Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Quantifying biotic and abiotic Si fluxes in the Critical Zone with Ge/Si ratios along a gradient of erosion rates

Patrick J. Frings, Franziska Schubring, Marcus Oelze and Friedhelm von Blanckenburg
American Journal of Science October 2021, 321 (8) 1204-1245; DOI: https://doi.org/10.2475/08.2021.03
Patrick J. Frings
*GFZ German Research Centre for Geosciences, Section Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: patrick.frings@gfz-potsdam.de
Franziska Schubring
*GFZ German Research Centre for Geosciences, Section Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marcus Oelze
*GFZ German Research Centre for Geosciences, Section Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Friedhelm von Blanckenburg
*GFZ German Research Centre for Geosciences, Section Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam, Germany
**Also at Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Aguirre A. A.
    , ms, 2019, Applying Ge/Si Ratios to Trace Weathering Reactions, Hydrologic Pathways and Coal Fly Ash Contamination in Watersheds Across the United States: Ithaca, New York, Cornell University, Ph. D. thesis, 210 p.
  2. ↵
    1. Aguirre A. A.,
    2. Derry L. A.,
    3. Mills T. J.,
    4. Anderson S. P.
    , 2017, Colloidal transport in the Gordon Gulch catchment of the Boulder Creek CZO and its effect on C‐Q relationships for silicon: Water Resources Research, v. 53, p. 2368–2383, doi:https://doi.org/10.1002/2016WR019730
    OpenUrlCrossRef
  3. ↵
    1. Alexandre A.,
    2. Meunier J. D.,
    3. Colin F.,
    4. Koud J. M.
    , 1997, Plant impact on the biogeochemical cycle of silicon and related weathering processes: Geochimica et Cosmochimica Acta, v. 61, n. 3, p. 677–682, doi:https://doi.org/10.1016/S0016-7037(97)00001-X
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Ameijeiras-Mariño Y.,
    2. Opfergelt S.,
    3. Derry L. A.,
    4. Robinet J.,
    5. Govers G.,
    6. Minella J. P. G.,
    7. Delmelle P.
    , 2018, Ge/Si ratios point to increased contribution from deeper mineral weathering to streams after forest conversion to cropland: Applied Geochemistry, v. 96, p. 24–34, doi:https://doi.org/10.1016/j.apgeochem.2018.06.002
    OpenUrlCrossRef
  5. ↵
    1. Anders A. M.,
    2. Sletten R. S.,
    3. Derry L. A.,
    4. Hallet B.
    , 2003, Germanium/silicon ratios in the Copper River Basin, Alaska: Weathering and partitioning in periglacial versus glacial environments: Journal of Geophysical Research: Earth Surface, v. 108, n. F1, doi:https://doi.org/10.1029/2003JF000026
    OpenUrlCrossRef
  6. ↵
    1. Baronas J. J.,
    2. Torres M. A.,
    3. West A. J.,
    4. Rouxel O.,
    5. Georg B.,
    6. Bouchez J.,
    7. Gaillardet J.,
    8. Hammond D. E.
    , 2018, Ge and Si isotope signatures in rivers: A quantitative multi-proxy approach: Earth and Planetary Science Letters, v. 503, p. 194–215, doi:https://doi.org/10.1016/j.epsl.2018.09.022
    OpenUrlCrossRef
  7. ↵
    1. Baronas J. J.,
    2. West A. J.,
    3. Burton K. W.,
    4. Hammond D. E.,
    5. Opfergelt S.,
    6. Pogge von Strandmann P. A. E.,
    7. James R. H.,
    8. Rouxel O. J.
    , 2020, Ge and Si isotope behavior during intense tropical weathering and ecosystem cycling: Global Biogeochemical Cycles, v. 34, n. 8, p. e2019GB006522, doi:https://doi.org/10.1029/2019GB006522
    OpenUrlCrossRef
  8. ↵
    1. Bateman P. C.,
    2. Wones D. R.
    , 1972, Huntington Lake Quadrangle, central Sierra Nevada, California; analytic data: USGS Professional Paper 724-A, doi:https://doi.org/10.3133/pp724A
    OpenUrlCrossRef
  9. ↵
    1. Bayon G.,
    2. Delvigne C.,
    3. Ponzevera E.,
    4. Borges A.,
    5. Darchambeau F.,
    6. De Deckker P.,
    7. Lambert T.,
    8. Monin L.,
    9. Toucanne S.,
    10. André L.
    , 2018, The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology: Geochimica et Cosmochimica Acta, v. 229, p. 147–161, doi:https://doi.org/10.1016/j.gca.2018.03.015
    OpenUrlCrossRef
  10. ↵
    1. Beattie P.,
    2. Drake M.,
    3. Jones J.,
    4. Leeman W.,
    5. Longhi J.,
    6. McKay G.,
    7. Nielsen R.,
    8. Palme H.,
    9. Shaw D.,
    10. Takahashi E.,
    11. Watson B.
    , 1993, Terminology for trace-element partitioning: Geochimica et Cosmochimica Acta, v. 57, n. 7, p. 1605–1606, doi:https://doi.org/10.1016/0016-7037(93)90015-O
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Behrens R.,
    2. Bouchez J.,
    3. Schuessler J. A.,
    4. Dultz S.,
    5. Hewawasam T.,
    6. von Blanckenburg F.
    , 2015, Mineralogical transformations set slow weathering rates in low-porosity metamorphic bedrock on mountain slopes in a tropical climate: Chemical Geology, v. 411, p. 283–298, doi:https://doi.org/10.1016/j.chemgeo.2015.07.008
    OpenUrlCrossRefGeoRef
  12. ↵
    1. Berner R. A.,
    2. Lasaga A. C.,
    3. Garrels R. M.
    , 1983, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years: American Journal of Science, v. 283, n. 7, p. 641–683, doi:https://doi.org/10.2475/ajs.283.7.641
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Bernstein L. R.
    , 1985, Germanium geochemistry and mineralogy: Geochimica et Cosmochimica Acta, v. 49, n. 11, p. 2409–2422, doi:https://doi.org/10.1016/0016-7037(85)90241-8
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Beusen A. H. W.,
    2. Bouwman A. F.,
    3. Dürr H. H.,
    4. Dekkers A. L. M.,
    5. Hartmann J.
    , 2009, Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model: Global Biogeochemical Cycles, v. 23, n. 4, p. GB0A02, doi:https://doi.org/10.1029/2008GB003281
    OpenUrlCrossRef
  15. ↵
    1. Blecker S. W.,
    2. King S. L.,
    3. Derry L. A.,
    4. Chadwick O. A.,
    5. Ippolito J. A.,
    6. Kelly E. F.
    , 2007, The ratio of germanium to silicon in plant phytoliths: Quantification of biological discrimination under controlled experimental conditions: Biogeochemistry, v. 86, p. 189–199, doi:https://doi.org/10.1007/s10533-007-9154-7
    OpenUrlCrossRef
    1. Blecker S.
    , ms. 2005, Silica biogeochemistry across the Great Plains: Fort Collins, Colorado, Colorado State University, Colorado State University, Ph. D. thesis, 156 p.
  16. ↵
    1. Bouchez J.,
    2. von Blanckenburg F.
    , 2021, The role of vegetation in setting strontium stable isotope ratios in the Critical Zone: American Journal of Science, v. 321, n. 8, p. 1246–1283, doi:https://doi.org/10.2475/08.2021.04
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Bouchez J.,
    2. Lupker M.,
    3. Gaillardet J.,
    4. France-Lanord C.,
    5. Maurice L.
    , 2011, How important is it to integrate riverine suspended sediment chemical composition with depth? Clues from Amazon River depth-profiles: Geochimica et Cosmochimica Acta, v. 75, n. 22, p. 6955–6970, doi:https://doi.org/10.1016/j.gca.2011.08.038
    OpenUrlCrossRefGeoRef
  18. ↵
    1. Bouchez J.,
    2. von Blanckenburg F.,
    3. Schuessler J. A.
    , 2013, Modeling novel stable isotope ratios in the weathering zone: American Journal of Science, v. 313, n. 4, p. 267–308, doi:https://doi.org/10.2475/04.2013.01
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Brantley S. L.,
    2. Goldhaber M. B.,
    3. Ragnarsdottir K. V.
    , 2007, Crossing disciplines and scales to understand the critical zone: Elements, v. 3, n. 5, p. 307–314, doi:https://doi.org/10.2113/gselements.3.5.307
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Brimhall G. H.,
    2. Dietrich W. E.
    , 1987, Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis: Geochimica et Cosmochimica Acta, v. 51, n. 3, p. 567–587, doi:https://doi.org/10.1016/0016-7037(87)90070-6
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Bunte K.,
    2. Swingle K. W.,
    3. Turowski J. M.,
    4. Abt S. R.,
    5. Cenderelli D. A.
    , 2016, Measurements of coarse particulate organic matter transport in steep mountain streams and estimates of decadal CPOM exports: Journal of Hydrology, v. 539, p. 162–176, doi:https://doi.org/10.1016/j.jhydrol.2016.05.022
    OpenUrlCrossRef
  22. ↵
    1. Carbonnel V.,
    2. Lionard M.,
    3. Muylaert K.,
    4. Chou L.
    , 2009, Dynamics of dissolved and biogenic silica in the freshwater reaches of a macrotidal estuary (The Scheldt, Belgium): Biogeochemistry, v. 96, p. 49–72, doi:https://doi.org/10.1007/s10533-009-9344-6
    OpenUrlCrossRef
  23. ↵
    1. Carey J. C.,
    2. Fulweiler R. W.
    , 2012, The Terrestrial Silica Pump: PLoS ONE, v. 7, p. e52932, doi:https://doi.org/10.1371/journal.pone.0052932
    OpenUrlCrossRefPubMed
  24. ↵
    1. Cary L.,
    2. Alexandre A.,
    3. Meunier J. D.,
    4. Boeglin J. L.,
    5. Braun J. J.
    , 2005, Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon): Biogeochemistry, v. 74, p. 101–114, doi:https://doi.org/10.1007/s10533-004-2945-1
    OpenUrlCrossRefGeoRef
  25. ↵
    1. Clymans W.,
    2. Conley D. J.,
    3. Battles J. J.,
    4. Frings P. J.,
    5. Koppers M. M.,
    6. Likens G. E.,
    7. Johnson C. E.
    , 2016, Silica uptake and release in live and decaying biomass in a northern hardwood forest: Ecology, v. 97, n. 11, p. 3044–3057, doi:https://doi.org/10.1002/ecy.1542
    OpenUrlCrossRef
  26. ↵
    1. Clymans W.,
    2. Govers G.,
    3. Frot E.,
    4. Ronchi B.,
    5. Van Wesemael B.,
    6. Struyf E.
    , 2013, Temporal dynamics of bio-available Si fluxes in a temperate forested catchment (Meerdaal forest, Belgium): Biogeochemistry, v. 116, p. 275–291, doi:https://doi.org/10.1007/s10533-013-9858-9
    OpenUrlCrossRef
  27. ↵
    1. Clymans W.,
    2. Struyf E.,
    3. Van den Putte A.,
    4. Langhans C.,
    5. Wang Z.,
    6. Govers G.
    , 2015, Amorphous silica mobilization by inter-rill erosion: Insights from rainfall experiments: Earth Surface Processes and Landforms, v. 40, n. 9 doi:https://doi.org/10.1002/esp.3707
    OpenUrlCrossRef
  28. ↵
    1. Conley D. J.
    , 1997, Riverine contribution of biogenic silica to the oceanic silica budget: Limnology and Oceanography, v. 42, n. 4, p. 774–777, doi:https://doi.org/10.4319/lo.1997.42.4.0774
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Conley D. J.
    , 2002, Terrestrial ecosystems and the global biogeochemical silica cycle: Global Biogeochemical Cycles, v. 16, n. 4, p. 112, doi:https://doi.org/10.1029/2002GB001894
    OpenUrlCrossRef
  30. ↵
    1. Coplen T. B.
    , 2011, Guidelines and recommended terms for expression of stable‐isotope‐ratio and gas‐ratio measurement results: Rapid Communications in Mass Spectrometry, v. 25, n. 17, p. 2538–2560, doi:https://doi.org/10.1002/rcm.5129
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    1. Cornelis J. T.,
    2. Delvaux B.,
    3. Cardinal D.,
    4. André L.,
    5. Ranger J.,
    6. Opfergelt S.
    , 2010, Tracing mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and Ge/Si ratios: Geochimica et Cosmochimica Acta, v. 74, n. 14, p. 3913–3924, doi:https://doi.org/10.1016/j.gca.2010.04.056
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. Criss R. E.
    , 1999, Principles of stable isotope distribution: New York, Oxford, Oxford University Press, 254 p., doi:https://doi.org/10.1093/oso/9780195117752.001.0001
    OpenUrlCrossRef
  33. ↵
    1. Dahlgren R. A.,
    2. Boettinger J. L.,
    3. Huntington G. L.,
    4. Amundson R. G.
    , 1997, Soil development along an elevational transect in the western Sierra Nevada, California: Geoderma, v. 78, n. 3–4, p. 207–236, doi:https://doi.org/10.1016/S0016-7061(97)00034-7
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. De Argollo R.,
    2. Schilling J.-G.
    , 1978, Ge-Si and Ga-Al fractionation in Hawaiian volcanic rocks: Geochimica et Cosmochimica Acta, v. 42, n. 6, Part A, p. 623–630, doi:https://doi.org/10.1016/0016-7037(78)90007-8
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. De La Rocha C. L.,
    2. Brzezinski M. A.,
    3. DeNiro M. J.
    , 2000, A first look at the distribution of the stable isotopes of silicon in natural waters: Geochimica et Cosmochimica Acta, v. 64, n. 14, p. 2467–2477, doi:https://doi.org/10.1016/S0016-7037(00)00373-2
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. de Oliveira Garcia W.,
    2. Amann T.,
    3. Hartmann J.
    , 2018, Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions: Scientific Reports, v. 8, article number 5280, doi:https://doi.org/10.1038/s41598-018-22728-5
    OpenUrlCrossRef
  37. ↵
    1. de Tombeur F.,
    2. Turner B. L.,
    3. Laliberté E.,
    4. Lambers H.,
    5. Mahy G.,
    6. Faucon M.-P.,
    7. Zemunik G.,
    8. Cornelis J.-T.
    , 2020, Plants sustain the terrestrial silicon cycle during ecosystem retrogression: Science, v. 369, n. 6508, p. 1245–1248, doi:https://doi.org/10.1126/science.abc0393
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Dellinger M.,
    2. Gaillardet J.,
    3. Bouchez J.,
    4. Calmels D.,
    5. Louvat P.,
    6. Dosseto A.,
    7. Gorge C.,
    8. Alanoca L.,
    9. Maurice L.
    , 2015, Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes: Geochimica et Cosmochimica Acta, v. 164, p. 71–93, doi:https://doi.org/10.1016/j.gca.2015.04.042
    OpenUrlCrossRefGeoRef
  39. ↵
    1. Delvigne C.,
    2. Angeletti B.,
    3. Guihou A.,
    4. Basile-Doelsch I.,
    5. Meunier J. D.
    , 2018, Reliable determination of Ge in solid nvironmental samples using a chemical preparation procedure developed for Si isotopes and ICP‐MS Analysis: Geostandards and Geoanalytical Research, v. 42, n. 1, p. 139–149, doi:https://doi.org/10.1111/ggr.12197
    OpenUrlCrossRef
  40. ↵
    1. Delvigne C.,
    2. Opfergelt S.,
    3. Cardinal D.,
    4. Delvaux B.,
    5. André L.
    , 2009, Distinct silicon and germanium pathways in the soil-plant system: Evidence from banana and horsetail: Journal of Geophysical Research-Biogeosciences, v. 114, n. G2, p. 11, doi:https://doi.org/10.1029/2008JG000899
    OpenUrlCrossRef
  41. ↵
    1. Derry L. A.,
    2. Kurtz A. C.,
    3. Ziegler K.,
    4. Chadwick O. A.
    , 2005, Biological control of terrestrial silica cycling and export fluxes to watersheds: Nature, v. 433, p. 728–731, doi:https://doi.org/10.1038/nature03299
    OpenUrlCrossRefPubMed
  42. ↵
    1. Dietzel M.
    , 2002, Interaction of polysilicic and monosilicic acid with mineral surfaces: Dordrecht, The Netherlands, Springer, Water Science and Technology Library, v. 40, p. 207–235, doi:https://doi.org/10.1007/978-94-010-0438-1_9
    OpenUrlCrossRef
  43. ↵
    1. Dinis P. A.,
    2. Garzanti E.,
    3. Hahn A.,
    4. Vermeesch P.,
    5. Cabral-Pinto M.
    , 2019, Weathering indices as climate proxies. A step forward based on Congo and SW African river muds: Earth-Science Reviews, v. 201, p. 103039, doi:https://doi.org/10.1016/j.earscirev.2019.103039
    OpenUrlCrossRef
  44. ↵
    1. Dixon J. L.,
    2. Heimsath A. M.,
    3. Amundson R.
    , 2009, The critical role of climate and saprolite weathering in landscape evolution: Earth Surface Processes and Landforms, v. 34, n. 11, p. 1507–1521, doi:https://doi.org/10.1002/esp.1836
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Drever J. I.,
    2. Zobrist J.
    , 1992, Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps: Geochimica et Cosmochimica Acta, v. 56, n. 8, p. 3209–3216, doi:https://doi.org/10.1016/0016-7037(92)90298-W
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Egli M.,
    2. Mirabella A.,
    3. Fitze P.
    , 2001, Clay mineral formation in soils of two different chronosequences in the Swiss Alps: Geoderma, v. 104, n. 1–2, p. 145–175, doi:https://doi.org/10.1016/S0016-7061(01)00079-9
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Egli M.,
    2. Mirabella A.,
    3. Sartori G.
    , 2008, The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps: Geomorphology, v. 102, n. 3–4, p. 307–324, doi:https://doi.org/10.1016/j.geomorph.2008.04.001
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Evans M. J.,
    2. Derry L. A.
    , 2002, Quartz control of high germanium/silicon ratios in geothermal waters: Geology, v. 30, n. 11, p. 1019–1022, doi:https://doi.org/10.1130/0091-7613(2002)030<1019:QCOHGS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Filippelli G. M.,
    2. Carnahan J. W.,
    3. Derry L. A.,
    4. Kurtz A.
    , 2000, Terrestrial paleorecords of Ge/Si cycling derived from lake diatoms: Chemical Geology, v. 168, n. 1–2, p. 9–26, doi:https://doi.org/10.1016/S0009-2541(00)00185-6
    OpenUrlCrossRefGeoRef
  50. ↵
    1. Frings P. J.
    , 2019, Palaeoweathering: How Do Weathering Rates Vary with Climate?: Elements, v. 15, n. 4, p. 259–265, doi:https://doi.org/10.2138/gselements.15.4.259
    OpenUrlCrossRef
  51. ↵
    1. Frings P. J.,
    2. Clymans W.,
    3. Conley D. J.
    , 2014, Amorphous Silica Transport in the Ganges Basin: Implications for Si Delivery to the Oceans: Procedia Earth and Planetary Science, v. 10, p. 271–274, doi:https://doi.org/10.1016/j.proeps.2014.08.059
    OpenUrlCrossRef
  52. ↵
    1. Frings P. J.,
    2. Clymans W.,
    3. Fontorbe G.,
    4. Gray W.,
    5. Chakrapani G. J.,
    6. Conley D. J.,
    7. De La Rocha C.
    , 2015, Silicate weathering in the Ganges alluvial plain: Earth and Planetary Science Letters, v. 427, p. 136–148, doi:https://doi.org/10.1016/j.epsl.2015.06.049
    OpenUrlCrossRefGeoRef
  53. ↵
    1. Frings P. J.,
    2. Fontorbe G.,
    3. Clymans W.,
    4. De La Rocha C. L.,
    5. Conley D. J.
    , 2016, The continental Si cycle and its impact on the ocean Si isotope budget: Chemical Geology, v. 425, p. 12–36, doi:https://doi.org/10.1016/j.chemgeo.2016.01.020
    OpenUrlCrossRefGeoRef
  54. ↵
    1. Frings P. J.,
    2. Oelze M.,
    3. Schubring F.,
    4. Frick D. A.,
    5. von Blanckenburg F.
    , 2021a, Interpreting silicon isotopes in the Critical Zone: American Journal of Science, v. 321, n. 8, p. 1164–1203, doi:https://doi.org/10.2475/08.2021.02
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Frings P. J.,
    2. Oelze M.,
    3. Frick D. A.,
    4. von Blanckenburg F.
    , 2021b, Geochemical data on silicon isotope and Ge/Si ratios along a global erodosequence: GFZ Data Services, doi:https://doi.org/10.5880/GFZ.3.3.2021.003
    OpenUrlCrossRef
  56. ↵
    1. Froelich P. N.,
    2. Blanc V.,
    3. Mortlock R. A.,
    4. Chillrud S. N.,
    5. Dunstan W.,
    6. Udomkit A.,
    7. Peng T. H.
    , 1992, River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans: Paleoceanography and Paleoclimatology, v. 7, n. 6, p. 739–767, doi:https://doi.org/10.1029/92PA02090
    OpenUrlCrossRef
  57. ↵
    1. Froelich P. N.,
    2. Hambrick G. A.,
    3. Andreae M. O.,
    4. Mortlock R. A.,
    5. Edmond J. M.
    , 1985, The geochemistry of inorganic germanium in natural waters: Journal of Geophysical Research: Oceans (1978–2012), v. 90, n. C1, p. 1133–1141, doi:https://doi.org/10.1029/JC090iC01p01133
    OpenUrlCrossRef
  58. ↵
    1. Georg R. B.,
    2. Reynolds B. C.,
    3. Frank M.,
    4. Halliday A. N.
    , 2006, New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS: Chemical Geology, v. 235, n. 1–2, p. 95–104, doi:https://doi.org/10.1016/j.chemgeo.2006.06.006
    OpenUrlCrossRefGeoRef
  59. ↵
    1. Gerard F.,
    2. Mayer K. U.,
    3. Hodson M. J.,
    4. Ranger J.
    , 2008, Modelling the biogeochemical cycle of silicon in soils: Application to a temperate forest ecosystem: Geochimica et Cosmochimica Acta, v. 72, n. 3, p. 741–758, doi:https://doi.org/10.1016/j.gca.2007.11.010
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Goldschmidt V. M.
    , 1926, Concerning the crystallo-chemical and geochemical behaviour of Germanium: Naturwissenschaften, v. 14, p. 295–297, doi:https://doi.org/10.1007/BF01503585
    OpenUrlCrossRefWeb of Science
  61. ↵
    1. Guntzer F.,
    2. Keller C.,
    3. Meunier J.-D.
    , 2012, Benefits of plant silicon for crops: A review: Agronomy for Sustainable Development, v. 32, p. 201–213, doi:https://doi.org/10.1007/s13593-011-0039-8
    OpenUrlCrossRef
  62. ↵
    1. Hayes J. M.
    , 2004, An introduction to isotopic calculations: Woods Hole, Massachusetts, Woods Hole Oceanographic Institute, 10 p.
  63. ↵
    1. Hewawasam T.,
    2. von Blanckenburg F.,
    3. Bouchez J.,
    4. Dixon J. L.,
    5. Schuessler J. A.,
    6. Maekeler R.
    , 2013, Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical Highlands of Sri Lanka: Geochimica et Cosmochimica Acta, v. 118, p. 202–230, doi:https://doi.org/10.1016/j.gca.2013.05.006
    OpenUrlCrossRefGeoRef
  64. ↵
    1. Hodson M. J.
    , 2016, The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology: Journal of Archaeological Science, v. 68, p. 62–69, doi:https://doi.org/10.1016/j.jas.2015.09.002
    OpenUrlCrossRef
  65. ↵
    1. Hodson M. J.
    , 2019, The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: A hypothesis: Frontiers in Earth Science, v. 7, doi:https://doi.org/10.3389/feart.2019.00167
    OpenUrlCrossRef
  66. ↵
    1. Hughes H. J.,
    2. Sondag F.,
    3. Santos R. V.,
    4. André L.,
    5. Cardinal D.
    , 2013, The riverine silicon isotope composition of the Amazon Basin: Geochimica et Cosmochimica Acta, v. 121, p. 637–651, doi:https://doi.org/10.1016/j.gca.2013.07.040
    OpenUrlCrossRefGeoRef
  67. ↵
    1. Hunsaker C. T.,
    2. Neary D. G.
    , 2012, Sediment loads and erosion in forest headwater streams of the Sierra Nevada, California, in Revisiting Experimental Catchment Studies in Forest Hydrology: Proceedings of a workshop for the International Association of Hydrological Sciences, General Assembly in Melbourne: Wallingford, United Kingdom, IAHS Publication 353, p. 195–204.
    OpenUrl
    1. Jochum K. P.,
    2. Nohl U.,
    3. Herwig K.,
    4. Lammel E.,
    5. Stoll B.,
    6. Hofmann A. W.
    , 2005, GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards: Geostandards and Geoanalytical Research, v. 29, n. 3, p. 333–338, doi:https://doi.org/10.1111/j.1751-908X.2005.tb00904.x
    OpenUrlCrossRef
  68. ↵
    1. Jung M.,
    2. Koirala S.,
    3. Weber U.,
    4. Ichii K.,
    5. Gans F.,
    6. Camps-Valls G.,
    7. Papale D.,
    8. Schwalm C.,
    9. Tramontana G.,
    10. Reichstein M.
    , 2019, The FLUXCOM ensemble of global land-atmosphere energy fluxes: Scientific data, v. 6, p. 74, doi:https://doi.org/10.1038/s41597-019-0076-8
    OpenUrlCrossRef
  69. ↵
    1. Kaiser S.,
    2. Wagner S.,
    3. Moschner C.,
    4. Funke C.,
    5. Wiche O.
    , 2020, Accumulation of germanium (Ge) in plant tissues of grasses is not solely driven by its incorporation in phytoliths: Biogeochemistry, v. 148, p. 49–68, doi:https://doi.org/10.1007/s10533-020-00646-x
    OpenUrlCrossRef
  70. ↵
    1. Kim H.,
    2. Gu X.,
    3. Brantley S. L.
    , 2018, Particle fluxes in groundwater change subsurface shale rock chemistry over geologic time: Earth and Planetary Science Letters, v. 500, p. 180–191, doi:https://doi.org/10.1016/j.epsl.2018.07.031
    OpenUrlCrossRef
  71. ↵
    1. Klotzbücher T.,
    2. Klotzbücher A.,
    3. Kaiser K.,
    4. Merbach I.,
    5. Mikutta R.
    , 2018, Impact of agricultural practices on plant-available silicon: Geoderma, v. 331, p. 15–17, doi:https://doi.org/10.1016/j.geoderma.2018.06.011
    OpenUrlCrossRef
  72. ↵
    1. Kramer N.,
    2. Wohl E.,
    3. Hess-Homeier B.,
    4. Leisz S.
    , 2017, The pulse of driftwood export from a very large forested river basin over multiple time scales, Slave River, Canada: Water Resources Research, v. 53, n. 3, p. 1928–1947, doi:https://doi.org/10.1002/2016WR019260
    OpenUrlCrossRef
  73. ↵
    1. Kurtz A. C.,
    2. Derry L. A.,
    3. Chadwick O. A.
    , 2002, Germanium-silicon fractionation in the weathering environment: Geochimica et Cosmochimica Acta, v. 66, n. 9, p. 1525–1537, doi:https://doi.org/10.1016/S0016-7037(01)00869-9
    OpenUrlCrossRefGeoRefWeb of Science
  74. ↵
    1. Kurtz A. C.,
    2. Lugolobi F.,
    3. Salvucci G.
    , 2011, Germanium-silicon as a flow path tracer: Application to the Rio Icacos watershed: Water Resources Research, v. 47, n. 6, p. W06516, doi:https://doi.org/10.1029/2010WR009853
    OpenUrlCrossRef
  75. ↵
    1. Wanty R. B.,
    2. Seal R. R.
    1. Kurtz A.,
    2. Derry L.
    , 2004, Tracing silicate weathering and terrestrial silica cycling with Ge/Si ratios, in Wanty R. B., Seal R. R., editors, 11th International Symposium on Water Rock Interaction: Lisse, The Netherlands, Swets and Zeitlinger Publications, p. 833–836.
  76. ↵
    1. Lebedeva M. I.,
    2. Fletcher R. C.,
    3. Brantley S. L.
    , 2010, A mathematical model for steady‐state regolith production at constant erosion rate: Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, v. 35, n. 5, p. 508–524, doi:https://doi.org/10.1002/esp.1954
    OpenUrlCrossRef
  77. ↵
    1. Lee H.,
    2. Galy V.,
    3. Feng X.,
    4. Ponton C.,
    5. Galy A.,
    6. France-Lanord C.,
    7. Feakins S. J.
    , 2019, Sustained wood burial in the Bengal Fan over the last 19 My: Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 45, p. 22518–22525, doi:https://doi.org/10.1073/pnas.1913714116
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Li Z.,
    2. Cornelis J.-T.,
    3. Linden C. V.,
    4. Van Ranst E.,
    5. Delvaux B.
    , 2020, Neoformed aluminosilicate and phytogenic silica are competitive sinks in the silicon soil–plant cycle: Geoderma, v. 368, p. 114308, doi:https://doi.org/10.1016/j.geoderma.2020.114308
    OpenUrlCrossRef
  79. ↵
    1. Liu F.,
    2. Hunsaker C.,
    3. Bales R. C.
    , 2013, Controls of streamflow generation in small catchments across the snow–rain transition in the Southern Sierra Nevada, California: Hydrological Processes, v. 27, n. 14, p. 1959–1972, doi:https://doi.org/10.1002/hyp.9304
    OpenUrlCrossRef
  80. ↵
    1. Liu J.,
    2. Zang J.,
    3. Bouwman L.,
    4. Liu S.,
    5. Yu Z.,
    6. Ran X.
    , 2016, Distribution and budget of dissolved and biogenic silica in the Bohai Sea and Yellow Sea: Biogeochemistry, v. 130, p. 85–101, doi:https://doi.org/10.1007/s10533-016-0244-2
    OpenUrlCrossRef
  81. ↵
    1. Lucas Y.
    , 2001, The role of plants in controlling rates and products of weathering: Importance of biological pumping: Annual Review of Earth and Planetary Sciences, v. 29, p. 135–163, doi:https://doi.org/10.1146/annurev.earth.29.1.135
    OpenUrlCrossRefWeb of Science
  82. ↵
    1. Lugolobi F.,
    2. Kurtz A. C.,
    3. Derry L. A.
    , 2010, Germanium-silicon fractionation in a tropical, granitic weathering environment: Geochimica et Cosmochimica Acta, v. 74, n. 4, p. 1294–1308, doi:https://doi.org/10.1016/j.gca.2009.11.027
    OpenUrlCrossRefGeoRef
  83. ↵
    1. Datnoff L. E.,
    2. Snyder G. H.,
    3. Korndörfer G. H.
    1. Ma J. F.,
    2. Miyake Y.,
    3. Takahashi E.
    , 2001, Silicon as a beneficial element for crop plants, in Datnoff L. E., Snyder G. H., Korndörfer G. H., editors, Silicon in Agriculture: London, Elsevier, Studies in Plant Science, v. 8, p. 17–39, doi:https://doi.org/10.1016/S0928-3420(01)80006-9
    OpenUrlCrossRef
  84. ↵
    1. Martin F.,
    2. Ildefonse P.,
    3. Hazemann J.-L.,
    4. Petit S.,
    5. Grauby O.,
    6. Decarreau A.
    , 1996, Random distribution of Ge and Si in synthetic talc: An EXAFS and FTIR study, doi:https://doi.org/10.1127/ejm/8/2/0289
    OpenUrlCrossRef
  85. ↵
    1. Meek K.,
    2. Derry L.,
    3. Sparks J.,
    4. Cathles L.
    , 2016, 87Sr/86Sr, Ca/Sr, and Ge/Si ratios as tracers of solute sources and biogeochemical cycling at a temperate forested shale catchment, central Pennsylvania, USA: Chemical Geology, v. 445, p. 84–102, doi:https://doi.org/10.1016/j.chemgeo.2016.04.026
    OpenUrlCrossRef
  86. ↵
    1. Meunier J. D.,
    2. Colin F.,
    3. Alarcon C.
    , 1999, Biogenic silica storage in soils: Geology, v. 27, n. 9, p. 835–838, doi:https://doi.org/10.1130/0091-7613(1999)027<0835:BSSIS>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  87. ↵
    1. Meunier J.-D.,
    2. Riotte J.,
    3. Braun J.-J.,
    4. Sekhar M.,
    5. Chalié F.,
    6. Barboni D.,
    7. Saccone L.
    , 2015, Controls of DSi in streams and reservoirs along the Kaveri River, South India: Science of The Total Environment, v. 502, p. 103–113, doi:https://doi.org/10.1016/j.scitotenv.2014.07.107
    OpenUrlCrossRef
  88. ↵
    1. Mortlock R. A.,
    2. Froelich P. N.
    , 1987, Continental weathering of germanium – Ge/Si in the global river discharge: Geochimica et Cosmochimica Acta, v. 51, n. 8, p. 2075–2082, doi:https://doi.org/10.1016/0016-7037(87)90257-2
    OpenUrlCrossRefGeoRefWeb of Science
  89. ↵
    1. Mortlock R. A.,
    2. Froelich P. N.
    , 1996, Determination of germanium by isotope dilution-hydride generation inductively coupled plasma mass spectrometry: Analytica Chimica Acta, v. 332, n. 2–3, p. 277–284, doi:https://doi.org/10.1016/0003-2670(96)00230-9
    OpenUrlCrossRefWeb of Science
  90. ↵
    1. Murnane R. J.,
    2. Stallard R. F.
    , 1990, Germanium and silicon in rivers of the Orinoco drainage-basin: Nature, v. 344, p. 749–752, doi:https://doi.org/10.1038/344749a0
    OpenUrlCrossRefGeoRefWeb of Science
  91. ↵
    1. Nesbitt H. W.,
    2. Young G. M.
    , 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, v. 299, p. 715–717, doi:https://doi.org/10.1038/299715a0
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    1. Norton K. P.,
    2. von Blanckenburg F.
    , 2010, Silicate weathering of soil-mantled slopes in an active Alpine landscape: Geochimica et Cosmochimica Acta, v. 74, n. 18, p. 5243–5258, doi:https://doi.org/10.1016/j.gca.2010.06.019
    OpenUrlCrossRefGeoRefWeb of Science
  93. ↵
    1. Norton K. P.,
    2. von Blanckenburg F.,
    3. Kubik P. W.
    , 2010, Cosmogenic nuclide‐derived rates of diffusive and episodic erosion in the glacially sculpted upper Rhone Valley, Swiss Alps: Earth Surface Processes and Landforms, v. 35, n. 6, p. 651–662, doi:https://doi.org/10.1002/esp.1961
    OpenUrlCrossRefGeoRefWeb of Science
  94. ↵
    1. Novokahatskiy I. P.,
    2. Kalinin S. K.,
    3. Zamyatina G. M.
    , 1967, Germanium content of igneous and altered rocks of Kazakhstan: Geochemistry International USSR, v. 4, p. 1192–1196.
    OpenUrl
  95. ↵
    1. Oeser R. A.,
    2. von Blanckenburg F.
    , 2020, Strontium isotopes trace biological activity in the Critical Zone along a climate and vegetation gradient: Chemical Geology, v. 558, p. 119861, doi:https://doi.org/10.1016/j.chemgeo.2020.119861
    OpenUrlCrossRef
  96. ↵
    1. Opfergelt S.,
    2. Delmelle P.
    , 2012, Silicon isotopes and continental weathering processes: Assessing controls on Si transfer to the ocean: Comptes Rendus Geoscience, v. 344, n. 11–12, p. 723–738, doi:https://doi.org/10.1016/j.crte.2012.09.006
    OpenUrlCrossRef
  97. ↵
    1. Opfergelt S.,
    2. Cardinal D.,
    3. André L.,
    4. Delvigne C.,
    5. Bremond L.,
    6. Delvaux B.
    , 2010, Variations of δ30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture: Geochimica et Cosmochimica Acta, v. 74, n. 1, p. 225–240, doi:https://doi.org/10.1016/j.gca.2009.09.025
    OpenUrlCrossRefGeoRefWeb of Science
    1. Parr J. F.,
    2. Dolic V.,
    3. Lancaster G.,
    4. Boyd W. E.
    , 2001, A microwave digestion method for the extraction of phytoliths from herbarium specimens: Review of Palaeobotany and Palynology, v. 116, p. 203–212, doi:https://doi.org/10.1016/S0034-6667(01)00089-6
    OpenUrlCrossRefGeoRef
  98. ↵
    1. Perez-Fodich A.,
    2. Derry L. A.
    , 2020, A model for germanium-silicon equilibrium fractionation in kaolinite: Geochimica et Cosmochimica Acta, v. 288, p. 199–213, doi:https://doi.org/10.1016/j.gca.2020.07.046
    OpenUrlCrossRef
  99. ↵
    1. Pilon-Smits E. A. H.,
    2. Quinn C. F.,
    3. Tapken W.,
    4. Malagoli M.,
    5. Schiavon M.
    , 2009, Physiological functions of beneficial elements: Current Opinion in Plant Biology, v. 12, n. 3, p. 267–274, doi:https://doi.org/10.1016/j.pbi.2009.04.009
    OpenUrlCrossRefPubMedWeb of Science
  100. ↵
    1. Pokrovski G. S.,
    2. Schott J.
    , 1998, Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters: Geochimica et Cosmochimica Acta, v. 62, n. 21–22, p. 3413–3428, doi:https://doi.org/10.1016/S0016-7037(98)00249-X
    OpenUrlCrossRefGeoRefWeb of Science
  101. ↵
    1. Pokrovsky O.,
    2. Pokrovski G.,
    3. Schott J.,
    4. Galy A.
    , 2006, Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization: Geochimica et Cosmochimica Acta, v. 70, n. 13, p. 3325–3341, doi:https://doi.org/10.1016/j.gca.2006.04.012
    OpenUrlCrossRefWeb of Science
    1. Prieto M.
    , 2009, Thermodynamics of solid solution-aqueous solution systems: Reviews in Mineralogy and Geochemistry, v. 70, p. 47–85, doi:https://doi.org/10.2138/rmg.2009.70.2
    OpenUrlFREE Full Text
  102. ↵
    1. Rains D. W.,
    2. Epstein E.,
    3. Zasoski R. J.,
    4. Aslam M.
    , 2006, Active silicon uptake by wheat: Plant and Soil, v. 280, p. 223–228, doi:https://doi.org/10.1007/s11104-005-3082-x
    OpenUrlCrossRefWeb of Science
  103. ↵
    1. Ran X.,
    2. Liu S.,
    3. Liu J.,
    4. Zang J.,
    5. Che H.,
    6. Ma Y.,
    7. Wang Y.
    , 2016, Composition and variability in the export of biogenic silica in the Changjiang River and the effect of Three Gorges Reservoir: Science of The Total Environment, v. 571, p. 1191–1199, doi:https://doi.org/10.1016/j.scitotenv.2016.07.125
    OpenUrlCrossRef
  104. ↵
    1. Riebe C. S.,
    2. Kirchner J. W.,
    3. Finkel R. C.
    , 2003, Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance: Geochimica et Cosmochimica Acta, v. 67, n. 22, p. 4411–4427, doi:https://doi.org/10.1016/S0016-7037(03)00382-X
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Sangster A. G.,
    2. Hodson M. J.,
    3. Tubb H. J.
    , 2001, Silicon deposition in higher plants : The Netherlands, Elsevier, Studies in Plant Science, v. 8, p. 85–113, doi:https://doi.org/10.1016/S0928-3420(01)80009-4
    OpenUrlCrossRef
  106. ↵
    1. Sauer D.,
    2. Saccone L.,
    3. Conley D. J.,
    4. Herrmann L.,
    5. Sommer M.
    , 2006, Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments: Biogeochemistry, v. 80, p. 89–108, doi:https://doi.org/10.1007/s10533-005-5879-3
    OpenUrlCrossRef
  107. ↵
    1. Savage P. S.,
    2. Armytage R. M. G.,
    3. Georg R. B.,
    4. Halliday A. N.
    , 2014, High temperature silicon isotope geochemistry: Lithos, v. 190–191, p. 500–519, doi:https://doi.org/10.1016/j.lithos.2014.01.003
    OpenUrlCrossRef
  108. ↵
    1. Savage P. S.,
    2. Georg R. B.,
    3. Williams H. M.,
    4. Halliday A. N.
    , 2013a, The silicon isotope composition of the upper continental crust: Geochimica et Cosmochimica Acta, v. 109, p. 384–399, doi:https://doi.org/10.1016/j.gca.2013.02.004
    OpenUrlCrossRefGeoRef
  109. ↵
    1. Savage P. S.,
    2. Georg R. B.,
    3. Williams H. M.,
    4. Halliday A. N.
    , 2013b, Silicon isotopes in granulite xenoliths: Insights into isotopic fractionation during igneous processes and the composition of the deep continental crust: Earth and Planetary Science Letters, v. 365, p. 221–231, doi:https://doi.org/10.1016/j.epsl.2013.01.019
    OpenUrlCrossRefGeoRef
  110. ↵
    1. Savage P. S.,
    2. Georg R. B.,
    3. Williams H. M.,
    4. Turner S.,
    5. Halliday A. N.,
    6. Chappell B. W.
    , 2012, The silicon isotope composition of granites: Geochimica et Cosmochimica Acta, v. 92, p. 184–202, doi:https://doi.org/10.1016/j.gca.2012.06.017
    OpenUrlCrossRefGeoRefWeb of Science
  111. ↵
    1. Schoelynck J.,
    2. Subalusky A. L.,
    3. Struyf E.,
    4. Dutton C. L.,
    5. Unzué-Belmonte D.,
    6. Van de Vijver B.,
    7. Post D. M.,
    8. Rosi E. J.,
    9. Meire P.,
    10. Frings P.
    , 2019, Hippos (Hippopotamus amphibius): The animal silicon pump: Science Advances, v. 5, n. 5, p. eaav0395, doi:https://doi.org/10.1126/sciadv.aav0395
    OpenUrlFREE Full Text
  112. ↵
    1. Scribner A. M.,
    2. Kurtz A. C.,
    3. Chadwick O. A.
    , 2006, Germanium sequestration by soil: Targeting the roles of secondary clays and Fe-oxyhydroxides: Earth and Planetary Science Letters, v. 243, n. 3–4, p. 760–770, doi:https://doi.org/10.1016/j.epsl.2006.01.051
    OpenUrlCrossRefGeoRef
  113. ↵
    1. Sferratore A.,
    2. Billen G.,
    3. Garnier J.,
    4. Théry S.
    , 2005, Modeling nutrient (N, P, Si) budget in the Seine watershed: Application of the Riverstrahler model using data from local to global scale resolution: Global Biogeochemical Cycles, v. 19, n. 4, doi:https://doi.org/10.1029/2005GB002496
    OpenUrlCrossRef
  114. ↵
    1. Smis A.,
    2. Van Damme S.,
    3. Struyf E.,
    4. Clymans W.,
    5. Van Wesemael B.,
    6. Frot E.,
    7. Vandevenne F.,
    8. Van Hoestenberghe T.,
    9. Govers G.,
    10. Meire P.
    , 2011, A trade-off between dissolved and amorphous silica transport during peak flow events (Scheldt river basin, Belgium): Impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments: Biogeochemistry, v. 106, p. 475–487, doi:https://doi.org/10.1007/s10533-010-9527-1
    OpenUrlCrossRef
  115. ↵
    1. Sommer M.,
    2. Kaczorek D.,
    3. Kuzyakov Y.,
    4. Breuer J.
    , 2006, Silicon pools and fluxes in soils and landscapes – a review: Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, v. 169, n. 3, p. 310–329, doi:https://doi.org/10.1002/jpln.200521981
    OpenUrlCrossRef
  116. ↵
    1. Sparks J. P.,
    2. Chandra S.,
    3. Derry L. A.,
    4. Parthasarathy M. V.,
    5. Daugherty C. S.,
    6. Griffin R.
    , 2011, Subcellular localization of silicon and germanium in grass root and leaf tissues by SIMS: Evidence for differential and active transport: Biogeochemistry, v. 104, p. 237–249, doi:https://doi.org/10.1007/s10533-010-9498-2
    OpenUrlCrossRef
  117. ↵
    1. Strömberg C. A. E.,
    2. Di Stilio V. S.,
    3. Song Z.
    , 2016, Functions of phytoliths in vascular plants: An evolutionary perspective: Functional Ecology, v. 30, n. 8, p. 1286–1297, doi:https://doi.org/10.1111/1365-2435.12692
    OpenUrlCrossRef
  118. ↵
    1. Struyf E.,
    2. Smis A.,
    3. Van Damme S.,
    4. Garnier J.,
    5. Govers G.,
    6. Van Wesemael B.,
    7. Conley D. J.,
    8. Batelaan O.,
    9. Frot E.,
    10. Clymans W.,
    11. Vandevenne F.,
    12. Lancelot C.,
    13. Goos P.,
    14. Meire P.
    , 2010, Historical land use change has lowered terrestrial silica mobilization: Nature Communications, v. 1, article number 129, doi:https://doi.org/10.1038/ncomms1128
    OpenUrlCrossRef
  119. ↵
    1. Trembath-Reichert E.,
    2. Wilson J. P.,
    3. McGlynn S. E.,
    4. Fischer W. W.
    , 2015, Four hundred million years of silica biomineralization in land plants: Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 17, p. 5449–5454, doi:https://doi.org/10.1073/pnas.1500289112
    OpenUrlAbstract/FREE Full Text
  120. ↵
    1. Turowski J. M.,
    2. Hilton R. G.,
    3. Sparkes R.
    , 2016, Decadal carbon discharge by a mountain stream is dominated by coarse organic matter: Geology, v. 44, n. 1, p. 27–30, doi:https://doi.org/10.1130/G37192.1
    OpenUrlAbstract/FREE Full Text
  121. ↵
    1. Uhlig D.,
    2. Schuessler J. A.,
    3. Bouchez J.,
    4. Dixon J. L.,
    5. von Blanckenburg F.
    , 2017, Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes: Biogeosciences, v. 14, p. 3111–3128, doi:https://doi.org/10.5194/bg-14-3111-2017
    OpenUrlCrossRef
  122. ↵
    1. Vandevenne F.,
    2. Struyf E.,
    3. Clymans W.,
    4. Meire P.
    , 2012, Agricultural silica harvest: Have humans created a new loop in the global silica cycle?: Frontiers in Ecology and the Environment, v. 10, n. 5, p. 243–248, doi:https://doi.org/10.1890/110046
    OpenUrlCrossRef
  123. ↵
    1. von Blanckenburg F.,
    2. Schuessler J. A.,
    3. Bouchez J.,
    4. Frings P. J.,
    5. Uhlig D.,
    6. Oelze M.,
    7. Frick D. A.,
    8. Hewawasam T.,
    9. Dixon J.,
    10. Norton K.
    , 2021, Rock weathering and nutrient cycling along an erodosequence: American Journal of Science, v. 321, n. 8, p. 1111–1163, doi:https://doi.org/10.24.75/08.2021.01
    OpenUrlAbstract/FREE Full Text
  124. ↵
    1. West A. J.,
    2. Lin C.-W.,
    3. Lin T.-C.,
    4. Hilton R. G.,
    5. Liu S.-H.,
    6. Chang C.-T.,
    7. Lin K.-C.,
    8. Galy A.,
    9. Sparkes R. B.,
    10. Hovius N.
    , 2011, Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm: Limnology and Oceanography, v. 56, n. 1, p. 77–85, doi:https://doi.org/10.4319/lo.2011.56.1.0077
    OpenUrlCrossRef
  125. ↵
    1. White A. F.,
    2. Vivit D. V.,
    3. Schulz M. S.,
    4. Bullen T. D.,
    5. Evett R. R.,
    6. Aagarwal J.
    , 2012, Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence, California: Geochimica et Cosmochimica Acta, v. 94, p. 72–94, doi:https://doi.org/10.1016/j.gca.2012.06.009
    OpenUrlCrossRefGeoRef
  126. ↵
    1. Wiche O.,
    2. Székely B.,
    3. Moschner C.,
    4. Heilmeier H.
    , 2018, Germanium in the soil-plant system—a review: Environmental Science and Pollution Research, v. 25, p. 31938–31956, doi:https://doi.org/10.1007/s11356-018-3172-y
    OpenUrlCrossRef
  127. ↵
    1. Wickman F. E.
    , 1943, Some aspects of the geochemistry of igneous rocks and of differentiation by crystallization: Geologiska Föreningen i Stockholm Förhandlingar, v. 65, n. 4, p. 371–396, doi:https://doi.org/10.1080/11035894309447152
    OpenUrlCrossRef
  128. ↵
    1. Winnick M. J.,
    2. Maher K.
    , 2018, Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback: Earth and Planetary Science Letters, v. 485, p. 111–120, doi:https://doi.org/10.1016/j.epsl.2018.01.005
    OpenUrlCrossRef
  129. ↵
    1. Wittmann H.,
    2. Oelze M.,
    3. Gaillardet J.,
    4. Garzanti E.,
    5. von Blanckenburg F.
    , 2020, A global rate of denudation from cosmogenic nuclides in the Earth's largest rivers: Earth-Science Reviews, v. 204, p. 103147, doi:https://doi.org/10.1016/j.earscirev.2020.103147
    OpenUrlCrossRef
  130. ↵
    1. Wohl E.,
    2. Dwire K.,
    3. Sutfin N.,
    4. Polvi L.,
    5. Bazan R.
    , 2012, Mechanisms of carbon storage in mountainous headwater rivers: Nature Communications, v. 3, article number 1263, p. 1–8, doi:https://doi.org/10.1038/ncomms2274
    OpenUrlCrossRef
  131. ↵
    1. Zang J.,
    2. Liu S.,
    3. Liu Y.,
    4. Ma Y.,
    5. Ran X.
    , 2016, Contribution of phytoliths to total biogenic silica volumes in the tropical rivers of Malaysia and associated implications for the marine biogeochemical cycle: Chinese Journal of Oceanology and Limnology, v. 34, p. 1076–1084, doi:https://doi.org/10.1007/s00343-016-5116-z
    OpenUrlCrossRef
  132. ↵
    1. Ziegler K.,
    2. Chadwick O. A.,
    3. Brzezinski M. A.,
    4. Kelly E. F.
    , 2005a, Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands: Geochimica et Cosmochimica Acta, v. 69, n. 19, p. 4597–4610, doi:https://doi.org/10.1016/j.gca.2005.05.008
    OpenUrlCrossRefGeoRefWeb of Science
  133. ↵
    1. Ziegler K.,
    2. Chadwick O. A.,
    3. White A. F.,
    4. Brzezinski M. A.
    , 2005b, δ30Si systematics in a granitic saprolite, Puerto Rico: Geology, v. 33, n. 10, p. 817–820, doi:https://doi.org/10.1130/G21707.1
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (8)
American Journal of Science
Vol. 321, Issue 8
1 Oct 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantifying biotic and abiotic Si fluxes in the Critical Zone with Ge/Si ratios along a gradient of erosion rates
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Quantifying biotic and abiotic Si fluxes in the Critical Zone with Ge/Si ratios along a gradient of erosion rates
Patrick J. Frings, Franziska Schubring, Marcus Oelze, Friedhelm von Blanckenburg
American Journal of Science Oct 2021, 321 (8) 1204-1245; DOI: 10.2475/08.2021.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Quantifying biotic and abiotic Si fluxes in the Critical Zone with Ge/Si ratios along a gradient of erosion rates
Patrick J. Frings, Franziska Schubring, Marcus Oelze, Friedhelm von Blanckenburg
American Journal of Science Oct 2021, 321 (8) 1204-1245; DOI: 10.2475/08.2021.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • STUDY SITES
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGEMENTS
    • APPENDICES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire