. C.,
    4. Rogers R. R.
    , 2011, Reconstructing paleocatchments by integrating stable isotope records, sedimentology, and taphonomy: A late cretaceous case study (Montana, United States): PALAIOS, v. 26, n. 9, p. 545–554, doi:https://doi.org/10.2110/palo.2010.p10-133r
    OpenUrlAbstract/FREE Full Text
    1. Foreman B. Z.,
    2. Roberts E. M.,
    3. Tapanila L.,
    4. Ratigan D.,
    5. Sullivan P.
    , 2015, Stable isotopic insights into paleoclimatic conditions and alluvial depositional processes in the Kaiparowits Formation (Campanian, south-central Utah, U.S.A.): Cretaceous Research, v. 56, p. 180–192, doi:https://doi.org/10.1016/j.cretres.2015.05.001
    OpenUrlCrossRef
  36. ↵
    1. Fox D. L.,
    2. Koch P. L.
    , 2003, Tertiary history of C4 biomass in the Great Plains, USA: Geology, v. 31, n. 9, p. 809–812, doi:https://doi.org/10.1130/G19580.1
    OpenUrlAbstract/FREE Full Text
    1. Fox D.,
    2. Koch P. L.
    , 2004, Carbon and oxygen isotopic variability in Neogene paleosol carbonates: constraints on the evolution of the C4-grasslands of the Great Plains, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 207, n. 3–4, p. 305–329, doi:https://doi.org/10.1016/S0031-0182(04)00045-8
    OpenUrlCrossRefGeoRefWeb of Science
    1. Fox D. L.,
    2. Honey J. G.,
    3. Martin R. A.,
    4. Pelaez-Campomanes P.
    , 2012, Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Carbon isotopes and the evolution of C4-dominated grasslands: Geological Society of America bulletin, v. 124, n. 3–4, p. 444–462, doi:https://doi.org/10.1130/B30401.1
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Fox D. L.,
    2. Pau S.,
    3. Taylor L.,
    4. Strömberg C. A. E.,
    5. Osborne C. P.,
    6. Bradshaw C.,
    7. Conn S.,
    8. Beerling D. J.,
    9. Still C. J.
    , 2018, Climatic controls on C4 grassland distributions during the Neogene: A model-data comparison: Frontiers in Ecology and Evolution, v. 6, p. 147, doi:https://doi.org/10.3389/fevo.2018.00147
    OpenUrlCrossRef
    1. Fricke H. C.
    , 2003. Investigation of early Eocene water-vapor transport and paleoelevation using oxygen isotope data from geographically widespread mammal remains: Geological Society of America Bulletin, v. 115, n. 9, p. 1088–1096, doi:https://doi.org/10.1130/B25249.1
    OpenUrlAbstract/FREE Full Text
    1. Fricke H. C.,
    2. Wing S. L.
    , 2004, Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene: American Journal of Science, v. 304, n. 7, p. 612–635, doi:https://doi.org/10.2475/ajs.304.7.612
    OpenUrlAbstract/FREE Full Text
    1. Fricke H. C.,
    2. Clyde W. C.,
    3. O'Neil J. R.,
    4. Gingerich P. D.
    , 1998, Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming): Earth and Planetary Science Letters, v. 160, n. 1–2, p. 193–208, doi:https://doi.org/10.1016/S0012-821X(98)00088-0
    OpenUrlCrossRefGeoRefWeb of Science
    1. Fricke H. C.,
    2. Rogers R. R.,
    3. Backlund R.,
    4. Dwyer C. N.,
    5. Echt S.
    , 2008, Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 266, n. 1–2, p. 13–27, doi:https://doi.org/10.1016/j.palaeo.2008.03.030
    OpenUrlCrossRefGeoRefWeb of Science
    1. Fricke H. C.,
    2. Foreman B. Z.,
    3. Sewall J. O.
    , 2010, Integrated climate model-oxygen isotope evidence for a North American monsoon during the Late Cretaceous: Earth and Planetary Science Letters, v. 289, n. 1–2, p. 11–21, doi:https://doi.org/10.1016/j.epsl.2009.10.018
    OpenUrlCrossRefGeoRefWeb of Science
    1. Gallant C. E.,
    2. Candy I.,
    3. van den Bogaard P.,
    4. Silva B. N.,
    5. Turner E.
    , 2014, Stable isotopic evidence for Middle Pleistocene environmental change from a loess-paleosol sequence: Kärlich, Germany: Middle Pleistocene environmental change, Kärlich, Germany: Boreas, v. 43, n. 4, p. 818–833, doi:https://doi.org/10.1111/bor.12065
    OpenUrlCrossRef
  38. ↵
    1. Gao Y.,
    2. Ibarra D. E.,
    3. Caves Rugenstein J. K.,
    4. Chen J.,
    5. Kukla T.,
    6. Methner K.,
    7. Gao Y.,
    8. Huang H.,
    9. Lin Z.,
    10. Zhang L.,
    11. Xi D.,
    12. Wu H.,
    13. Carroll A. R.,
    14. Graham S. A.,
    15. Chamberlain C. P.,
    16. Wang C.
    , 2021, Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China: Earth-Science Reviews, v. 216, p. 103572, doi:https://doi.org/10.1016/j.earscirev.2021.103572
    OpenUrlCrossRef
  39. ↵
    1. Gat G. R.
    , 1996, Oxygen and Hydrogen Isotopes in the Hydrologic Cycle: Annual Review of Earth and Planetary Sciences, v. 24, p. 225–262, doi:https://doi.org/10.1146/annurev.earth.24.1.225
    OpenUrlCrossRef
    1. Garzione C. N.,
    2. Dettman D. L.,
    3. Quade J.,
    4. DeCelles P. G.,
    5. Butler R. F.
    , 2000, High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal: Geology, v. 28, n. 4, p. 339–342, doi:https://doi.org/10.1130/0091-7613(2000)28<339:HTOTTP>2.0.CO;2
    OpenUrlCrossRef
    1. Gébelin A.,
    2. Mulch A.,
    3. Teyssier C.,
    4. Chamberlain C. P.,
    5. Heizler M.
    , 2012, Coupled basin-detachment systems as paleoaltimetry archives of the western North American Cordillera: Earth and Planetary Science Letters, v. 335–336, p. 36–47, doi:https://doi.org/10.1016/j.epsl.2012.04.029
    OpenUrlCrossRefGeoRefPubMedWeb of Science
    1. Genty D.,
    2. Blamart D.,
    3. Ouahdi R.,
    4. Gilmour M.,
    5. Baker A.,
    6. Jouzel J.,
    7. Van-Exter S.
    , 2003, Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data: Nature, v. 421, p. 833–837, doi:https://doi.org/10.1038/nature01391
    OpenUrlCrossRefGeoRef
    1. Ghosh P.,
    2. Padia J. T.,
    3. Mohindra R.
    , 2004, Stable isotopic studies of palaeosol sediment from Upper Siwalik of Himachal Himalaya: evidence for high monsoonal intensity during late Miocene? Palaeogeography, Palaeoclimatology, Palaeoecology, v. 206, n. 1–2, p. 103–114, doi:https://doi.org/10.1016/j.palaeo.2004.01.014
    OpenUrlCrossRef
    1. Godfrey C.,
    2. Fan M.,
    3. Jesmok G.,
    4. Upadhyay D.,
    5. Tripati A.
    , 2018, Petrography and stable isotope geochemistry of Oligocene-Miocene continental carbonates in south Texas: Implications for paleoclimate and paleoenvironment near sea-level: Sedimentary Geology, v. 367, p. 69–83, doi:https://doi.org/10.1016/j.sedgeo.2018.02.006
    OpenUrlCrossRef
    1. Harris E. B.,
    2. Kohn M. J.,
    3. Strömberg C. A. E.
    , 2020, Stable isotope compositions of herbivore teeth indicate climatic stability leading into the mid-Miocene Climatic Optimum, in Idaho, U.S.A: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 546, p. 109610, doi:https://doi.org/10.1016/j.palaeo.2020.109610
    OpenUrlCrossRefGeoRefWeb of Science
    1. Harzhauser M.,
    2. Latal C.,
    3. Piller W. E.
    , 2007, The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate change: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 249, n. 3–4, p. 335–350, doi:https://doi.org/10.1016/j.palaeo.2007.02.006
    OpenUrlCrossRefWeb of Science
    1. Harzhauser M.,
    2. Mandic O.,
    3. Latal C.,
    4. Kern A.
    , 2012, Stable isotope composition of the Miocene Dinaride Lake System deduced from its endemic mollusc fauna: Hydrobiologia, v. 682, n. 1, p. 27–46, doi:https://doi.org/10.1007/s10750-011-0618-3
    OpenUrlCrossRef
    1. Heitmann E. O.,
    2. Ji S.,
    3. Nie J.,
    4. Breecker D. O.
    , 2017, Orbitally-paced variations of water availability in the SE Asian Monsoon region following the Miocene Climate Transition: Earth and Planetary Science Letters, v. 474, p. 272–282, doi:https://doi.org/10.1016/j.epsl.2017.06.006
    OpenUrlCrossRef
    1. Hellwig A.,
    2. Voigt S.,
    3. Mulch A.,
    4. Frisch K.,
    5. Bartenstein A.,
    6. Pross J.,
    7. Gerdes A.,
    8. Voigt T.
    , 2018, Late Oligocene to early Miocene humidity change recorded in terrestrial sequences in the Ili Basin (south-eastern Kazakhstan, Central Asia): Sedimentology, v. 65, n. 2, p. 517–539, doi:https://doi.org/10.1111/sed.12390
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Hendricks M. B.,
    2. DePaolo D. J.,
    3. Cohen R. C.
    , 2000, Space and time variation of δ18O and δD in precipitation: Can paleotemperature be estimated from ice cores?: Global Biogeochemical Cycles, v. 14, n. 3, p. 851–861, doi:https://doi.org/10.1029/1999GB001198
    OpenUrlCrossRef
    1. Hofman-Kamińska E.,
    2. Bocherens H.,
    3. Borowik T.,
    4. Drucker D. G.,
    5. Kowalczyk R.
    , 2018, Stable isotope signatures of large herbivore foraging habitats across Europe: PloS One, v. 13, n. 1, p. e0190723, doi:https://doi.org/10.1371/journal.pone.0190723
    OpenUrlCrossRefGeoRef
    1. Hoke G. D.,
    2. Liu-Zeng J.,
    3. Hren M. T.,
    4. Wissink G. K.,
    5. Garzione C. N.
    , 2014, Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene: Earth and Planetary Science Letters, v. 394, p. 270–278, doi:https://doi.org/10.1016/j.epsl.2014.03.007
    OpenUrlCrossRef
    1. Honegger L.,
    2. Adatte T.,
    3. Spangenberg J. E.,
    4. Rugenstein J. K. C.,
    5. Poyatos-Moré M.,
    6. Puigdefàbregas C.,
    7. Chanvry E.,
    8. Clark J.,
    9. Fildani A.,
    10. Verrechia E.,
    11. Kouzmanov K.,
    12. Harlaux M.,
    13. Castelltort S.
    , 2020, Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain: Climate of the Past, v. 16, n. 1, p. 227–243, doi:https://doi.org/10.5194/cp-16-227-2020
    OpenUrlAbstract/FREE Full Text
    1. Horton T. W.,
    2. Chamberlain C. P.
    , 2006, Stable isotopic evidence for Neogene surface downdrop in the central Basin and Range Province: Geological Society of America Bulletin, v. 118, n. 3–4, p. 475–90, doi:https://doi.org/10.1130/B25808
    OpenUrlCrossRef
  41. ↵
    1. Horton T. W.,
    2. Sjostrom D. J.,
    3. Abruzzese M. J.,
    4. Poage M. A.,
    5. Waldbauer J. R.,
    6. Hren M.,
    7. Wooden J.,
    8. Chamberlain C. P.
    , 2004, Spatial and Temporal Variation of Cenozoic Surface Elevation in the Great Basin and Sierra Nevada: American Journal of Science v. 304, n. 650, p. 862–88, doi:https://doi.org/10.2475/ajs.304.10.862
    OpenUrlAbstract/FREE Full Text
    1. Hough B. G.,
    2. Garzione C. N.,
    3. Wang Z.,
    4. Lease R. O.,
    5. Burbank D. W.,
    6. Yuan D.
    , 2011, Stable isotope evidence for topographic growth and basin segmentation: Implications for the evolution of the NE Tibetan Plateau: Geological Society of America Bulletin, v. 123, n. 1–2, 168–185, doi:https://doi.org/10.1130/B30090.1
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Hough B. G.,
    2. Fan M.,
    3. Passey B. H.
    , 2014, Calibration of the Clumped Isotope Geothermometer in Soil Carbonate in Wyoming and Nebraska, USA: Implications for Paleoelevation and Paleoclimate Reconstruction: Earth and Planetary Science Letters, v. 391, p. 110–20, doi:https://doi.org/10.1016/j.epsl.2014.01.008
    OpenUrlAbstract/FREE Full Text
    1. Hren M. T.,
    2. Pagani M.,
    3. Erwin D. M.,
    4. Brandon M.
    , 2010, Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada: Geology, v. 38, n. 1, p. 7–10, doi:https://doi.org/10.1130/G30215.1
    OpenUrlCrossRefPubMedWeb of Science
    1. Huntington K. W.,
    2. Eiler J. M.,
    3. Affek H. P.,
    4. Guo W.,
    5. Bonifacie M.,
    6. Yeung L. Y.,
    7. Thiagarajan N.,
    8. Passey B.,
    9. Tripati A.,
    10. Daëron M.,
    11. Came R.
    , 2009, Methods and limitations of “clumped” CO2 isotope (Δ 47) analysis by gas-source isotope ratio mass spectrometry: Journal of Mass Spectrometry, v. 44, n. 9, p. 1318–1329, doi:https://doi.org/10.1002/jms.1614
    OpenUrlCrossRef
    1. Huntington K. W.,
    2. Wernicke B. P.,
    3. Eiler J. M.
    , 2010, Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry:Tectonics, v. 29, n. 3, p. 2009TC002449, doi:https://doi.org/10.1029/2009TC002449
    OpenUrlAbstract/FREE Full Text
    1. Huntington K. W.,
    2. Budd D. A.,
    3. Wernicke B. P.,
    4. Eiler J. M.
    , 2011, Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite: Journal of Sedimentary Research, v. 81, n. 9, p. 656–69, doi:https://doi.org/10.2110/jsr.2011.51
    OpenUrlCrossRef
    1. Huyghe D.,
    2. Emmanuel L.,
    3. Renard M.,
    4. Lartaud F.,
    5. Génot P.,
    6. Riveline J.,
    7. Merle D.
    , 2017, Significance of shallow-marine and non-marine algae stable isotope (δ18O) compositions over long periods: Example from the Palaeogene of the Paris Basin: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 485, p. 247–259, doi:https://doi.org/10.1016/j.palaeo.2017.06.017
    OpenUrlCrossRefGeoRefWeb of Science
    1. Hyland E. G.,
    2. Sheldon N. D.
    , 2013, Coupled CO2-climate response during the Early Eocene Climatic Optimum: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 369, p. 125–135, doi:https://doi.org/10.1016/j.palaeo.2012.10.011
    OpenUrlAbstract/FREE Full Text
    1. Hyland E.,
    2. Sheldon N. D.,
    3. Fan M.
    , 2013, Terrestrial paleoenvironmental reconstructions indicate transient peak warming during the early Eocene climatic optimum: Geological Society of America Bulletin, v. 125, n. 7–8, p. 1338–1348, doi:https://doi.org/10.1130/B30761.1
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Ibarra D. E.,
    2. Chamberlain C. P.
    , 2015, Quantifying closed-basin lake temperature and hydrology by inversion of oxygen isotope and trace element paleoclimate records: American journal of science, v. 315, n. 9, p. 781–808, doi:https://doi.org/10.2475/09.2015.01
    OpenUrlCrossRef
    1. Ibarra D. E.,
    2. Kukla T.,
    3. Methner K. A.,
    4. Mulch A.,
    5. Chamberlain C. P.
    , 2021, Reconstructing past elevations from triple oxygen isotopes of lacustrine chert: Application to the Eocene Nevadaplano, Elko Basin, Nevada, United States: Frontiers in Earth Science, v. 9, p. 628868, doi:https://doi.org/10.3389/feart.2021.628868
    OpenUrlCrossRef
    1. Ingalls M.,
    2. Rowley D.,
    3. Olack G.,
    4. Currie B.,
    5. Li S.,
    6. Schmidt J.,
    7. Tremblay M.,
    8. Polissar P.,
    9. Shuster D. L.,
    10. Lin D.,
    11. Colman A.
    , 2018, Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: Implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering: Geological Society of America Bulletin, v. 130, n 1–2, p. 307–330, doi:https://doi.org/10.1130/B31723.1
    OpenUrlCrossRef
    1. Jensen T. Z. T.,
    2. Sjöström A.,
    3. Fischer A.,
    4. Rosengren E.,
    5. Lanigan L. T.,
    6. Bennike O.,
    7. Richter K. K.,
    8. Gron K. J.,
    9. Mackie M.,
    10. Mortensen M. F.,
    11. Sørensen L.,
    12. Chivall D.,
    13. Iversen K. H.,
    14. Taurozzi A. J.
    and others, 2020, An integrated analysis of Maglemose bone points reframes the Early Mesolithic of Southern Scandinavia: Scientific reports, v. 10, n. 1, p. 17244, doi:https://doi.org/10.1038/s41598-020-74258-8
    OpenUrlCrossRef
  44. ↵
    1. Ji S.,
    2. Nie J.,
    3. Lechler A.,
    4. Huntington K. W.,
    5. Heitmann E. O.,
    6. Breecker D. O.
    , 2018, A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene: Earth and Planetary Science Letters, v. 499, p. 134–144, doi:https://doi.org/10.1016/j.epsl.2018.07.011
    OpenUrlCrossRefGeoRef
    1. Jiang W.,
    2. Peng S.,
    3. Hao Q.,
    4. Liu T.
    , 2002, Carbon isotopic records in paleosols over the Pliocene in Northern China: Implication on vegetation development and Tibetan uplift: Chinese Science Bulletin, v. 47, n. 8, p. 687, doi:https://doi.org/10.1360/02tb9156
    OpenUrlCrossRef
  45. ↵
    1. Jolivet M.,
    2. Boulvais P.
    , 2021, Global significance of oxygen and carbon isotope compositions of pedogenic carbonates since the Cretaceous: Geoscience Frontiers, v. 12, n. 4, p. 101132, doi:https://doi.org/10.1016/j.gsf.2020.12.012
    OpenUrlCrossRefGeoRefWeb of Science
    1. Kaakinen A.,
    2. Sonninen E.,
    3. Lunkka J. P.
    , 2006, Stable isotope record in paleosol carbonates from the Chinese Loess Plateau: Implications for late Neogene paleoclimate and paleovegetation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 237, n. 2–4, p. 359–369, doi:https://doi.org/10.1016/j.palaeo.2005.12.011
    OpenUrlCrossRef
  46. ↵
    1. Kaufman D.,
    2. McKay N.,
    3. Routson C.,
    4. Erb M.,
    5. Davis B.,
    6. Heiri O.,
    7. Jaccard S.,
    8. Tierney J.,
    9. Dätwyler C.,
    10. Axford Y.,
    11. Brussel T.,
    12. Cartapanis O.,
    13. Chase B.,
    14. Dawson A.,
    15. de Vernal A.,
    16. Engels S.,
    17. Jonkers L.,
    18. Marsicek J.
    , and others, 2020, A global database of Holocene paleotemperature records: Scientific data, v. 7, p. 115, doi:https://doi.org/10.1038/s41597-020-0445-3
    OpenUrlCrossRef
    1. Kelson J. R.,
    2. Watford D.,
    3. Bataille C.,
    4. Huntington K. W.,
    5. Hyland E.,
    6. Bowen G. J.
    , 2018, Warm terrestrial subtropics during the Paleocene and Eocene: Carbonate clumped isotope (Δ 47) evidence from the Tornillo basin, Texas (USA): Paleoceanography and Paleoclimatology, v. 33, n. 11, p. 1230–1249, doi:https://doi.org/10.1029/2018PA003391
    OpenUrlCrossRefGeoRefWeb of Science
    1. Kent-Corson M. L.,
    2. Sherman L. S.,
    3. Mulch A.,
    4. Chamberlain C. P.
    , 2006, Cenozoic topographic and climatic response to changing tectonic boundary conditions in Western North America: Earth and Planetary Science Letters, v. 252, n. 3–4, p. 453–466, doi:https://doi.org/10.1016/j.epsl.2006.09.049
    OpenUrlCrossRefGeoRefWeb of Science
    1. Kent-Corson M. L.,
    2. Ritts B. D.,
    3. Zhuang G.,
    4. Bovet P. M.,
    5. Graham S. A.,
    6. Page Chamberlain C.
    , 2009, Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau: Earth and Planetary Science Letters, v. 282, n. 1–4, p. 158–166, doi:https://doi.org/10.1016/j.epsl.2009.03.011
    OpenUrlCrossRef
    1. Kent-Corson M. L.,
    2. Mulch A.,
    3. Graham S. A.,
    4. Carroll A. R.,
    5. Ritts B. D.,
    6. Chamberlain C. P.
    , 2010, Diachronous isotopic and sedimentary responses to topographic change as indicators of mid-Eocene hydrologic reorganization in the western United States: Basin Research, v. 22, n. 6, p. 829–845, doi:https://doi.org/10.1111/j.1365-2117.2009.00456.x
    OpenUrlCrossRefGeoRef
    1. Kent-Corson M. L.,
    2. Barnosky A. D.,
    3. Mulch A.,
    4. Carrasco M. A.,
    5. Chamberlain C. P.
    , 2013, Possible regional tectonic controls on mammalian evolution in western North America: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 387, p. 17–26, doi:https://doi.org/10.1016/j.palaeo.2013.07.014
    OpenUrlCrossRefWeb of Science
    1. Kluge T.,
    2. Affek H. P.
    , 2012, Quantifying kinetic fractionation in Bunker Cave speleothems using Δ47: Quaternary Science Reviews, v. 49, p. 82–94, doi:https://doi.org/10.1016/j.quascirev.2012.06.013
    OpenUrlCrossRefGeoRefWeb of Science
    1. Koch P. L.,
    2. Zachos J. C.,
    3. Dettman D. L.
    , 1995, Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 115, p. 61–89, doi:https://doi.org/10.1016/0031-0182(94)00107-J
    OpenUrlCrossRef
    1. Wing S. L.,
    2. Gingerich P. D.,
    3. Schmitz B.,
    4. Thomas E.
    1. Koch P. L.,
    2. Clyde W. C.,
    3. Hepple R. P.,
    4. Fogel M. L.,
    5. Wing S. L.,
    6. Zachos J. C.
    , 2003, Carbon and oxygen isotope records from Paleosols spanning the Paleocene-Eocene boundary, Bighorn Basin, Wyoming, in Wing S. L., Gingerich P. D., Schmitz B., Thomas E., editors, Causes and consequences of globally warm climates in the early Paleogene: Geological Society of America, GSA Special Papers, v. 369, p. 49–64, doi:https://doi.org/10.1130/0-8137-2369-8.49
    OpenUrlAbstract/FREE Full Text
    1. Kocsis L.,
    2. Ozsvárt P.,
    3. Becker D.,
    4. Ziegler R.,
    5. Scherler L.,
    6. Codrea V.
    , 2014, Orogeny forced terrestrial climate variation during the late Eocene–early Oligocene in Europe: Geology, v. 42, n. 8, p. 727–730, doi:https://doi.org/10.1130/G35673.1
    OpenUrlFREE Full Text
  47. ↵
    1. Kohn M. J.,
    2. Cerling T. E.
    , 2002, Stable Isotope Compositions of Biological Apatite: Reviews in Mineralogy and Geochemistry, v. 48, n. 1, p. 455–88, doi:https://doi.org/10.2138/rmg.2002.48.12
    OpenUrlCrossRefGeoRefWeb of Science
    1. Kohn M. J.,
    2. Law J. M.
    , 2006, Stable isotope chemistry of fossil bone as a new paleoclimate indicator: Geochimica et Cosmochimica Acta, v. 70, n. 4, p. 931–946, doi:https://doi.org/10.1016/j.gca.2005.10.023
    OpenUrlCrossRefGeoRefWeb of Science
    1. Kohn M. J.,
    2. Miselis J. L.,
    3. Fremd T. J.
    , 2002, Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon: Earth and Planetary Science Letters, v. 204, n. 1–2, p. 151–165, doi:https://doi.org/10.1016/S0012-821X(02)00961-5
    OpenUrlCrossRef
  48. ↵
    1. Konecky B. L.,
    2. McKay N. P.,
    3. Churakova (Sidorova) O. V.,
    4. Comas-Bru L.,
    5. Dassié E. P.,
    6. DeLong K. L.,
    7. Falster G. M.,
    8. Fischer M. J.,
    9. Jones M. D.,
    10. Jonkers L.,
    11. Kaufman D. S.,
    12. Leduc G.,
    13. Managave S. R.,
    14. Martrat B.,
    15. Managave S. R.,
    16. Martrat B.,
    17. Opel T.,
    18. Orsi A. J.,
    19. Partin J. W.,
    20. Sayani H. R.,
    21. Thomas E. K.,
    22. Thompson D. M.,
    23. Tyler J. J.,
    24. Abram N. J.,
    25. Atwood A. R.,
    26. Cartapanis O.,
    27. Conroy J. L.,
    28. Curran M. A.,
    29. Dee S. G.,
    30. Deininger M.,
    31. Divine D. V.,
    32. Kern Z.,
    33. Porter T. J.,
    34. Stevenson S. L.,
    35. von Gunten L.
    , 2020, The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate: Earth System Science Data, v. 12, p. 2261–2288, doi:https://doi.org/10.5194/essd-12-2261-2020
    OpenUrlCrossRef
    1. Kovács J.,
    2. Moravcová M.,
    3. Újvári G.,
    4. Pintér A. G.
    , 2012, Reconstructing the paleoenvironment of East Central Europe in the Late Pleistocene using the oxygen and carbon isotopic signal of tooth in large mammal remains: Quaternary international: The Journal of the International Union for Quaternary Research, v. 276–277, p. 145–154, doi:https://doi.org/10.1016/j.quaint.2012.04.009
    OpenUrlCrossRefGeoRef
    1. Kovács J.,
    2. Szabó P.,
    3. Kocsis L.,
    4. Vennemann T.,
    5. Sabol M.,
    6. Gasparik M.,
    7. Virág A.
    , 2015, Pliocene and Early Pleistocene paleoenvironmental conditions in the Pannonian Basin (Hungary, Slovakia): Stable isotope analyses of fossil proboscidean and perissodactyl teeth: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 440, p. 455–466, doi:https://doi.org/10.1016/j.palaeo.2015.09.019
    OpenUrlCrossRef
    1. Kovda I.,
    2. Mora C. I.,
    3. Wilding L. P.
    , 2008, PaleoVertisols of the northwest Caucasus: (Micro)morphological, physical, chemical, and isotopic constraints on early to late Pleistocene climate: Journal of Plant Nutrition and Soil Science, v. 171, n. 4, p. 498–508, doi:https://doi.org/10.1002/jpln.200700037
    OpenUrlCrossRef
    1. Küçükuysal C.,
    2. Kapur S.
    , 2014, Mineralogical, geochemical and micromorphological evaluation of the Plio-Quaternary paleosols and calcretes from Karahamzall, Ankara (Central Turkey): Geologica Carpathica, v. 65, n. 3, p. 243–255, doi:https://doi.org/10.2478/geoca-2014-0014
    OpenUrlCrossRef
  49. ↵
    1. Kukla T.,
    2. Winnick M. J.,
    3. Maher K.,
    4. Ibarra D. E.,
    5. Chamberlain C. P.
    , 2019, The sensitivity of terrestrial δ18 O gradients to hydroclimate evolution: Journal of Geophysical Research Atmospheres, v. 124, n. 2, p. 563–582, doi:https://doi.org/10.1029/2018JD029571
    OpenUrlCrossRef
  50. ↵
    1. Kukla T.,
    2. Ahlström A.,
    3. Maezumi S. Y.,
    4. Chevalier M.,
    5. Lu Z.,
    6. Winnick M. J.,
    7. Chamberlain C. P.
    , 2021a, The resilience of Amazon tree cover to past and present drying: Global and Planetary Change, v. 202, p. 103520, doi:https://doi.org/10.1016/j.gloplacha.2021.103520
    OpenUrlCrossRef
    1. Kukla T.,
    2. Ibarra D. E.,
    3. Rugenstein J. K. C.,
    4. Gooley J. T.,
    5. Mullins C. E.,
    6. Kramer S.,
    7. Moragne D. Y.,
    8. Chamberlain C. P.
    , 2021b, High-resolution stable isotope paleotopography of the John Day region, Oregon, United States: Frontiers in Earth Science, v. 9, p. 635181, doi:https://doi.org/10.3389/feart.2021.635181
    OpenUrlCrossRef
    1. Lacroix B.,
    2. Niemi N. A.
    , 2019, Investigating the effect of burial histories on the clumped isotope thermometer: An example from the Green River and Washakie Basins, Wyoming: Geochimica et Cosmochimica Acta, v. 247, p. 40–58, doi:https://doi.org/10.1016/j.gca.2018.12.016
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Latorre C.,
    2. Quade J.,
    3. McIntosh W. C.
    , 1997, The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas: Earth and planetary science letters, v. 146, n. 1–2, p. 83–96, doi:https://doi.org/10.1016/S0012-821X(96)00231-2
    OpenUrlAbstract/FREE Full Text
    1. Leary R. J.,
    2. Quade J.,
    3. DeCelles P. G.,
    4. Reynolds A.
    , 2017, Evidence from paleosols for low to moderate elevation of the India-Asia suture zone during mid-Cenozoic time: Geology, v. 45, n. 5, p.399–402, doi:https://doi.org/10.1130/G38830.1
    OpenUrlAbstract/FREE Full Text
    1. Lechler A. R.,
    2. Niemi N. A.
    , 2011, Sedimentologic and isotopic constraints on the Paleogene paleogeography and paleotopography of the southern Sierra Nevada, California: Geology, v. 39, n. 4, p.379–382, doi:https://doi.org/10.1130/G31535.1
    OpenUrlCrossRefGeoRef
    1. Leone G.,
    2. Bonadonna F.,
    3. Zanchetta G.
    , 2000, Stable isotope record in mollusca and pedogenic carbonate from Late Pliocene soils of Central Italy: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 163, n. 3–4, p. 115–131, doi:https://doi.org/10.1016/S0031-0182(00)00148-6
    OpenUrlCrossRefGeoRefPubMed
    1. Licht A.,
    2. van Cappelle M.,
    3. Abels H. A.,
    4. Ladant J.-B.,
    5. Trabucho-Alexandre J.,
    6. France-Lanord C.,
    7. Donnadieu Y.,
    8. Vandenberghe J.,
    9. Rigaudier T.,
    10. Lécuyer C.,
    11. Terry D. Jr.,
    12. Adriaens R.,
    13. Boura A.,
    14. Guo Z.
    , and others, 2014, Asian monsoons in a late Eocene greenhouse world: Nature, v. 513, n. 7519, p. 501–506, doi:https://doi.org/10.1038/nature13704
    OpenUrlCrossRef
    1. Licht A.,
    2. Coster P.,
    3. Ocakoğlu F.,
    4. Campbell C.,
    5. Métais G.,
    6. Mulch A.,
    7. Taylor M.,
    8. Kappelman J.,
    9. Beard K. C.
    , 2017a, Tectono-stratigraphy of the Orhaniye Basin, Turkey: Implications for collision chronology and Paleogene biogeography of central Anatolia: Journal of Asian Earth Sciences, v. 143, p. 45–58, doi:https://doi.org/10.1016/j.jseaes.2017.03.033
    OpenUrlAbstract/FREE Full Text
    1. Licht A.,
    2. Quade J.,
    3. Kowler A.,
    4. de los Santos M.,
    5. Hudson A.,
    6. Schauer A.,
    7. Huntington K.,
    8. Copeland P.,
    9. Lawton T.
    , 2017b, Impact of the North American monsoon on isotope paleoaltimeters: Implications for the paleoaltimetry of the American southwest: American Journal of Science, v. 317, n. 1, p. 1–33, doi:https://doi.org/10.2475/01.2017.01
    OpenUrlCrossRef
  52. ↵
    1. Licht A.,
    2. Dupont-Nivet G.,
    3. Meijer N.,
    4. Caves Rugenstein J.,
    5. Schauer A.,
    6. Fiebig J.,
    7. Mulch A.,
    8. Hoorn C.,
    9. Barbolini N.,
    10. Guo Z.
    , 2020, Decline of soil respiration in northeastern Tibet through the transition into the Oligocene icehouse: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 560, p. 110016, doi:https://doi.org/10.1016/j.palaeo.2020.110016
    OpenUrlCrossRef
    1. Li B.,
    2. Sun D.,
    3. Wang X.,
    4. Zhang Y.,
    5. Hu W.,
    6. Wang F.,
    7. Li Z.,
    8. Ma Z.,
    9. Liang B.
    , 2016a, δ18O and δ13C records from a Cenozoic sedimentary sequence in the Lanzhou Basin, Northwestern China: Implications for palaeoenvironmental and palaeoecological changes: Journal of Asian Earth Sciences, v. 125, p. 22–36, doi:https://doi.org/10.1016/j.jseaes.2016.05.010
    OpenUrlCrossRef
    1. Li L.,
    2. Garzione C. N.,
    3. Pullen A.,
    4. Chang H.
    , 2016b, Early–middle Miocene topographic growth of the northern Tibetan Plateau: Stable isotope and sedimentation evidence from the southwestern Qaidam basin: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 461, p. 201–213, doi:https://doi.org/10.1016/j.palaeo.2016.08.025
    OpenUrlCrossRef
    1. Li L.,
    2. Fan M.,
    3. Zhu L.
    , 2021, Early Oligocene surface uplift in southwestern Montana during the north American cordilleran extension: Tectonics, v. 40, n. 7, p. e2020TC006671, doi:https://doi.org/10.1029/2020TC006671
    OpenUrlCrossRef
    1. Li S.,
    2. Currie B. S.,
    3. Rowley D. B.,
    4. Ingalls M.
    , 2015, Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region: Earth and Planetary Science Letters, V. 432, p. 415–424, doi:https://doi.org/10.1016/j.epsl.2015.09.044
    OpenUrlAbstract/FREE Full Text
    1. Liu W.,
    2. Liu Z.,
    3. An Z.,
    4. Sun J.,
    5. Chang H.,
    6. Wang N.,
    7. Dong J.,
    8. Wang H.
    , 2014, Late Miocene episodic lakes in the arid Tarim Basin, western China: Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 46, p. 16292–16296, doi:https://doi.org/10.1073/pnas.1410890111
    OpenUrlCrossRefGeoRef
    1. Lüedecke T.,
    2. Mikes T.,
    3. Rojay F.B.,
    4. Cosca M.A.,
    5. Mulch A.
    , 2013, Stable isotope-based reconstruction of Oligo-Miocene paleoenvironment and paleohydrology of Central Anatolian lake basins (Turkey): Turkish Journal of Earth Sciences, v. 22, n. 5, p.793–819, doi:https://doi.org/10.3906/yer-1207-11
    OpenUrlCrossRef
    1. Lukens W. E.,
    2. Driese S. G.,
    3. Peppe D. J.,
    4. Loudermilk M.
    , 2017, Sedimentology, stratigraphy, and paleoclimate at the late Miocene Coffee Ranch fossil site in the Texas Panhandle: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 485, p. 361–376, doi:https://doi.org/10.1016/j.palaeo.2017.06.026
    OpenUrlCrossRef
    1. Macaulay E. A.,
    2. Sobel E. R.,
    3. Mikolaichuk A.,
    4. Wack M.,
    5. Gilder S. A.,
    6. Mulch A.,
    7. Fortuna A. B.,
    8. Hynek S.,
    9. Apayarov F.
    , 2016, The sedimentary record of the Issyk Kul basin, Kyrgyzstan: climatic and tectonic inferences: Basin Research, v. 28, n. 1, p. 57–80, doi:https://doi.org/10.1111/bre.12098
    OpenUrlCrossRefGeoRefWeb of Science
    1. Mack G. H.,
    2. Cole D. R.
    , 2005, Geochemical model of δ18O of pedogenic calcite versus latitude and its application to Cretaceous palaeoclimate: Sedimentary Geology, v. 174, n. 1–2, p. 115–122, doi:https://doi.org/10.1016/j.sedgeo.2004.12.002
    OpenUrlAbstract/FREE Full Text
    1. Mack G. H.,
    2. Cole D. R.,
    3. James W. C.,
    4. Giordano T. H.,
    5. Salyards S. L.
    , 1994, Stable oxygen and carbon isotopes of pedogenic carbonate as indicators of Plio-Pleistocene paleoclimate in southern Rio Grande Rift, south-central New Mexico: American Journal of Science, v. 294, n. 5, p. 621–640, doi:https://doi.org/10.2475/ajs.294.5.621
    OpenUrlCrossRefGeoRefWeb of Science
    1. Matson S. D.,
    2. Fox D. L.
    , 2010, Stable isotopic evidence for terrestrial latitudinal climate gradients in the Late Miocene of the Iberian Peninsula: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 287, n. 1–4, p. 28–44, doi:https://doi.org/10.1016/j.palaeo.2009.12.010
    OpenUrlCrossRefPubMed
    1. Matson S. D.,
    2. Rook L.,
    3. Oms O.,
    4. Fox D. L.
    , 2012, Carbon isotopic record of terrestrial ecosystems spanning the Late Miocene extinction of Oreopithecus bambolii, Baccinello Basin (Tuscany, Italy): Journal of Human Evolution, v. 63, n. 1, p. 127–139, doi:https://doi.org/10.1016/j.jhevol.2012.04.004
    OpenUrlAbstract/FREE Full Text
    1. McFadden R. R.,
    2. Mulch A.,
    3. Teyssier C.,
    4. Heizler M.
    , 2015, Eocene extension and meteoric fluid flow in the Wildhorse detachment, Pioneer metamorphic core complex, Idaho: Lithosphere, v. 7, n. 4, p. 355–66, doi:https://doi.org/10.1130/L429.1
    OpenUrlCrossRef
    1. McLean A.,
    2. Bershaw J.
    , 2021, Molecules to mountains: A multi-proxy investigation into ancient climate and topography of the Pacific Northwest, USA: Frontiers in Earth Science, v. 9, p.624961, doi:https://doi.org/10.3389/feart.2021.624961
    OpenUrlCrossRef
    1. Meijers M. J.,
    2. Strauss B. E.,
    3. Özkaptan M.,
    4. Feinberg J. M.,
    5. Mulch A.,
    6. Whitney D. L.,
    7. Kaymakçı N.
    , 2016, Age and paleoenvironmental reconstruction of partially remagnetized lacustrine sedimentary rocks (Oligocene Aktoprak basin, central Anatolia, Turkey): Geochemistry, Geophysics, Geosystems, v. 17, n. 3, p.914–939, doi:https://doi.org/10.1002/2015GC006209
    OpenUrlCrossRef
    1. Meijers M. J. M.,
    2. Peynircioğlu A. A.,
    3. Cosca M. A.,
    4. Brocard G. Y.,
    5. Whitney D. L.,
    6. Langereis C. G.,
    7. Mulch A.
    , 2018, Climate stability in central Anatolia during the Messinian Salinity Crisis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 498, p. 53–67, doi:https://doi.org/10.1016/j.palaeo.2018.03.001
    OpenUrlCrossRefGeoRef
    1. Methner K.,
    2. Mulch A.,
    3. Teyssier C.,
    4. Wells M. L.,
    5. Cosca M. A.,
    6. Gottardi R.,
    7. Gébelin A.,
    8. Chamberlain C. P.
    , 2015, Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah): Tectonics, v. 34, n. 4, p. 680–693, doi:https://doi.org/10.1002/2014TC003766
    OpenUrlCrossRef
    1. Methner K.,
    2. Fiebig J.,
    3. Wacker U.,
    4. Umhoefer P.,
    5. Chamberlain C. P.,
    6. Mulch A.
    , 2016a, Eocene-Oligocene proto-Cascades topography revealed by clumped (Δ47) and oxygen isotope (δ18O) geochemistry (Chumstick Basin, WA, USA): Eo-Oligocene Proto-Cascades Topography: Tectonics, v. 35, n. 3, p. 546–564, doi:https://doi.org/10.1002/2015TC003984
    OpenUrlCrossRef
    1. Methner K.,
    2. Mulch A.,
    3. Fiebig J.,
    4. Wacker U.,
    5. Gerdes A.,
    6. Graham S. A.,
    7. Chamberlain C. P.
    , 2016b, Rapid Middle Eocene temperature change in western North America: Earth and Planetary Science Letters, v. 450, p. 132–139, doi:https://doi.org/10.1016/j.epsl.2016.05.053
    OpenUrlCrossRef
    1. Methner K.,
    2. Campani M.,
    3. Fiebig J.,
    4. Löffler N.,
    5. Kempf O.,
    6. Mulch A.
    , 2020, Middle Miocene long-term continental temperature change in and out of pace with marine climate records: Scientific Reports, v. 10, n. 1, p. 7989, doi:https://doi.org/10.1038/s41598-020-64743-5
    OpenUrlCrossRef
  53. ↵
    1. Methner K.,
    2. Mulch A.,
    3. Fiebig J.,
    4. Krsnik E.,
    5. Löffler N.,
    6. Bajnai D.,
    7. Chamberlain C. P.
    , 2021, Warm High-Elevation Mid-Latitudes During the Miocene Climatic Optimum: Paleosol Clumped Isotope Temperatures From the Northern Rocky Mountains, USA: Paleoceanography and Paleoclimatology, v. 36, n. 6, doi:https://doi.org/10.1029/2020PA003991
    OpenUrlCrossRefGeoRef
  54. ↵
    1. Mix H. T.,
    2. Chamberlain C. P.
    , 2014, Stable isotope records of hydrologic change and paleotemperature from smectite in Cenozoic western North America: Geochimica et Cosmochimica Acta, v. 141, p. 532–546, doi:https://doi.org/10.1016/j.gca.2014.07.008
    OpenUrlCrossRef
  55. ↵
    1. Mix H. T.,
    2. Winnick M. J.,
    3. Mulch A.,
    4. Chamberlain C. P.
    , 2013, Grassland expansion as an instrument of hydrologic change in Neogene western North America: Earth and Planetary Science Letters, v. 377–378, p. 73–83, doi:https://doi.org/10.1016/j.epsl.2013.07.032
    OpenUrlAbstract/FREE Full Text
    1. Mix H. T.,
    2. Ibarra D. E.,
    3. Mulch A.,
    4. Graham S. A.,
    5. Chamberlain C. P.
    , 2016, A hot and high Eocene Sierra Nevada: Geological Society of America Bulletin, v. 128, n. 3–4, p. 531–542, doi:https://doi.org/10.1130/B31294.1
    OpenUrlCrossRef
    1. Mix H. T.,
    2. Caves Rugenstein J. K.,
    3. Reilly S. P.,
    4. Ritch A. J.,
    5. Winnick M. J.,
    6. Kukla T.,
    7. Chamberlain C. P.
    , 2019, Atmospheric flow deflection in the late Cenozoic Sierra Nevada: Earth and Planetary Science Letters, v. 518, p. 76–85, doi:https://doi.org/10.1016/j.epsl.2019.04.050
    OpenUrlCrossRef
  56. ↵
    1. Mulch A.,
    2. Graham A. A.,
    3. Chamberlain C. P.
    , 2006, Hydrogen Isotopes in Eocene River Gravels and Paleoelevation of the Sierra Nevada: Science, v. 313, n. 5783, p. 87–89, doi:https://doi.org/10.1126/science.1125986
    OpenUrlCrossRef
    1. Mulch A.,
    2. Teyssier C.,
    3. Cosca M. A.,
    4. Chamberlain C. P.
    , 2007, Stable isotope paleoaltimetry of Eocene core complexes in the North American Cordillera: Tectonics, v. 26, n. 4, p. 1–13, doi:https://doi.org/10.1029/2006TC001995
    OpenUrlAbstract/FREE Full Text
    1. Mulch A.,
    2. Sarna-Wojcicki A. M.,
    3. Perkins M. E.,
    4. Chamberlain C. P.
    , 2008, A Miocene to Pleistocene climate and elevation record of the Sierra Nevada (California): Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 19, p. 6819–6824, doi:https://doi.org/10.1073/pnas.0708811105
    OpenUrlAbstract/FREE Full Text
    1. Mulch A.,
    2. Chamberlain C. P.,
    3. Cosca M. A.,
    4. Teyssier C.,
    5. Methner K.,
    6. Hren M. T.,
    7. Graham S. A.
    , 2015, Rapid change in high-elevation precipitation patterns of western North America during the Middle Eocene Climatic Optimum (MECO): American Journal of Science, v. 315, n. 4, p. 317–336, doi:https://doi.org/10.2475/04.2015.02
    1. Mullin M. R. D.
    , 2010, Stable isotope record of soil carbonates from the Eocene-Oligocene transition, Badlands National Park, South Dakota, USA: MS Thesis, Ball State University, Muncie, Indiana, http://cardinalscholar.bsu.edu/handle/123456789/194650
    1. Nehme C.,
    2. Kluge T.,
    3. Verheyden S.,
    4. Nader F.,
    5. Charalambidou I.,
    6. Weissbach T.,
    7. Gucel S.,
    8. Cheng H.,
    9. Edwards R. L.,
    10. Satterfield L.,
    11. Eiche E.,
    12. Claeys P.
    , 2020, Speleothem record from Pentadactylos cave (Cyprus): new insights into climatic variations during MIS 6 and MIS 5 in the Eastern Mediterranean: Quaternary Science Reviews, v. 250, p. 106663, doi:https://doi.org/10.1016/j.quascirev.2020.106663
    OpenUrlCrossRefGeoRefWeb of Science
    1. Ortiz J. E.,
    2. Torres T.,
    3. Delgado A.,
    4. Reyes E.,
    5. Llamas J. F.,
    6. Soler V.,
    7. Raya J.
    , 2006, Pleistocene paleoenvironmental evolution at continental middle latitude inferred from carbon and oxygen stable isotope analysis of ostracodes from the Guadix-Baza Basin (Granada, SE Spain): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, n. 3–4, p. 536–561, doi:https://doi.org/10.1016/j.palaeo.2006.03.008
    OpenUrlCrossRef
    1. Page M.,
    2. Licht A.,
    3. Dupont-Nivet G.,
    4. Meijer N.,
    5. Barbolini N.,
    6. Hoorn C.,
    7. Schauer A.,
    8. Huntington K.,
    9. Bajnai D.,
    10. Fiebig J.,
    11. Mulch A.
    , 2019, Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet during the fall into the Oligocene icehouse: Geology, v. 47, n. 3, p. 203–206, doi:https://doi.org/10.1130/G45480.1
    OpenUrlCrossRef
  57. ↵
    1. Passey B. H.,
    2. Levin N. E.
    , 2021, Triple Oxygen Isotopes in Meteoric Waters, Carbonates, and Biological Apatites: Implications for Continental Paleoclimate Reconstruction.” Reviews in Mineralogy and Geochemistry, v. 86, n. 1, p. 429–62, doi:https://doi.org/10.2138/rmg.2021.86.13
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. Passey B. H.,
    2. Ayliffe L. K.,
    3. Kaakinen A.,
    4. Zhang Z.,
    5. Eronen J. T.,
    6. Zhu Y.,
    7. Zhou L.,
    8. Cerling T. E.,
    9. Fortelius M.
    , 2009, Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China: Earth and planetary science letters, v. 277, n. 3–4, p. 443–452, doi:https://doi.org/10.1016/j.epsl.2008.11.008
    OpenUrlCrossRefGeoRefWeb of Science
    1. Peryam T. C.,
    2. Dorsey R. J.,
    3. Bindeman I.
    , 2011, Plio-Pleistocene climate change and timing of Peninsular Ranges uplift in southern California: Evidence from paleosols and stable isotopes in the Fish Creek–Vallecito basin: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 305, n. 1–4, p. 65–74, doi:https://doi.org/10.1016/j.palaeo.2011.02.014
    OpenUrlCrossRef
  59. ↵
    1. Peters S. E.,
    2. Husson J. M.,
    3. Czaplewski J.
    , 2018, Macrostrat: A platform for geological data integration and deep‐time earth crust research: Geochemistry, Geophysics, Geosystems, v. 19, n. 4, p. 1393–1409, doi:https://doi.org/10.1029/2018GC007467
    OpenUrlCrossRef
  60. ↵
    1. Poage M. A.,
    2. Chamberlain C. P.
    , 2002, Stable Isotopic Evidence for a Pre-Middle Miocene Rain Shadow in the Western Basin and Range: Implications for the Paleotopography of the Sierra Nevada: Tectonics, v. 21, n. 4, p. 16–1–16–10 doi:https://doi.org/10.1029/2001TC001303
    OpenUrlAbstract/FREE Full Text
    1. Poulson S. R.,
    2. John B. E.
    , 2003, Stable isotope and trace element geochemistry of the basal Bouse Formation carbonate, southwestern United States: Implications for the Pliocene uplift history of the Colorado Plateau: Geological Society of America Bulletin, v. 115, n. 4, p. 434–444, doi:https://doi.org/10.1130/0016-7606(2003)115<0434:SIATEG>2.0.CO;2
    OpenUrlCrossRefGeoRef
  61. ↵
    1. Quade J.,
    2. Cerling T. E.
    , 1995, Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols: Palaeogeography, palaeoclimatology, palaeoecology, v. 115, n. 1–4, p. 91–116, doi:https://doi.org/10.1016/0031-0182(94)00108-K
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Quade J.,
    2. Cerling T. E.,
    3. Bowman J. R.
    , 1989, Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan: Nature, v. 342, p. 163–166, doi:https://doi.org/10.1038/342163a0
    OpenUrlCrossRefGeoRef
    1. Quade J.,
    2. Solounias N.,
    3. Cerling T. E.
    , 1994, Stable isotopic evidence from paleosol carbonates and fossil teeth in Greece for forest or woodlands over the past 11 Ma: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 108, n. 1–2, p. 41–53, doi:https://doi.org/10.1016/0031-0182(94)90021-3
    OpenUrlAbstract/FREE Full Text
    1. Quade J.,
    2. Cater J. M.,
    3. Ojha T. P.,
    4. Adam J.,
    5. Harrison T. M.
    , 1995, Late Miocene environmental change in Nepal and the northern Indian subcontinent: Stable isotopic evidence from paleosols: Geological Society of America Bulletin, v. 107, n. 12, p. 1381–1397, doi:https://doi.org/10.1130/0016-7606(1995)107<1381:LMECIN>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Retallack G. J.,
    2. Wynn J. G.,
    3. Fremd T. J.
    , 2004, Glacial-interglacial–scale paleoclimatic change without large ice sheets in the Oligocene of central Oregon: Geology, v. 32, n. 4, p. 297–300, doi:https://doi.org/10.1130/G20247.1
    OpenUrlCrossRef
    1. Ring S. J.,
    2. Bocherens H.,
    3. Wings O.,
    4. Rabi M.
    , 2020, Divergent mammalian body size in a stable Eocene greenhouse climate: Scientific Reports, v. 10, n. 1, p. 3987, doi:https://doi.org/10.1038/s41598-020-60379-7
    OpenUrlCrossRefGeoRef
    1. Rothe P.,
    2. Hoefs J.,
    3. Sonne V.
    , 1974, The isotopic composition of Tertiary carbonates from the Mainz Basin: an example of isotopic fractionations in “closed basins”: Sedimentology, v. 21, n. 3, p. 373–395, doi:https://doi.org/10.1111/j.1365-3091.1974.tb02066.x
    OpenUrlCrossRef
    1. Rowe P. J.,
    2. Wickens L. B.,
    3. Sahy D.,
    4. Marca A. D.,
    5. Peckover E.,
    6. Noble S.,
    7. Özkul M.,
    8. Baykara M. O.,
    9. Millar I. L.,
    10. Andrews J. E.
    , 2020, Multi-proxy speleothem record of climate instability during the early last interglacial in southern Turkey: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 538, p. 109422, doi:https://doi.org/10.1016/j.palaeo.2019.109422
    OpenUrlCrossRefGeoRefPubMedWeb of Science
    1. Rowley D. B.,
    2. Currie B. S.
    , 2006, Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet: Nature, v. 439, n. 7077, p. 677–681, doi:https://doi.org/10.1038/nature04506
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Rowley D. B.,
    2. Garzione C. N.
    , 2007, Stable Isotope-Based Paleoaltimetry: Annual Review of Earth and Planetary Sciences, v.35, n. 1, n. 463–508, doi:https://doi.org/10.1146/annurev.earth.35.031306.140155
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Sachse D.,
    2. Billault I.,
    3. Bowen G. J.,
    4. Chikaraishi Y.,
    5. Dawson T. E.,
    6. Feakins S. J.,
    7. Freeman K. H.,
    8. Magill C. R.,
    9. McInerney F. A.,
    10. van der Meer M. T.,
    11. Polissar P.,
    12. Robins R. J.,
    13. Sachs J. P.,
    14. Schmids H.-L.,
    15. Sessions A. L.,
    16. White J. W. C.,
    17. West J. B.,
    18. Kahmen A.
    , 2012, Molecular Paleohydrology: Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms: Annual Review of Earth and Planetary Sciences, v. 40, n. 1, p. 221–49, doi:https://doi.org/10.1146/annurev-earth-042711-105535
    OpenUrlCrossRef
    1. San Jose M.,
    2. Caves Rugenstein J. K.,
    3. Cosentino D.,
    4. Faccenna C.,
    5. Fellin M. G.,
    6. Ghinassi M.,
    7. Martini I.
    , 2020, Stable isotope evidence for rapid uplift of the central Apennines since the late Pliocene: Earth and Planetary Science Letters, v. 544, p. 116376, doi:https://doi.org/10.1016/j.epsl.2020.116376
    OpenUrlCrossRefGeoRefWeb of Science
    1. Sanyal P.,
    2. Bhattacharya S. K.,
    3. Kumar R.,
    4. Ghosh S. K.,
    5. Sangode S. J.
    , 2005, Palaeovegetational reconstruction in Late Miocene: A case study based on early diagenetic carbonate cement from the Indian Siwalik: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 228, n. 3–4, p. 245–259, doi:https://doi.org/10.1016/j.palaeo.2005.06.007
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Saylor J. E.,
    2. Quade J.,
    3. Dettman D. L.,
    4. DeCelles P. G.,
    5. Kapp P. A.,
    6. Ding L.
    , 2009, The Late Miocene Through Present Paleoelevation History of Southwestern Tibet: American Journal of Science, v. 309, n. 1, p. 1–42, doi:https://doi.org/10.2475/01.2009.01
    OpenUrlCrossRefGeoRef
    1. Scherler L.,
    2. Tütken T.,
    3. Becker D.
    , 2014, Carbon and oxygen stable isotope compositions of late Pleistocene mammal teeth from dolines of Ajoie (Northwestern Switzerland): Quaternary Research, v. 82, n. 2, p. 378–387, doi:https://doi.org/10.1016/j.yqres.2014.05.004
    OpenUrlCrossRefWeb of Science
    1. Schlunegger F.,
    2. Rieke-Zapp D.,
    3. Ramseyer K.
    , 2007, Possible environmental effects on the evolution of the Alps-Molasse Basin system: Swiss Journal of Geosciences, v. 100, n. 3, p. 383–405, doi:https://doi.org/10.1007/s00015-007-1238-9
    OpenUrlCrossRef
    1. Schwartz T. M.,
    2. Methner K.,
    3. Mulch A.,
    4. Graham S. A.,
    5. Chamberlain C. P.
    , 2019, Paleogene topographic and climatic evolution of the Northern Rocky Mountains from integrated sedimentary and isotopic data: Geological Society of America bulletin, v. 131, n. 7–8, p. 1203–1223, doi:https://doi.org/10.1130/B32068.1
    OpenUrlCrossRef
  66. ↵
    1. Sharp Z. D.
    , 2017, Principles of Stable Isotope Geochemistry, 2nd edition, doi:https://doi.org/10.25844/h9q1-0p82
    OpenUrlCrossRef
  67. ↵
    1. Willett S. D.,
    2. Hovius N.,
    3. Brandon M. T.,
    4. Fisher D. M.
    1. Sjostrom D. J.,
    2. Hren M. T.,
    3. Horton T. W.,
    4. Waldbauer J. R.,
    5. Chamberlain C. P.
    , 2006, Stable isotopic evidence for a pre–late Miocene elevation gradient in the Great Plains–Rocky Mountain region, USA, in Willett S. D., Hovius N., Brandon M. T., Fisher D. M., editors, Tectonics, Climate, and Landscape Evolution: Geological Society of America, v. 398, p. 309–319, doi:https://doi.org/10.1130/2006.2398(19)
    OpenUrlAbstract/FREE Full Text
    1. Smith G. A.,
    2. Wang Y.,
    3. Cerling T. E.,
    4. Geissman J. W.
    , 1993, Comparison of a paleosol-carbonate isotope record to other records of Pliocene-early Pleistocene climate in the western United States: Geology, v. 21, n. 8, p. 691–694, doi:https://doi.org/10.1130/0091-7613(1993)021<0691:COAPCI>2.3.CO;2
    OpenUrlCrossRef
    1. Smith M. E.,
    2. Cassel E. J.,
    3. Jicha B. R.,
    4. Singer B. S.,
    5. Canada A. S.
    , 2017, Hinterland drainage closure and lake formation in response to middle Eocene Farallon slab removal, Nevada, U.S.A: Earth and Planetary Science Letters, v. 479, p. 156–169, doi:https://doi.org/10.1016/j.epsl.2017.09.023
    1. Spencer J.E.,
    2. Harris R.C.,
    3. Dettman D. P. J.,
    4. Patchett
    , 1996, Reconnaissance Survey of Upper Neogene Strata in the Bouse Formation, Hualapai Limestone, and Lower Gila River Trough, Western Arizona and Directly Adjacent Southeastern California: Arizona Geological Survey, 23 p.
  68. ↵
    1. Stern L. A.,
    2. Chamberlain C. P.,
    3. Reynolds R. C.,
    4. Johnson G. D.
    , 1997, Oxygen isotope evidence of climate change from pedogenic clay minerals in the Himalayan molasse: Geochimica et Cosmochimica Acta, v. 61, n. 4, p. 731–744, doi:https://doi.org/10.1016/S0016-7037(96)00367-5
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Strömberg C. A. E.
    , 2011, Evolution of grasses and grassland ecosystems: Annual Review of Earth and Planetary Sciences, v. 39, p. 517–544, doi:https://doi.org/10.1146/annurev-earth-040809-152402
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Suarez M. B.,
    2. Passey B. H.,
    3. Kaakinen A.
    , 2011, Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene: Geology, v. 39, n. 12, p. 1151–1154, doi:https://doi.org/10.1130/G32350.1
    OpenUrlCrossRef
    1. Sun J.,
    2. Liu W.,
    3. Liu Z.,
    4. Deng T.,
    5. Windley B. F.,
    6. Fu B.
    , 2017, Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 485, p. 189–200, doi:https://doi.org/10.1016/j.palaeo.2017.06.012
    1. Super J.
    , ms, 2010, Hydrogen Isotope Gradients in Early Eocene British Columbia: PhD. thesis, Stanford University, Stanford, California.
  71. ↵
    1. Tabor N. J.,
    2. Montañez I. P.
    , 2005, Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: Development of modern surface domain arrays and implications for paleotemperature reconstructions: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, n. 1–2, p. 127–146, doi:https://doi.org/10.1016/j.palaeo.2005.04.009
    OpenUrlCrossRef
  72. ↵
    1. Tabor N. J.,
    2. Myers T. S.
    , 2015, Paleosols as Indicators of Paleoenvironment and Paleoclimate: Annual Review of Earth and Planetary Sciences, v. 43, n. 1, p. 333–61, doi:https://doi.org/10.1146/annurev-earth-060614-105355
    OpenUrlCrossRefGeoRefWeb of Science
  73. ↵
    1. Tabor N. J.,
    2. Montanez I. P.,
    3. Southard R. J.
    , 2002, Paleoenvironmental reconstruction from chemical and isotopic compositions of Permo-Pennsylvanian pedogenic minerals: Geochimica et Cosmochimica Acta, v. 66, n. 17, p. 3093–3107, doi:https://doi.org/10.1016/S0016-7037(02)00879-7
    1. Takeuchi A.
    , ms, 2007, Decoupling the Ancient Hydrologic System From the Modern Hydrologic System of Pacific Northwest in the United States: Implications for the Evolution of Topography, Climate, and Environment: PhD thesis, Washington State University, Pullman, Washington.
    1. Takeuchi A.,
    2. Larson P. B.
    , 2005, Oxygen isotope evidence for the late Cenozoic development of an orographic rain shadow in eastern Washington, USA: Geology, v. 33, n. 4, p.313–316, doi:https://doi.org/10.1130/G21335.1
    OpenUrlCrossRefGeoRefWeb of Science
    1. Takeuchi A.,
    2. Hren M. T.,
    3. Smith S. V.,
    4. Chamberlain C. P.,
    5. Larson P. B.
    , 2010, Pedogenic carbonate carbon isotopic constraints on paleoprecipitation: Evolution of desert in the Pacific Northwest, USA, in response to topographic development of the Cascade Range: Chemical Geology, v. 277, n. 3–4, p. 323–335, doi:https://doi.org/10.1016/j.chemgeo.2010.08.015
    OpenUrlCrossRef
  74. ↵
    1. Talbot M. R.
    , 1990, A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates: Chemical Geology: Isotope Geoscience Section, v. 80, n. 4, p. 261–79, doi:https://doi.org/10.1016/0168-9622(90)90009-2
    OpenUrlCrossRef
    1. Tang M.,
    2. Liu-Zeng J.,
    3. Hoke G. D.,
    4. Xu Q.,
    5. Wang W.,
    6. Li Z.,
    7. Zhang J.,
    8. Wang W.
    , 2017, Paleoelevation reconstruction of the Paleocene-Eocene Gonjo basin, SE-central Tibet: Tectonophysics, v. 712–713, p. 170–181, doi:https://doi.org/10.1016/j.tecto.2017.05.018
    OpenUrlAbstract/FREE Full Text
    1. Wing S. L.,
    2. Ginerich P. D.,
    3. Schmitz B.,
    4. Thomas E.
    1. Ting S.,
    2. Bowen G. J.,
    3. Koch P. L.,
    4. Clyde W. C.,
    5. Wang Y.,
    6. Wang Y.,
    7. McKenna M. C.
    , 2003, Biostratigraphic, chemostratigraphic, and magnetostratigraphic study across the Paleocene-Eocene boundary in the Hengyang Basin, Hunan, China, in Wing S. L., Ginerich P. D., Schmitz B., Thomas E., editors, Causes and Consequences of Globally Warm Climates in the Early Paleogene: Geological Society of America, Special Papers, v. 369, p. 521–536, doi:https://doi.org/10.1130/0-8137-2369-8.521
    OpenUrlCrossRefGeoRefWeb of Science
    1. Torres M. A.,
    2. Gaines R. R.
    , 2013, Paleoenvironmental and paleoclimatic interpretations of the late Paleocene goler formation, southern California, U.S.A., based on paleosol geochemistry: Journal of Sedimentary Research, v. 83, n. 8, p. 591–605, doi:https://doi.org/10.2110/jsr.2013.48
    OpenUrlCrossRefGeoRef
    1. Tütken T.,
    2. Vennemann T. W.,
    3. Pfretzschner H.-U.
    , 2008, Early diagenesis of bone and tooth apatite in fluvial and marine settings: Constraints from combined oxygen isotope, nitrogen and REE analysis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 266, n. 3–4, p. 254–268, doi:https://doi.org/10.1016/j.palaeo.2008.03.037
    OpenUrlCrossRef
    1. Vasilyan D.,
    2. Carnevale G.
    , 2013, The Afro–Asian labeonine genus Garra Hamilton, 1822 (Teleostei, Cyprinidae) in the Pliocene of Central Armenia: Palaeoecological and palaeobiogeographical implications: Journal of Asian Earth Sciences, v. 62, p. 788–796, doi:https://doi.org/10.1016/j.jseaes.2012.11.033
    OpenUrl
    1. Vögeli N.,
    2. Najman Y.,
    3. van der Beek P.,
    4. Huyghe P.,
    5. Wynn P. M.,
    6. Govin G.,
    7. van der Veen I.,
    8. Sachse D.
    , 2017, Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution: Earth and Planetary Science Letters, v. 471, p. 1–9, doi:https://doi.org/10.1016/j.epsl.2017.04.037
    OpenUrlCrossRefGeoRefWeb of Science
    1. Wang F. B.,
    2. Li S. F.,
    3. Shen X. H.,
    4. Zhang J.,
    5. Yan G.
    , 1996, Formation, Evolution and Environmental Changes of the Gyirong Basin and Uplift of the Himalaya: Science in China Series D-Earth Sciences, v. 26, n. 4, p.401–409.
    OpenUrlCrossRef
    1. Wang Y.,
    2. Deng T.
    , 2005, A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau: Earth and Planetary Science Letters, v. 236, n. 1–2, p. 322–338, doi:https://doi.org/10.1016/j.epsl.2005.05.006
    OpenUrlCrossRef
    1. Wang Y,
    2. Cerling T. E.,
    3. Quade J.,
    4. Bowman J. R.,
    5. Smith G. A.,
    6. Lindsay E. H.
    , 1993, Stable isotopes of paleosols and fossil teeth as paleoecology and paleoclimate indicators: an example from the St. David Formation, Arizona: Washington D.C., American Geophysical Union Geophysical Monograph Series, v. 78, p. 241–248, doi:https://doi.org/10.1029/GM078p0241
    OpenUrlAbstract/FREE Full Text
    1. Wei Y.,
    2. Zhang K.,
    3. Garzione C. N.,
    4. Xu Y.,
    5. Song B.,
    6. Ji J.
    , 2016, Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin: Scientific Reports, v. 6, n. 1, p. 27508, doi:https://doi.org/10.1038/srep27508
    OpenUrlAbstract/FREE Full Text
    1. White P. D.,
    2. Schiebout J.
    , 2008, Paleogene paleosols and changes in pedogenesis during the initial Eocene thermal maximum: Big Bend National Park, Texas, USA: Geological Society of America Bulletin, v. 120, n. 11–12, p. 1347–1361, doi:https://doi.org/10.1130/B25987.1
    OpenUrlCrossRef
    1. White T.,
    2. González L.,
    3. Ludvigson G.,
    4. Poulsen C.
    , 2001, Middle Cretaceous greenhouse hydrologic cycle of North America: Geology, v. 29, n. 4, p. 363–366, doi:https://doi.org/10.1130/0091-7613(2001)029<0363:MCGHCO>2.0.CO;2.
    OpenUrlCrossRef
    1. White T.,
    2. Bradley D.,
    3. Haeussler P.,
    4. Rowley D. B.
    , 2017, Late Paleocene–early Eocene paleosols and a new measure of the transport distance of Alaska's Yakutat Terrane: The Journal of Geology, v. 125, n. 2, p. 113–123, doi:https://doi.org/10.1086/690198
    OpenUrlCrossRefGeoRef
  75. ↵
    1. Williams J. W.,
    2. Grimm E. C.,
    3. Blois J. L.,
    4. Charles D. F.,
    5. Davis E. B.,
    6. Goring S. J.,
    7. Graham R. W.,
    8. Smith A. J.,
    9. Anderson M.,
    10. Arroyo-Cabrales J.,
    11. Ashworth A. C.,
    12. Betancourt J. L.,
    13. Bills B. W.,
    14. Booth R. K.,
    15. Latorre C.,
    16. Nichols J.,
    17. Purdum T.,
    18. Roth R. E.,
    19. Stryker M.,
    20. Takahara H.
    , 2018, The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource: Quaternary research, v. 89, n. 1, p. 156–177, doi:https://doi.org/10.1017/qua.2017.105
    OpenUrlCrossRef
  76. ↵
    1. Winnick M. J.,
    2. Chamberlain C. P.,
    3. Caves J. K.,
    4. Welker J. M.
    , 2014, Quantifying the isotopic 'continental effect': Earth and Planetary Science Letters, v. 406, p. 123–33, doi:https://doi.org/10.1016/j.epsl.2014.09.005
    OpenUrlCrossRef
  77. ↵
    1. Winnick M. J.,
    2. Welker J. M.,
    3. Chamberlain C. P.
    , 2013, Stable isotopic evidence of El Niño-like atmospheric circulation in the Pliocene western United States: Climate of the Past, v. 9, n. 2, p. 903–912, doi:https://doi.org/10.5194/cp-9-903-2013
    OpenUrlCrossRef
  78. ↵
    1. Wolf A.,
    2. Roberts W. H. G.,
    3. Ersek V.,
    4. Johnson K. R.,
    5. Griffiths M. L.
    , 2020, Rainwater isotopes in central Vietnam controlled by two oceanic moisture sources and rainout effects: Scientific reports, v. 10, p. 16482, doi:https://doi.org/10.1038/s41598-020-73508-z
    OpenUrlCrossRefGeoRefWeb of Science
  79. ↵
    1. Xia Z.,
    2. Winnick M. J.
    , 2021, The competing effects of terrestrial evapotranspiration and raindrop re-evaporation on the deuterium excess of continental precipitation: Earth and Planetary Science Letters, v. 572, p. 117120, doi:https://doi.org/10.1016/j.epsl.2021.117120
    OpenUrlCrossRef
    1. Xu Q.,
    2. Ding L.,
    3. Zhang L.,
    4. Cai F.,
    5. Lai Q.,
    6. Yang D.,
    7. Liu-Zeng J.
    , 2013, Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau: Earth and Planetary Science Letters, v. 362, p. 31–42, doi:https://doi.org/10.1016/j.epsl.2012.11.058
    OpenUrlCrossRef
    1. Xu Q.,
    2. Ding L.,
    3. Hetzel R.,
    4. Yue Y.,
    5. Rades E. F.
    , 2015, Low elevation of the northern Lhasa terrane in the Eocene: Implications for relief development in south Tibet: Terra Nova, v. 27, n. 6, p. 458–466, doi:https://doi.org/10.1111/ter.12180
    OpenUrlCrossRef
    1. Xu Q.,
    2. Liu X.,
    3. Ding L.
    , 2016, Miocene high‐elevation landscape of the eastern Tibetan Plateau: Geochemistry, Geophysics, Geosystems, v. 17, n. 10, p. 4254–4267, doi:https://doi.org/10.1002/2016GC006437
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Zamanian K.,
    2. Pustovoytov K.,
    3. Kuzyakov Y.
    , 2016, Pedogenic Carbonates: Forms and Formation Processes: Earth-Science Reviews, v. 157, p. 1–17, doi:https://doi.org/10.1016/j.earscirev.2016.03.003
    OpenUrlCrossRefGeoRefPubMedWeb of Science
    1. Zamarreno I.,
    2. Anadon P.,
    3. Utrilla R.
    , 1997, Sedimentology and isotopic composition of Upper Palaeocene to Eocene non-marine stromatolites, eastern Ebro Basin, NE Spain: Sedimentology, v. 44, n. 1, p. 159–176, doi:https://doi.org/10.1111/j.1365-3091.1997.tb00430.x
    OpenUrlCrossRef
  81. ↵
    1. Zanazzi A.,
    2. Kohn M. J.,
    3. MacFadden B. J.,
    4. Terry D. O.
    , 2007, Large temperature drop across the Eocene-Oligocene transition in central North America: Nature, v. 445, p. 639–642, doi:https://doi.org/10.1038/nature05551
    OpenUrlAbstract/FREE Full Text
    1. Zanazzi A.,
    2. Judd E.,
    3. Fletcher A.,
    4. Bryant H.,
    5. Kohn M. J.
    , 2015, Eocene–Oligocene latitudinal climate gradients in North America inferred from stable isotope ratios in perissodactyl tooth enamel: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 417, p. 561–568, doi:https://doi.org/10.1016/j.palaeo.2014.10.024
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. Zhisheng A.,
    2. Yongsong H.,
    3. Weiguo L.,
    4. Zhengtang G.,
    5. Clemens S.,
    6. Li L.,
    7. Prell W.,
    8. Youfeng N.,
    9. Yanjun C.,
    10. Weijian Z.,
    11. Benhai L.,
    12. Qingle Z.,
    13. Yunning C.,
    14. Xiaoke Q.,
    15. Hong C.,
    16. Zhenkun W.
    , 2005, Multiple Expansions of C4 Plant Biomass in East Asia Since 7 Ma Coupled with Strengthened Monsoon Circulation: Geology, v. 33, n. 9, p. 705–708, doi:https://doi.org/10.1130/G21423.1
    1. Zhuang G.,
    2. Hourigan J. K.,
    3. Koch P. L.,
    4. Ritts B. D.,
    5. Kent-Corson M. L.
    , 2011, Isotopic constraints on intensified aridity in Central Asia around 12Ma: Earth and Planetary Science Letters, v. 312, n. 1–2, p. 152–163, doi:https://doi.org/10.1016/j.epsl.2011.10.005
Previous
Back to top

In this issue

American Journal of Science: 322 (10)
American Journal of Science
Vol. 322, Issue 10
1 Dec 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
Tyler Kukla, Jeremy K. C. Rugenstein, Elizabeth Driscoll, Daniel E. Ibarra, C. Page Chamberlain
American Journal of Science Dec 2022, 322 (10) 1124-1158; DOI: 10.2475/10.2022.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
Tyler Kukla, Jeremy K. C. Rugenstein, Elizabeth Driscoll, Daniel E. Ibarra, C. Page Chamberlain
American Journal of Science Dec 2022, 322 (10) 1124-1158; DOI: 10.2475/10.2022.02
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • DATABASE OVERVIEW
    • DATA STRUCTURE
    • DATA CURATION AND QUALITY CONTROL
    • THE PATCH LAB PORTAL
    • COMMUNITY ENGAGEMENT
    • CONCLUDING REMARKS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Stable isotope
  • database
  • Cenozoic
  • terrestrial
  • oxygen
  • hydrogen
  • carbon

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire