Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

The role of vegetation in setting strontium stable isotope ratios in the Critical Zone

Julien Bouchez and Friedhelm von Blanckenburg
American Journal of Science October 2021, 321 (8) 1246-1283; DOI: https://doi.org/10.2475/08.2021.04
Julien Bouchez
*Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
**GFZ German Research Centre for Geosciences, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam, Germany and Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bouchez@ipgp.fr
Friedhelm von Blanckenburg
**GFZ German Research Centre for Geosciences, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam, Germany and Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

At Earth's surface the stable isotope ratio of strontium (88Sr/86Sr) is predominantly set by biological uptake of Sr and its storage in plant litter. This conclusion was reached from a stable isotope mass balance that was independently validated by direct determination of elemental fluxes between the Critical Zone compartments (rock, soil, vegetation, and stream water) of three field sites located in the Swiss Alps, the US Sierra Nevada, and the tropical highlands of Sri Lanka. These sites cover a gradient in erosion rates, which is inversely related to the residence time of solids in the Critical Zone thereby constituting an “erodosequence”. For eroding landscapes, previous stable isotope models predicted that isotope ratios are set by the rate at which secondary solids form during the conversion of rock to regolith. Counter to this expectation we found that, after release from primary minerals, Sr is partitioned into one fraction taken up by plants and the remainder into dissolved Sr flux. The formation of secondary weathering products such as clays and oxides plays a subordinate role in determining the Sr budget. A Sr isotope fractionation factor for biological uptake was determined for each of the three ecosystems from the average Sr stable isotope composition in bulk plants and its dissolved counterpart in stream water. This fractionation factors range from ca. −0.3 ‰ for the Alps and Sierra Nevada to ∼0 ‰ for the tropical Sri Lanka site. That these isotope fingerprints caused by biologic uptake are preserved means that more Sr was physically removed in plant litter than recycled. Such Sr removal in plant litter appears to be strongest at the slowly-eroding site, whereas the dissolved Sr export by streams is highest at the site with the fastest erosion rate. There, all Sr taken up by plants is returned from litter back into solution. The site with short residence time of solids is the only one at which parent material and dissolved export differ in their Sr isotope composition. Our study shows that the behavior of Sr in the Critical Zone is in stark contrast to that of metals of which the isotope fractionation is not affected by biological uptake (for example lithium, mostly set by formation of secondary solids) or affected by both secondary solid formation and biological uptake (for example silicon). Strontium stable isotope signatures offer the new opportunity to quantify nutrient cycling in the Critical Zone as a function of environmental and ecological parameters.

  • strontium isotopes
  • metal stable isotopes
  • erodosequence
  • weathering
  • Critical Zone
  • soils
  • isotope fractionation factors
  • denudation
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (8)
American Journal of Science
Vol. 321, Issue 8
1 Oct 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The role of vegetation in setting strontium stable isotope ratios in the Critical Zone
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The role of vegetation in setting strontium stable isotope ratios in the Critical Zone
Julien Bouchez, Friedhelm von Blanckenburg
American Journal of Science Oct 2021, 321 (8) 1246-1283; DOI: 10.2475/08.2021.04

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The role of vegetation in setting strontium stable isotope ratios in the Critical Zone
Julien Bouchez, Friedhelm von Blanckenburg
American Journal of Science Oct 2021, 321 (8) 1246-1283; DOI: 10.2475/08.2021.04
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • STUDY SITES, SAMPLES, AND ANALYTICAL METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX A
    • APPENDIX B
    • APPENDIX C
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • strontium isotopes
  • metal stable isotopes
  • erodosequence
  • weathering
  • Critical Zone
  • soils
  • isotope fractionation factors
  • denudation

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire