Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset

Cody L. Colleps, N. Ryan Mckenzie, Peter Van Der Beek, William R. Guenthner, Mukund Sharma, Adam R. Nordsvan and Daniel F. Stockli
American Journal of Science December 2022, 322 (10) 1089-1123; DOI: https://doi.org/10.2475/10.2022.01
Cody L. Colleps
*Department of Earth Sciences, University of Hong Kong, Pokfulam, Hong Kong
**Institute of Geosciences, University of Potsdam, Potsdam-Golm, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: colleps@uni-potsdam.de
N. Ryan Mckenzie
*Department of Earth Sciences, University of Hong Kong, Pokfulam, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Van Der Beek
**Institute of Geosciences, University of Potsdam, Potsdam-Golm, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William R. Guenthner
***Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mukund Sharma
§Birbal Sahni Institute of Palaeosciences, Lucknow, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam R. Nordsvan
*Department of Earth Sciences, University of Hong Kong, Pokfulam, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel F. Stockli
§§Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, TX, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Adnan A.,
    2. Shukla U. K.
    , 2014, A case of normal regression with sea level transgression: Example from the Ganurgarh shale, Vindhyan basin, Maihar area, M.P., India: Journal of the Geological Society of India, v. 84, n. 4, p. 406–416, doi:https://doi.org/10.1007/s12594-014-0146-7
    OpenUrlCrossRef
  2. ↵
    1. Anderson A. J.,
    2. Hodges K. V.,
    3. van Soest M. C.
    , 2017, Empirical constraints on the effects of radiation damage on helium diffusion in zircon: Geochimica et Cosmochimica Acta, v.218, p.308–322, doi:https://doi.org/10.1016/j.gca.2017.09.006
    OpenUrlCrossRef
  3. ↵
    1. Anderson A. J.,
    2. Hanchar J. M.,
    3. Hodges K. V.,
    4. van Soest M. C.
    , 2020, Mapping radiation damage zoning in zircon using Raman spectroscopy: Implications for zircon chronology: Chemical Geology, v. 538, p. 119494, doi:https://doi.org/10.1016/j.chemgeo.2020.119494
    OpenUrlCrossRef
  4. ↵
    1. Ault A. K.,
    2. Flowers R. M.
    , 2012, Is apatite U–Th zonation information necessary for accurate interpretation of apatite (U–Th)/He thermochronometry data?: Geochimica et Cosmochimica Acta, v. 79, p. 60–78, doi:https://doi.org/10.1016/j.gca.2011.11.037
    OpenUrlCrossRefWeb of Science
  5. ↵
    1. Ault A. K.,
    2. Flowers R. M.,
    3. Bowring S. A.
    , 2013, Phanerozoic surface history of the Slave craton: Tectonics, v. 32, n. 5, p. 1066–1083, doi:https://doi.org/10.1002/tect.20069
    OpenUrlCrossRefGeoRef
  6. ↵
    1. Ault A. K.,
    2. Guenthner W. R.,
    3. Moser A. C.,
    4. Miller G. H.,
    5. Refsnider K. A.
    , 2018, Zircon grain selection reveals (de)coupled metamictization, radiation damage, and He diffusivity: Chemical Geology, v. 490, p. 1–12, doi:https://doi.org/10.1016/j.chemgeo.2018.04.023
    OpenUrlCrossRef
  7. ↵
    1. Baughman J. S.,
    2. Flowers R. M.
    , 2020, Mesoproterozoic burial of the Kaapvaal craton, southern Africa during Rodinia supercontinent assembly from (U-Th)/He thermochronology: Earth and Planetary Science Letters, v. 531, p. 115930, doi:https://doi.org/10.1016/j.epsl.2019.115930
    OpenUrlCrossRef
  8. ↵
    1. Berner R. A.,
    2. Lasaga A. C.,
    3. Garrels R. M.
    , 1983, The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon-Dioxide over the Past 100 Million Years: American Journal of Science, v. 283, n. 7, p. 641–683, doi:https://doi.org/10.2475/ajs.283.7.641
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Fielding C. R.,
    2. Frank T. D.,
    3. Isbell J. L.
    1. Blakey R. C.,
    2. Fielding C. R.,
    3. Frank T. D.,
    4. Isbell J. L.
    , 2008, Gondwana paleogeography from assembly to breakup—A 500 m.y. odyssey, in Fielding C. R., Frank T. D., Isbell J. L., editors, Resolving the Late Paleozoic Ice Age in Time and Space, Special Paper, v. 441, Geological Society of America, doi:https://doi.org/10.1130/2008.2441(01)
    OpenUrlCrossRef
  10. ↵
    1. Bose P. K.,
    2. Sarkar S.,
    3. Chakrabarty S.,
    4. Banerjee S.
    , 2001, Overview of the meso- to neoproterozoic evolution of the Vindhyan basin, central India: Sedimentary Geology, v. 141–142, p. 395–419, doi:https://doi.org/10.1016/S0037-0738(01)00084-7
    OpenUrlCrossRef
  11. ↵
    1. Mazumder R.,
    2. Eriksson P. G.
    1. Bose P. K.,
    2. Sarkar S.,
    3. Das N. G.,
    4. Banerjee S.,
    5. Mandal A.,
    6. Chakraborty N.
    , 2015, Proterozoic Vindhyan Basin: configuration and evolution, in Mazumder R., Eriksson P. G., editors, Precambrian basins of India: stratigraphic and textonic context: Geological Society, London, Memoirs, v. 43, n. 1, Chapter 6, p. 85–102, doi:https://doi.org/10.1144/M43.6
    OpenUrlCrossRef
  12. ↵
    1. Chakrabarti R.,
    2. Basu A. R.,
    3. Chakrabarti A.
    , 2007, Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India: Precambrian Research, v. 159, n. 3–4, p. 260–274, doi:https://doi.org/10.1016/j.precamres.2007.07.003
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Mazumder R.,
    2. Eriksson P. G.
    1. Chakraborty P. P.,
    2. Pant N. C.,
    3. Paul P. P.
    , 2015, Controls on sedimentation in Indian Palaeoproterozoic basins: clues from the Gwalior and Bijawar basins, central India, in Mazumder R., Eriksson P. G., editors, Precambrian basins of India: stratigraphic and tectonic context: Geological Society, London, Memoirs, v. 43, n. 1, p. 67–83, doi:https://doi.org/10.1144/M43.5
    OpenUrlCrossRef
  14. ↵
    1. Cherniak D. J.
    , 2019, Diffusion of helium in radiation-damaged zircon: Chemical Geology, v. 529, p. 119308, doi:https://doi.org/10.1016/j.chemgeo.2019.119308
    OpenUrlCrossRef
  15. ↵
    1. Colleps C. L.,
    2. McKenzie N. R.,
    3. Stockli D. F.,
    4. Hughes N. C.,
    5. Singh B. P.,
    6. Webb A. A. G.,
    7. Myrow P. M.,
    8. Planavsky N. J.,
    9. Horton B. K.
    , 2018, Zircon (U-Th)/He Thermochronometric Constraints on Himalayan Thrust Belt Exhumation, Bedrock Weathering, and Cenozoic Seawater Chemistry: Geochemistry, Geophysics, Geosystems, v. 19, n. 1, p. 257–271, doi:https://doi.org/10.1002/2017GC007191
    OpenUrlCrossRef
  16. ↵
    1. Colleps C. L.,
    2. McKenzie N. R.,
    3. Guenthner W. R.,
    4. Sharma M.,
    5. Gibson T. M.,
    6. Stockli D. F.
    , 2021a, Apatite (U-Th)/He thermochronometric constraints on the northern extent of the Deccan large igneous province: Earth and Planetary Science Letters, v. 571, p. 117087, doi:https://doi.org/10.1016/j.epsl.2021.117087
    OpenUrlCrossRef
  17. ↵
    1. Colleps C. L.,
    2. McKenzie N. R.,
    3. Sharma M.,
    4. Liu H.,
    5. Gibson T. M.,
    6. Chen W.,
    7. Stockli D. F.
    , 2021b, Zircon and apatite U-Pb age constraints from the Bundelkhand craton and Proterozoic strata of central India: Insights into craton stabilization and subsequent basin evolution: Precambrian Research, v. 362, p. 106286, doi:https://doi.org/10.1016/j.precamres.2021.106286
    OpenUrlCrossRef
  18. ↵
    1. Cooperdock E. H. G.,
    2. Ketcham R. A.,
    3. Stockli D. F.
    , 2019, Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th)/ He age data and reproducibility: Geochronology, v. 1, no. 1, p. 17–41, doi:https://doi.org/10.5194/gchron-1-17-2019
    OpenUrlCrossRef
  19. ↵
    1. Crawford A. R.,
    2. Compston W.
    , 1969, The age of the Vindhyan System of Peninsular India: Quarterly Journal of the Geological Society, v. 125, n. 1–4, p. 351–371, doi:https://doi.org/10.1144/gsjgs.125.1.0351
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. DeLucia M. S.,
    2. Guenthner W. R.,
    3. Marshak S.,
    4. Thomson S. N.,
    5. Ault A. K.
    , 2017, Thermochronology links denudation of the Great Unconformity surface to the supercontinent cycle and snowball Earth: Geology, v. 48, n. 2, p. 167–170, doi:https://doi.org/10.1130/G39525.1
    OpenUrlCrossRef
  21. ↵
    1. Dodson M. H.
    , 1973, Closure Temperature in Cooling Geochronological and Petrological Systems: Contributions to Mineralogy and Petrology, v. 40, n. 3, p. 259–274, doi:https://doi.org/10.1007/BF00373790
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Dröllner M.,
    2. Barham M.,
    3. Kirkland C. L.
    , 2022, Gaining from loss: Detrital zircon source-normalized α-dose discriminates first- versus multi-cycle grain histories: Earth and Planetary Science Letters, v. 579, p. 117346, doi:https://doi.org/10.1016/j.epsl.2021.117346
    OpenUrlCrossRef
  23. ↵
    1. Dutton A.,
    2. Rubin K.,
    3. McLean N.,
    4. Bowring J.,
    5. Bard E.,
    6. Edwards R. L.,
    7. Henderson G. M.,
    8. Reid M. R.,
    9. Richards D. A.,
    10. Sims K. W. W.,
    11. Walker J. D.,
    12. Yokoyama Y.
    , 2017, Data reporting standards for publication of U-series data for geochronology and timescale assessment in the earth sciences: Quaternary Geochronology, v. 39, p. 142–149, doi:https://doi.org/10.1016/j.quageo.2017.03.001
    OpenUrlCrossRef
  24. ↵
    1. Farley K. A.,
    2. Wolf R. A.,
    3. Silver L. T.
    , 1996, The effects of long alpha-stopping distances on (U-Th)/He ages: Geochimica Et Cosmochimica Acta, v. 60, n. 21, p. 4223–4229, doi:https://doi.org/10.1016/S0016-7037(96)00193-7
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Farley K. A.,
    2. Shuster D.,
    3. Ketcham R. A.
    , 2011, U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U–Th)/He system: Geochimica et Cosmochimica Acta, v. 75, n. 16, p. 4515–4530, doi:https://doi.org/10.1016/j.gca.2011.05.020
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Flowers R. M.,
    2. Shuster D. L.,
    3. Wernicke B. P.,
    4. Farley K. A.
    , 2007, Radiation damage control on apatite (U-Th)/He dates from the Grand Canyon region, Colorado Plateau: Geology, v. 35, n. 5, p. 447–450, doi:https://doi.org/10.1130/G23471A.1
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Flowers R. M.,
    2. Ketcham R. A.,
    3. Shuster D. L.,
    4. Farley K. A.
    , 2009, Apatite (U-Th)/He thermochronology using a radiation damage accumulation and annealing model: Geochimica et Cosmochimica Acta, v. 73, n. 8, p. 2347–2365, doi:https://doi.org/10.1016/j.gca.2009.01.015
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Flowers R. M.,
    2. Macdonald F. A.,
    3. Siddoway C. S.,
    4. Havranek R.
    , 2020, Diachronous development of Great Unconformities before Neoproterozoic Snowball Earth: Proceedings of the National Academy of Sciences, v. 117, n. 19, p. 10172–10180, doi:https://doi.org/10.1073/pnas.1913131117
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Flowers R. M.,
    2. Ketcham R. A.,
    3. Macdonald F. A.,
    4. Siddoway C. S.,
    5. Havranek R. E.
    , 2022, Existing thermochronologic data do not constrain Snowball glacial erosion below the Great Unconformities: Proceedings of the National Academy of Sciences, v. 119, n. 38, p. e2208451119, doi:https://doi.org/10.1073/pnas.2208451119
    OpenUrlCrossRef
  30. ↵
    1. Fox M.,
    2. Shuster D. L.
    , 2014, The influence of burial heating on the (U–Th)/He system in apatite: Grand Canyon case study: Earth and Planetary Science Letters, v. 397, p. 174–183, doi:https://doi.org/10.1016/j.epsl.2014.04.041
    OpenUrlCrossRefGeoRef
  31. ↵
    1. Fox M.,
    2. Dai J.-G.,
    3. Carter A.
    , 2019, Badly Behaved Detrital (U-Th)/He Ages: Problems With He Diffusion Models or Geological Models?: Geochemistry, Geophysics, Geosystems, v. 20, n. 5, p. 2418–2432, doi:https://doi.org/10.1029/2018GC008102
    OpenUrlCrossRef
  32. ↵
    1. Gautheron C.,
    2. Tassan-Got L.,
    3. Barbarand J.,
    4. Pagel M.
    , 2009, Effect of alpha-damage annealing on apatite (U–Th)/He thermochronology: Chemical Geology, v. 266, n. 3–4, p. 157–170, doi:https://doi.org/10.1016/j.chemgeo.2009.06.001
    OpenUrlCrossRefGeoRefWeb of Science
  33. ↵
    1. Gautheron C.,
    2. Tassan-Got L.,
    3. Ketcham R. A.,
    4. Dobson K. J.
    , 2012, Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion: Geochimica et Cosmochimica Acta, v. 96, p. 44–56, doi:https://doi.org/10.1016/j.gca.2012.08.016
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Gautheron C.,
    2. Djimbi D. M.,
    3. Roques J.,
    4. Balout H.,
    5. Ketcham R. A.,
    6. Simoni E.,
    7. Pik R.,
    8. Seydoux-Guillaume A.-M.,
    9. Tassan-Got L.
    , 2020, A multi-method, multi-scale theoretical study of He and Ne diffusion in zircon: Geochimica et Cosmochimica Acta, v. 268, p. 348–367, doi:https://doi.org/10.1016/j.gca.2019.10.007
    OpenUrlCrossRef
  35. ↵
    1. Ginster U.,
    2. Reiners P. W.,
    3. Nasdala L.,
    4. Chanmuang N, C.
    , 2019, Annealing kinetics of radiation damage in zircon: Geochimica et Cosmochimica Acta, v. 249, p. 225–246, doi:https://doi.org/10.1016/j.gca.2019.01.033
    OpenUrlCrossRef
  36. ↵
    1. Gopalan K.,
    2. Kumar A.,
    3. Kumar S.,
    4. Vijayagopal B.
    , 2013, Depositional history of the Upper Vindhyan succession, central India: Time constraints from Pb–Pb isochron ages of its carbonate components: Precambrian Research, v. 233, p. 108–117, doi:https://doi.org/10.1016/j.precamres.2013.04.014
    OpenUrlCrossRefGeoRef
  37. ↵
    1. Green P.,
    2. Duddy I.
    , 2018, Apatite (U-Th-Sm)/He thermochronology on the wrong side of the tracks: Chemical Geology, v. 488, p. 21–33, doi:https://doi.org/10.1016/j.chemgeo.2018.04.028
    OpenUrlCrossRef
  38. ↵
    1. Gregory L. C.,
    2. Meert J. G.,
    3. Pradhan V.,
    4. Pandit M. K.,
    5. Tamrat E.,
    6. Malone S. J.
    , 2006, A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: Implications for the age of the Upper Vindhyan Supergroup: Precambrian Research, v. 149, n. 1–2, p. 65–75, doi:https://doi.org/10.1016/j.precamres.2006.05.005
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Guenthner W. R.
    , 2021, Implementation of an Alpha Damage Annealing Model for Zircon (U‐Th)/He Thermochronology With Comparison to a Zircon Fission Track Annealing Model: Geochemistry, Geophysics, Geosystems, v. 22, n. 2, p. e2019GC008757, doi:https://doi.org/10.1029/2019GC008757
    OpenUrlCrossRef
  40. ↵
    1. Guenthner W. R.,
    2. Reiners P. W.,
    3. Ketcham R. A.,
    4. Nasdala L.,
    5. Giester G.
    , 2013, Helium diffusion in natural zircon: Radiation damage anisotropy, and the interpretation of zircon (U-Th)/He thermochronology: American Journal of Science, v. 313, n. 3, p. 145–198, doi:https://doi.org/10.2475/03.2013.01
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Guenthner W. R.,
    2. Reiners P. W.,
    3. DeCelles P. G.,
    4. Kendall J.
    , 2015, Sevier belt exhumation in central Utah constrained from complex zircon (U-Th)/He data sets: Radiation damage and He inheritance effects on partially reset detrital zircons: Geological Society of America Bulletin, v. 127, n. 3–4, p. 323–348, doi:https://doi.org/10.1130/B31032.1
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Guenthner W. R.,
    2. Reiners P. W.,
    3. Chowdhury U.
    , 2016, Isotope dilution analysis of Ca and Zr in apatite and zircon (U-Th)/He chronometry: Geochemistry Geophysics Geosystems, v. 17, n. 5, p. 1623–1640, doi:https://doi.org/10.1002/2016GC006311
    OpenUrlCrossRef
  43. ↵
    1. Guenthner W. R.,
    2. Reiners P. W.,
    3. Drake H.,
    4. Tillberg M.
    , 2017, Zircon, titanite, and apatite (U-Th)/He ages and age-eU correlations from the Fennoscandian Shield, southern Sweden: Tectonics, v. 36, n. 7, p. 1254–1274, doi:https://doi.org/10.1002/2017TC004525
    OpenUrlCrossRef
  44. ↵
    1. Hourigan J. K.,
    2. Reiners P. W.,
    3. Brandon M. T.
    , 2005, U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry: Geochimica et Cosmochimica Acta, v. 69, n. 13, p. 3349–3365, doi:https://doi.org/10.1016/j.gca.2005.01.024
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Hueck M.,
    2. Dunkl I.,
    3. Heller B.,
    4. Stipp Basei M. A.,
    5. Siegesmund S.
    , 2018, (U-Th)/He Thermochronology and Zircon Radiation Damage in the South American Passive Margin: Thermal Overprint of the Paraná LIP?: Tectonics, v. 37, n. 10, p. 4068–4085, doi:https://doi.org/10.1029/2018TC005041
    OpenUrlCrossRef
  46. ↵
    1. Isbell J. L.,
    2. Henry L. C.,
    3. Gulbranson E. L.,
    4. Limarino C. O.,
    5. Fraiser M. L.,
    6. Koch Z. J.,
    7. Ciccioli P. L.,
    8. Dineen A. A.
    , 2012, Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation: Gondwana Research, v. 22, n. 1, p. 1–19, doi:https://doi.org/10.1016/j.gr.2011.11.005
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Johnson J. E.,
    2. Flowers R. M.,
    3. Baird G. B.,
    4. Mahan K. H.
    , 2017, “Inverted” zircon and apatite (U–Th)/He dates from the Front Range, Colorado: High-damage zircon as a low-temperature (<50 °C) thermochronometer: Earth and Planetary Science Letters, v. 466, p. 80–90, doi:https://doi.org/10.1016/j.epsl.2017.03.002
    OpenUrlCrossRef
  48. ↵
    1. Joshi K. B.,
    2. Bhattacharjee J.,
    3. Rai G.,
    4. Halla J.,
    5. Ahmad T.,
    6. Kurhila M.,
    7. Heilimo E.,
    8. Choudhary A. K.
    , 2017, The diversification of granitoids and plate tectonic implications at the Archaean–Proterozoic boundary in the Bundelkhand Craton, Central India: Geological Society, London, Special Publications, v. 449, n. 1, p. 123–157, doi:https://doi.org/10.1144/SP449.8
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Kaur P.,
    2. Zeh A.,
    3. Chaudhri N.
    , 2014, Characterisation and U–Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand Craton, northern India: Precambrian Research, v. 255, p. 236–244, doi:https://doi.org/10.1016/j.precamres.2014.09.019
    OpenUrlCrossRefGeoRef
  50. ↵
    1. Kaur P.,
    2. Zeh A.,
    3. Chaudhri N.,
    4. Eliyas N.
    , 2016, Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U–Pb zircon–monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids: Precambrian Research, v. 281, p. 384–413, doi:https://doi.org/10.1016/j.precamres.2016.06.005
    OpenUrlCrossRef
  51. ↵
    1. Keller C. B.,
    2. Husson J. M.,
    3. Mitchell R. N.,
    4. Bottke W. F.,
    5. Gernon T. M.,
    6. Boehnke P.,
    7. Bell E. A.,
    8. Swanson-Hysell N. L.,
    9. Peters S. E.
    , 2019, Neoproterozoic glacial origin of the Great Unconformity: Proceedings of the National Academy of Sciences, v. 116, n. 4, p. 1136–1145, doi:https://doi.org/10.1073/pnas.1804350116
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Ketcham R. A.
    , 2005, Forward and inverse modeling of low-temperature thermochronometry data: Reviews in Mineralogy and Geochemistry, v. 58, n. 1, p. 275–314, doi:https://doi.org/10.2138/rmg.2005.58.11
    OpenUrlFREE Full Text
  53. ↵
    1. Ketcham R. A.,
    2. Guenthner W. R.,
    3. Reiners P. W.
    , 2013, Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion: American Mineralogist, v. 98, n. 2–3, p. 350–360, doi:https://doi.org/10.2138/am.2013.4249
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Malusà M. G.,
    2. Fitzgerald P. G.
    1. Kohn B.,
    2. Gleadow A.
    , 2019, Application of Low-Temperature Thermochronology to Craton Evolution, in Malusà M. G., Fitzgerald P. G., editors, Fission-Track Thermochronology and its Application to Geology: Cham: Springer International Publishing, p. 373–393, doi:https://doi.org/10.1007/978-3-319-89421-8_21
    OpenUrlCrossRef
  55. ↵
    1. Kumar S.,
    2. Sharma M.
    , 2012, Vindhyan Basin, Son velley area, Central India: Palaeontological Society of India Field Guide Book, p. 1–145.
  56. ↵
    1. Lee C.-T. A.,
    2. Caves J.,
    3. Jiang H.,
    4. Cao W.,
    5. Lenardic A.,
    6. McKenzie N. R.,
    7. Shorttle O.,
    8. Yin Q.-z.,
    9. Dyer B.
    , 2018, Deep mantle roots and continental emergence: implications for whole-Earth elemental cycling, long-term climate, and the Cambrian explosion: International Geology Review, v. 60, n. 4, p. 1–18, doi:https://doi.org/10.1080/00206814.2017.1340853
    OpenUrlCrossRef
  57. ↵
    1. Mackintosh V.,
    2. Kohn B.,
    3. Gleadow A.,
    4. Tian Y. T.
    , 2017, Phanerozoic Morphotectonic Evolution of the Zimbabwe Craton: Unexpected Outcomes From a Multiple Low-Temperature Thermochronology Study: Tectonics, v. 36, n. 10, p. 2044–2067, doi:https://doi.org/10.1002/2017TC004703
    OpenUrlCrossRef
  58. ↵
    1. Malone S. J.,
    2. Meert J. G.,
    3. Banerjee D. M.,
    4. Pandit M. K.,
    5. Tamrat E.,
    6. Kamenov G. D.,
    7. Pradhan V. R.,
    8. Sohl L. E.
    , 2008, Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: A ca. 1000 ma closure age for the Purana Basins?: Precambrian Research, v. 164, n. 3–4, p. 137–159, doi:https://doi.org/10.1016/j.precamres.2008.04.004
    OpenUrlCrossRefGeoRefWeb of Science
  59. ↵
    1. McDannell K. T.,
    2. Zeitler P. K.,
    3. Schneider D. A.
    , 2018, Instability of the southern Canadian Shield during the late Proterozoic: Earth and Planetary Science Letters, v. 490, p. 100–109, doi:https://doi.org/10.1016/j.epsl.2018.03.012
    OpenUrlCrossRef
  60. ↵
    1. McDannell K. T.,
    2. Schneider D. A.,
    3. Zeitler P. K.,
    4. O'Sullivan P. B.,
    5. Issler D. R.
    , 2019, Reconstructing deep‐time histories from integrated thermochronology: An example from southern Baffin Island, Canada: Terra Nova, v. 31, n. 3, p. 189–204, doi:https://doi.org/10.1111/ter.12386
    OpenUrlCrossRef
  61. ↵
    1. McDannell K. T.,
    2. Keller C. B.,
    3. Guenthner W. R.,
    4. Zeitler P. K.,
    5. Shuster D. L.
    , 2022, Thermochronologic constraints on the origin of the Great Unconformity: Proceedings of the National Academy of Sciences, v. 119, n. 5, p. e2118682119, doi:https://doi.org/10.1073/pnas.2118682119
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. McKenzie N. R.,
    2. Hughes N. C.,
    3. Myrow P. M.,
    4. Xiao S. H.,
    5. Sharma M.
    , 2011, Correlation of Precambrian-Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones: Earth and Planetary Science Letters, v. 312, n. 3–4, p. 471–483, doi:https://doi.org/10.1016/j.epsl.2011.10.027
    OpenUrlCrossRef
  63. ↵
    1. Meert J. G.
    , 2003, A synopsis of events related to the assembly of eastern Gondwana: Tectonophysics, v. 362, n. 1–4, p. 1–40, doi:https://doi.org/10.1016/S0040-1951(02)00629-7
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Meert J.,
    2. Pandit M.
    , 2014, The Archean and Proterozoic History of Peninsular India: Tectonic Framework for Precambrian Sedimentary Basins in India: Geological Society, London, Memoirs, v. 43, p. 29–54, doi:https://doi.org/10.1144/M43.3
    OpenUrlCrossRef
  65. ↵
    1. Mishra D. C.
    , 2011, Long hiatus in Proterozoic sedimentation in India: Vindhyan, Cuddapah and Pakhal Basins—A plate tectonic model: Journal of the Geological Society of India, v. 77, n. 1, p. 17–25, doi:https://doi.org/10.1007/s12594-011-0004-9
    OpenUrlCrossRef
  66. ↵
    1. Mishra D. C.
    , 2015, Plume and Plate Tectonics Model for Formation of some Proterozoic Basins of India along Contemporary Mobile Belts: Mahakoshal — Bijawar, Vindhyan and Cuddapah Basins: Journal of the Geological Society of India, v. 85, n. 5, p. 525–536, doi:https://doi.org/10.1007/s12594-015-0246-z
    OpenUrlCrossRef
  67. ↵
    1. Montañez I. P.,
    2. Poulsen C. J.
    , 2013, The Late Paleozoic ice age: an evolving paradigm: Annual Review of Earth and Planetary Sciences, v. 41, n. 1, p. 629–656, doi:https://doi.org/10.1146/annurev.earth.031208.100118
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    1. Murray K. E.,
    2. Orme D. A.,
    3. Reiners P. W.
    , 2014, Effects of U–Th-rich grain boundary phases on apatite helium ages: Chemical Geology, v. 390, p. 135–151, doi:https://doi.org/10.1016/j.chemgeo.2014.09.023
    OpenUrlCrossRefGeoRef
  69. ↵
    1. Orme D. A.,
    2. Guenthner W. R.,
    3. Laskowski A. K.,
    4. Reiners P. W.
    , 2016, Long-term tectonothermal history of Laramide basement from zircon-He age-eU correlations: Earth and Planetary Science Letters, v. 453, p. 119–130, doi:https://doi.org/10.1016/j.epsl.2016.07.046
    OpenUrlCrossRef
  70. ↵
    1. Peak B. A.,
    2. Flowers R. M.,
    3. Macdonald F. A.,
    4. Cottle J. M.
    , 2021, Zircon (U-Th)/He thermochronology reveals pre-Great Unconformity paleotopography in the Grand Canyon region, USA: Geology, v. 49, n. 12, p. 1462–1466, doi:https://doi.org/10.1130/G49116.1
    OpenUrlCrossRef
  71. ↵
    1. Powell J.,
    2. Schneider D.,
    3. Stockli D.,
    4. Fallas K.
    , 2016, Zircon (U-Th)/He thermochronology of Neoproterozoic strata from the Mackenzie Mountains, Canada: Implications for the Phanerozoic exhumation and deformation history of the northern Canadian Cordillera: Tectonics, v. 35, n. 3, p. 663–689, doi:https://doi.org/10.1002/2015TC003989
    OpenUrlCrossRef
  72. ↵
    1. Pujols E. J.,
    2. Stockli D. F.,
    3. Constenius K. N.,
    4. Horton B. K.
    , 2020, Thermochronological and Geochronological Constraints on Late Cretaceous Unroofing and Proximal Sedimentation in the Sevier Orogenic Belt, Utah: Tectonics, v. 39, n. 7, p. e2019TC005794, doi:https://doi.org/10.1029/2019TC005794
    OpenUrlCrossRef
  73. ↵
    1. Ray J. S.
    , 2006, Age of the Vindhyan Supergroup: a review of recent findings: Journal of Earth System Science, v. 115, n. 1, p. 149–160, doi:https://doi.org/10.1007/BF02703031
    OpenUrlCrossRefWeb of Science
  74. ↵
    1. Reiners P. W.
    , 2009, Nonmonotonic thermal histories and contrasting kinetics of multiple thermochronometers: Geochimica et Cosmochimica Acta, v. 73, n. 12, p. 3612–3629, doi:https://doi.org/10.1016/j.gca.2009.03.038
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Reiners P. W.,
    2. Farley K. A.,
    3. Hickes H. J.
    , 2002, He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte: Tectonophysics, v. 349, n. 1–4, p. 297–308, doi:https://doi.org/10.1016/S0040-1951(02)00058-6
    OpenUrlCrossRefGeoRefWeb of Science
  76. ↵
    1. Reiners P. W.,
    2. Campbell I. H.,
    3. Nicolescu S.,
    4. Allen C. M.,
    5. Hourigan J. K.,
    6. Garver J. I.,
    7. Mattinson J. M.,
    8. Cowan D. S.
    , 2005, (U-Th)/(HE-Pb) double dating of detrital zircons: American Journal of Science, v. 305, n. 4, p. 259–311, doi:https://doi.org/10.2475/ajs.305.4.259
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Rolland Y.,
    2. Bernet M.,
    3. van der Beek P.,
    4. Gautheron C.,
    5. Duclaux G.,
    6. Bascou J.,
    7. Balvay M.,
    8. Héraudet L.,
    9. Sue C.,
    10. Ménot R.-P.
    , 2019, Late Paleozoic Ice Age glaciers shaped East Antarctica landscape: Earth and Planetary Science Letters, v. 506, p. 123–133, doi:https://doi.org/10.1016/j.epsl.2018.10.044
    OpenUrlCrossRef
  78. ↵
    1. Sarkar S.,
    2. Banerjee S.,
    3. Chakraborty S.,
    4. Bose P. K.
    , 2002, Shelf storm flow dynamics: insight from the Mesoproterozoic Rampur Shale, central India: Sedimentary Geology, v. 147, n. 1–2, p. 89–104, doi:https://doi.org/10.1016/S0037-0738(01)00189-0
    OpenUrlCrossRefGeoRef
  79. ↵
    1. Schöbel S.,
    2. de Wall H.,
    3. Ganerød M.,
    4. Pandit M. K.,
    5. Rolf C.
    , 2014, Magnetostratigraphy and 40Ar–39Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central western India: Significance and correlation with the main Deccan Large Igneous Province sequences: Journal of Asian Earth Sciences, v. 89, p. 28–45, doi:https://doi.org/10.1016/j.jseaes.2014.03.022
    OpenUrlCrossRefGeoRef
  80. ↵
    1. Schoene B.,
    2. Samperton K. M.,
    3. Eddy M. P.,
    4. Keller G.,
    5. Adatte T.,
    6. Bowring S. A.,
    7. Khadri S. F. R.,
    8. Gertsch B.
    , 2015, U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction: Science, v. 347, n. 6218, p. 182–184, doi:https://doi.org/10.1126/science.aaa0118
    OpenUrlAbstract/FREE Full Text
  81. ↵
    1. Shukla A. D.,
    2. George B. G.,
    3. Ray J. S.
    , 2019, Evolution of the Proterozoic Vindhyan Basin, Rajasthan, India: insights from geochemical provenance of siliciclastic sediments: International Geology Review, v. 62, n. 2, p. 153–167, doi:https://doi.org/10.1080/00206814.2019.1594412
    OpenUrlCrossRef
  82. ↵
    1. Shuster D. L.,
    2. Farley K. A.
    , 2009, The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite: Geochimica et Cosmochimica Acta, v. 73, n. 1, p. 183–196, doi:https://doi.org/10.1016/j.gca.2008.10.013
    OpenUrlCrossRefGeoRefWeb of Science
  83. ↵
    1. Shuster D. L.,
    2. Flowers R. M.,
    3. Farley K. A.
    , 2006, The influence of natural radiation damage on helium diffusion kinetics in apatite: Earth and Planetary Science Letters, v. 249, n. 3–4, p. 148–161, doi:https://doi.org/10.1016/j.epsl.2006.07.028
    OpenUrlCrossRefGeoRefWeb of Science
  84. ↵
    1. Slabunov А. I.,
    2. Singh V. K.
    , 2019, Meso–Neoarchaean crustal evolution of the Bundelkhand Craton, Indian Shield: new data from greenstone belts: International Geology Review, v. 61, n. 11, p. 1409–1428, doi:https://doi.org/10.1080/00206814.2018.1512906
    OpenUrlCrossRef
  85. ↵
    1. Sobolev S. V.,
    2. Brown M.
    , 2019, Surface erosion events controlled the evolution of plate tectonics on Earth: Nature, v. 570, n. 7759, p. 52–57, doi:https://doi.org/10.1038/s41586-019-1258-4
    OpenUrlCrossRef
  86. ↵
    1. Sprain C. J.,
    2. Renne P. R.,
    3. Vanderkluysen L.,
    4. Pande K.,
    5. Self S.,
    6. Mittal T.
    , 2019, The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary: Science, v. 363, n. 6429, p. 866–870, doi:https://doi.org/10.1126/science.aav1446
    OpenUrlAbstract/FREE Full Text
  87. ↵
    1. Stampfli G. M.,
    2. Borel G. D.
    , 2002, A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons: Earth and Planetary Science Letters, v. 196, n. 1–2, p. 17–33, doi:https://doi.org/10.1016/S0012-821X(01)00588-X
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Stern R. J.
    , 1994, Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland: Annual Review of Earth and Planetary Sciences, v. 22, p. 319–351, doi:https://doi.org/10.1146/annurev.ea.22.050194.001535
    OpenUrlCrossRefWeb of Science
  89. ↵
    1. Thurston O. G.,
    2. Guenthner W. R.,
    3. Karlstrom K. E.,
    4. Ricketts J. W.,
    5. Heizler M. T.,
    6. Timmons J. M.
    , 2022, Zircon (U-Th)/He thermochronology of Grand Canyon resolves 1250 Ma unroofing at the Great Unconformity and< 20 Ma canyon carving: Geology, v. 50, n. 2, p. 222–226, doi:https://doi.org/10.1130/G48699.1
    OpenUrlCrossRef
  90. ↵
    1. Turner C. C.,
    2. Meert J. G.,
    3. Pandit M. K.,
    4. Kamenov G. D.
    , 2014, A detrital zircon U–Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography: Gondwana Research, v. 26, n. 1, p. 348–364, doi:https://doi.org/10.1016/j.gr.2013.07.009
    OpenUrlCrossRefGeoRefWeb of Science
  91. ↵
    1. Upadhyay R.,
    2. Gautam S.,
    3. Awatar R.
    , 2022, Discovery of an Entrapped Early Permian (ca. 299 Ma) Peri-Gondwanic Sliver in the Cretaceous Shyok Suture of Northern Ladakh, India: Diverse Implications: GSA Today, v. 32, n. 1doi:https://doi.org/10.1130/GSATG481A.1
    OpenUrlCrossRef
  92. ↵
    1. Verma A.,
    2. Shukla U. K.
    , 2015, Deposition of the Upper Rewa Sandstone Formation of proterozoic Rewa group of the Vindhyan Basin, M.P., India: A Reappraisal: Journal of the Geological Society of India, v. 86, n. 4, p. 421–437, doi:https://doi.org/10.1007/s12594-015-0330-4
    OpenUrlCrossRef
  93. ↵
    1. Willett C. D.,
    2. Fox M.,
    3. Shuster D. L.
    , 2017, A helium-based model for the effects of radiation damage annealing on helium diffusion kinetics in apatite: Earth and Planetary Science Letters, v. 477, p. 195–204, doi:https://doi.org/10.1016/j.epsl.2017.07.047
    OpenUrlCrossRef
  94. ↵
    1. Wolfe M. R.,
    2. Stockli D. F.
    , 2010, Zircon (U-Th)/He thermochronometry in the KTB drill hole, Germany, and its implications for bulk He diffusion kinetics in zircon: Earth and Planetary Science Letters, v. 295, n. 1–2, p. 69–82, doi:https://doi.org/10.1016/j.epsl.2010.03.025
    OpenUrlCrossRefGeoRefWeb of Science
  95. ↵
    1. Zeitler P. K.,
    2. Herczeg A. L.,
    3. Mcdougall I.,
    4. Honda M.
    , 1987, U-Th-He Dating of Apatite - a Potential Thermochronometer: Geochimica Et Cosmochimica Acta, v. 51, n. 10, p. 2865-2868, doi:https://doi.org/10.1016/0016-7037(87)90164-5
    OpenUrlCrossRefGeoRefWeb of Science
  96. ↵
    1. Zhang N.,
    2. Zhong S.,
    3. Flowers R. M.
    , 2012, Predicting and testing continental vertical motion histories since the Paleozoic: Earth and Planetary Science Letters, v. 317–318, p. 426–435, doi:https://doi.org/10.1016/j.epsl.2011.10.041
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 322 (10)
American Journal of Science
Vol. 322, Issue 10
1 Dec 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
Cody L. Colleps, N. Ryan Mckenzie, Peter Van Der Beek, William R. Guenthner, Mukund Sharma, Adam R. Nordsvan, Daniel F. Stockli
American Journal of Science Dec 2022, 322 (10) 1089-1123; DOI: 10.2475/10.2022.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
Cody L. Colleps, N. Ryan Mckenzie, Peter Van Der Beek, William R. Guenthner, Mukund Sharma, Adam R. Nordsvan, Daniel F. Stockli
American Journal of Science Dec 2022, 322 (10) 1089-1123; DOI: 10.2475/10.2022.01
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RADIATION DAMAGE ACCUMULATION AND ANNEALING MODELS FOR THE ZIRCON AND APATITE (U-TH)/HE SYSTEMS
    • GEOLOGIC SETTING
    • METHODS
    • RESULTS
    • THERMAL HISTORY MODELING
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • SUPPLEMENTARY DATA
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Thermochronology
  • (U-Th)/He
  • Radiation Damage
  • Craton
  • India
  • Deccan Traps Late Paleozoic Glaciation

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire