Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

A Laurentian cratonic reference from the distal Proterozoic basement of Western Newfoundland using tandem in situ and isotope dilution U-pb zircon and titanite geochronology

Eben B. Hodgin, Francis A. Macdonald, James L. Crowley and Mark D. Schmitz
American Journal of Science September 2021, 321 (7) 1045-1079; DOI: https://doi.org/10.2475/07.2021.02
Eben B. Hodgin
*Department of Earth and Planetary Sciences, Harvard University, Cambridge Massachusetts, 02138, USA
**Dept. of Earth and Planetary Science, University of California, Berkeley, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ebenblake@berkeley.edu
Francis A. Macdonald
***Earth Science Department, University of California, Santa Barbara, California, 93106, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James L. Crowley
§Department of Geosciences, Boise State University, Boise, Idaho 83725, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark D. Schmitz
§Department of Geosciences, Boise State University, Boise, Idaho 83725, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Aleinikoff J. N.,
    2. Burton W. C.,
    3. Lyttle P. T.,
    4. Nelson A. E.,
    5. Southworth C. S.
    , 2000, U–Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA: Precambrian Research, v. 99, n. 1–2, p. 113–146, doi:https://doi.org/10.1016/S0301-9268(99)00056-X
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Aleinikoff J. N.,
    2. Wintsch R. P.,
    3. Tollo R. P.,
    4. Unruh D. M.,
    5. Fanning C. M.,
    6. Schmitz M. D.
    , 2007, Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England: American Journal of Science, v. 307, n. 1, p. 63–118, doi:https://doi.org/10.2475/01.2007.04
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Aleinikoff J. N.,
    2. Southworth S.,
    3. Merschat A. J.
    , 2013, Implications for late Grenvillian (Rigolet phase) construction of Rodinia using new U-Pb data from the Mars Hill terrane, Tennessee and North Carolina, United States: Geology, v. 41, n. 10, p. 1087–1090, doi:https://doi.org/10.1130/G34779.1
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Allen J. S.
    , ms, 2009, Paleogeographic reconstruction of the St. Lawrence promontory, western Newfoundland: Lexington, Kentucky, University of Kentucky, Ph. D. thesis, 288 p.
  5. ↵
    1. Tollo R. P.,
    2. Bartholomew M. J.,
    3. Hibbard J. P.,
    4. Karabinos P. M.
    1. Allen J. S.,
    2. Thomas W. A.,
    3. Lavoie D.
    , 2010, The Laurentian margin of northeastern North America, in Tollo R. P., Bartholomew M. J., Hibbard J. P., Karabinos P. M., editors, From Rodinia to Pangea: The lithotectonic record of the Appalachain region: Geological Society of America Memoirs, n. 206, p. 71–90, doi:https://doi.org/10.1130/2010.1206(04)
    OpenUrlCrossRef
  6. ↵
    1. Augland L. E.,
    2. Moukhsil A.,
    3. Solgadi F.,
    4. Indares A.
    , 2015, Pinwarian to Grenvillian magmatic evolution in the central Grenville Province: New constraints from ID–TIMS U–Pb ages and coupled Lu–Hf S–MC–ICP–MS data: Canadian Journal of Earth Sciences, v. 52, n. 9, p. 701–721, doi:https://doi.org/10.1139/cjes-2014-0232
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Bosworth W.
    , 1985, Geometry of propagating continental rifts: Nature, v. 316, n. 6029, p. 625–627, doi:https://doi.org/10.1038/316625a0
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Brem A. G.
    , ms, 2007, The late Neoproterozoic to Early Paleozoic evolution of the Long Range Mountains, southwestern Newfoundland: Waterloo, Ontario, Canada, University of Waterloo, Ph. D. thesis, 164 p.
  9. ↵
    1. Brewer T. S.,
    2. Storey C. D.,
    3. Parrish R. R.,
    4. Temperley S.,
    5. Windley B. F.
    , 2003, Grenvillian age decompression of eclogites in the Glenelg–Attadale Inlier, NW Scotland: Journal of the Geological Society, v. 160, n. 4, p. 565–574, doi:https://doi.org/10.1144/0016-764902-061
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Cawood P. A.,
    2. Nemchin A. A.
    , 2001, Paleogeographic development of the east Laurentian margin: Constraints from U-Pb dating of detrital zircons in the Newfoundland Appalachians: GSA Bulletin, v. 113, n. 9, p. 1234–1246, doi:https://doi.org/10.1130/0016-7606(2001)113<1234:PDOTEL>2.0.CO;2
    OpenUrlCrossRef
  11. ↵
    1. Cawood P. A.,
    2. van Gool J. A. M.
    , 1998, Geology of the Corner Brook-Glover Island region, Newfoundland: Geological Survey of Canada, Bulletin 47, 107 p. doi:https://doi.org/10.4095/209573
    OpenUrlCrossRef
    1. Cawood P. A.,
    2. Williams H.
    , 1988, Acadian basement thrusting, crustal delamination, and structural styles in and around the Humber Arm allochthon, western Newfoundland: Geology, v. 16, n. 4, p. 370–373, doi:https://doi.org/10.1130/0091-7613(1988)016<0370:ABTCDA>2.3.CO;2
    OpenUrlCrossRef
  12. ↵
    1. Cawood P. A.,
    2. Dunning G. R.,
    3. Lux D.,
    4. van Gool J. A. M.
    , 1994, Timing of peak metamorphism and deformation along the Appalachian margin of Laurentia in Newfoundland: Silurian, not Ordovician: Geology, v. 22, n. 5, p. 399–402, doi:https://doi.org/10.1130/0091-7613(1994)022<0399:TOPMAD>2.3.CO;2
    OpenUrlCrossRef
  13. ↵
    1. Hibbard J. P.,
    2. van Staal C. R.,
    3. Cawood P. A.
    1. Cawood P. A.,
    2. van Gool J. A. M.,
    3. Dunning G. R.
    , 1995, Collisional tectonics along the Laurentian margin of the Newfoundland Appalachians, in Hibbard J. P., van Staal C. R., Cawood P. A., editors, Current Perspectives in the Appalachian-Caledonian Orogen: Geological Association of Canada Special Paper 41, p. 283–301.
  14. ↵
    1. Cawood P. A.,
    2. van Gool J. A. M.,
    3. Dunning G. R.,
    1996, Geological development of eastern Humber and western Dunnage zones: Corner Brook–Glover Island region, Newfoundland: Canadian Journal of Earth Sciences, v. 33, n. 2, p. 182–198, doi:https://doi.org/10.1139/e96-017
    OpenUrlAbstract
  15. ↵
    1. Cawood P. A.,
    2. McCausland P. J. A.,
    3. Dunning G. R.
    , 2001, Opening Iapetus: Constraints from the Laurentian margin in Newfoundland: GSA Bulletin, v. 113, n. 4, p. 443–453, doi:https://doi.org/10.1130/0016-7606(2001)113<0443:OICFTL>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Cawood P. A.,
    2. Pisarevsky S. A.
    , 2017, Laurentia-Baltica-Amazonia relations during Rodinia assembly: Precambrian Research, v. 292, p. 386–397, doi:https://doi.org/10.1016/j.precamres.2017.01.031
    OpenUrlCrossRef
  17. ↵
    1. Cawood P. A.,
    2. Nemchin A. A.,
    3. Strachan R. A.,
    4. Kinny P. D.,
    5. Loewy S.
    , 2004, Laurentian provenance and an intracratonic tectonic setting for the Moine Supergroup, Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions: Journal of the Geological Society, v. 161, n. 5, p. 861–874, doi:https://doi.org/10.1144/16-764903-117
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Cawood P. A.,
    2. Nemchin A. A.,
    3. Strachan R. A.,
    4. Prave T.,
    5. Krabbendam M.
    , 2007a, Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia: Journal of the Geological Society, v. 164, n. 2, p. 257–275, doi:https://doi.org/10.1144/0016-76492006-115
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Cawood P. A.,
    2. Nemchin A. A.,
    3. Strachan R.
    , 2007b, Provenance record of Laurentian passive-margin strata in the northern Caledonides: Implications for paleodrainage and paleogeography: GSA Bulletin, v. 119, n. 7–8, p. 993–1003, doi:https://doi.org/10.1130/B26152.1
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Corfu F.,
    2. Hanchar J. M.,
    3. Hoskin P. W.,
    4. Kinny P.
    , 2003, Atlas of zircon textures: Reviews in Mineralogy and Geochemistry, v. 53, n. 1, p. 469–500, doi:https://doi.org/10.2113/0530469
    OpenUrlCrossRef
    1. Crowley J. L.,
    2. Schoene B.,
    3. Bowring S. A.
    , 2007, U-Pb dating of zircon in the Bishop Tuff at the millennial scale: Geology, v. 35, n., 12, p. 1123–1126, doi:https://doi.org/10.1130/G24017A.1
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Currie K. L.,
    2. Van Berkel J. T.
    , 1992, Notes to accompany of geological map of the southern Long Range, southwestern Newfoundland; Geological Survey of Canada, Paper n. 91–10, 13 p., doi:https://doi.org/10.4095/134061
  22. ↵
    1. Currie K. L.,
    2. van Breemen O.,
    3. Hunt P. A.,
    4. van Berkel J. T.
    , 1992, Age of high-grade gneisses south of Grand Lake, Newfoundland: Atlantic Geology, v. 28, n. 2, doi:https://doi.org/10.4138/1857
    OpenUrlCrossRef
    1. Dallmeyer R. D.
    , 1978, 40Ar/39Ar incremental-release ages of hornblende and biotite from Grenville basement rocks within the Indian Head Range complex, southwest Newfoundland: Their bearing on Late Proterozoic–Early Paleozoic thermal history: Canadian Journal of Earth Sciences, v. 15, n. 8, p. 1374–1379, doi:https://doi.org/10.1139/e78-142
    OpenUrlAbstract
    1. Dallmeyer R. D.,
    2. Williams H.
    , 1975, 40Ar/39Ar ages from the Bay of Islands metamorphic aureole: Their bearing on the timing of Ordovician ophiolite obduction: Canadian Journal of Earth Sciences, v. 12, n. 9, p. 1685–1690, doi:https://doi.org/10.1139/e75-148
    OpenUrlAbstract
    1. Daly J. S.,
    2. McClelland J. M.
    , 1991, Juvenile middle Proterozoic crust in the Adirondack Highlands, Grenville province, northeastern North America: Geology, v. 19, n. 2, p. 119–122, doi:https://doi.org/10.1130/0091-7613(1991)019<0119:JMPCIT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Dalziel I. W.
    , 1997, OVERVIEW: Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation: GSA Bulletin, v. 109, n. 1, p. 16–42, doi:https://doi.org/10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Gerstenberger H.,
    2. Haase G.
    , 1997, A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations: Chemical Geology, v. 136, n. 3–4, p. 309–312, doi:https://doi.org/10.1016/S0009-2541(96)00033-2
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Gower C. F.,
    2. Krogh T. E.
    , 2002, A U–Pb geochronological review of the Proterozoic history of the eastern Grenville Province: Canadian Journal of Earth Sciences, v. 39, n. 5, p. 795–829, doi:https://doi.org/10.1139/e01-090
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Gower C. F.,
    2. Loveridge W. D.
    , 1987, Grenvillian plutonism in the eastern Grenville Province: Radiogenic age and isotopic studies, Report, 1, Geological Survey of Canada Paper n. 87-2, p. 55–58, doi:https://doi.org/10.4095/122748
    OpenUrlCrossRef
  27. ↵
    1. Gower C. F.,
    2. Tucker R. D.
    , 1994, Distribution of pre-1400 Ma crust in the Grenville province: Implications for rifting in Laurentia-Baltica during geon 14: Geology, v. 22, n. 9, p. 827–830, doi:https://doi.org/10.1130/0091-7613(1994)022<0827:DOPMCI>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Gower C. F.,
    2. Heaman L. M.,
    3. Loveridge W. D.,
    4. Schärer U.,
    5. Tucker R. D.
    , 1991, Grenvillian magmatism in the eastern Grenville Province, Canada: Precambrian Research, v. 51 n. 1–4, p. 315–336, doi:https://doi.org/10.1016/0301-9268(91)90106-K
    OpenUrlCrossRefGeoRefWeb of Science
    1. Grimes C. B.,
    2. Wooden J. L.,
    3. Cheadle M. J.,
    4. John B. E.
    , 2015, “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon: Contributions to Mineralogy and Petrology, v. 170, n. 5–6, article number 46,doi:https://doi.org/10.1007/s00410-015-1199-3
    OpenUrlCrossRef
    1. Hawkesworth C. J.,
    2. Kemp A. I. S.
    , 2006, Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution: Chemical Geology, v. 226. n. 3–4, p.144–162, doi:https://doi.org/10.1016/j.chemgeo.2005.09.018
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Heaman L. M.,
    2. Erdmer P.,
    3. Owen J. V.
    , 2002, U–Pb geochronologic constraints on the crustal evolution of the Long Range Inlier, Newfoundland: Canadian Journal of Earth Sciences, v. 39, n. 5, p. 845–865. doi:https://doi.org/10.1139/e02-015
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Heaman L. M.,
    2. Gower C. F.,
    3. Perreault S.
    , 2004, The timing of Proterozoic magmatism in the Pinware terrane of southeast Labrador, easternmost Quebec and northwest Newfoundland: Canadian Journal of Earth Sciences, v. 41, n. 2, p. 127–150, doi:https://doi.org/10.1139/e03-088
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Hibbard J. P.,
    2. Van Staal C. R.,
    3. Rankin D. W.,
    4. Williams H.
    , 2006, Lithotectonic map of the Appalachian orogen, Canada–United States of America: Geological Survey of Canada Map A, v. 2096, p. 2, doi:https://doi.org/10.4095/221932
    OpenUrlCrossRef
    1. Hiess J.,
    2. Condon D. J.,
    3. McLean N.,
    4. Noble S. R.
    , 2012, 238U/235U systematics in terrestrial uranium-bearing minerals: Science, v. 335, no. 6076, p. 1610–1614, doi:https://doi.org/10.1126/science.1215507
    OpenUrlCrossRef
  32. ↵
    1. Jaffey A.H.,
    2. Flynn K.F.,
    3. Glendenin L.E.,
    4. Bentley W.T.,
    5. Essling A.M.
    , 1971, Precision measurement of half-lives and specific activities of 235U and 238U: Physical review C, v. 4, n. 5, p.1889, doi:https://doi.org/10.1103/PhysRevC.4.1889
    OpenUrlCrossRefPubMed
  33. ↵
    1. Kalsbeek F.,
    2. Thrane K.,
    3. Nutman A. P.,
    4. Jepsen H. F.
    , 2000, Late Mesoproterozoic to early Neoproterozoic history of the East Greenland Caledonides: Evidence for Grenvillian orogenesis?: Journal of the Geological Society, v. 157, n. 6, p. 1215–1225, doi:https://doi.org/10.1144/jgs.157.6.1215
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Kamo S. L.,
    2. Gower C. F.,
    3. Krogh T. E.
    , 1989, Birthdate for the lapetus Ocean? A precise U-Pb zircon and baddeleyite age for the Long Range dikes, southeast Labrador: Geology, v. 17, n. 7, p. 602–605, doi:https://doi.org/10.1130/0091-7613(1989)017<0602:BFTLOA>2.3.CO;2
    OpenUrlCrossRef
  35. ↵
    1. Karabinos P.,
    2. Aleinikoff J. N.
    , 1990, Evidence for a major middle Proterozoic, post-Grenvillian igneous event in western New England: American Journal of Science, v. 290, n. 8, p. 959–974, doi:https://doi.org/10.2475/ajs.290.8.959
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Karabinos P.,
    2. Morris D.,
    3. Hamilton M.,
    4. Rayner N.
    , 2008, Age, origin, and tectonic significance of Mesoproterozoic and Silurian felsic sills in the Berkshire massif, Massachusetts: American Journal of Science, v. 308, n. 6, p. 787–812, doi:https://doi.org/10.2475/06.2008.03
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Karabinos P.,
    2. Macdonald F. A.,
    3. Crowley J. L.
    , 2017, Bridging the gap between the foreland and the hinterland I.: Geochronology and tectonic geometry of Ordovician magmatism and terrane accretion on the Laurentian margin of New England: American Journal of Science, v. 317, n. 5, p. 515–554, doi:https://doi.org/10.2475/05.2017.01
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Kirkland C. L.,
    2. Stephen Daly J.,
    3. Whitehouse M. J.
    , 2007, Provenance and terrane evolution of the Kalak Nappe Complex, Norwegian Caledonides: Implications for Neoproterozoic paleogeography and tectonics: The Journal of Geology, v. 115, n. 1, p. 21–41, doi:https://doi.org/10.1086/509247
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Knight I.
    , 1992, Geology of marmorized, Lower Paleozoic, platformal rocks, 'Pye's ridge', Deer Lake, in Current Research: Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 92-1, p. 141–157.
  40. ↵
    1. Knight I.,
    1994, Geology of Cambrian–Ordovician platformal rocks of the Pasadena map sheet (12H/4): Newfoundland Department of Mines and Energy, Geological Survey Branch, p. 175–186.
  41. ↵
    1. Knight I.
    , 1997, Geology of Cambro-Ordovician Carbonate Shelf and Coeval Off-shelf Rocks, Southwest of Corner Brook, Western Newfoundland: Department of Natural Resources, Geological Survey, Current Research, Geological Survey, Report 97-1, p. 211–235.
  42. ↵
    1. Krabbendam M.,
    2. Bonsor H.,
    3. Horstwood M. S. A.,
    4. Rivers T.
    , 2017, Tracking the evolution of the Grenvillian Foreland Basin: Constraints from sedimentology and detrital zircon and rutile in the Sleat and Torridon groups, Scotland: Precambrian Research, v. 295, p. 67–89, doi:https://doi.org/10.1016/j.precamres.2017.04.027
    OpenUrlCrossRef
  43. ↵
    1. Krogh T. E.
    , 1973, A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations: Geochimica et Cosmochimica Acta, v. 37, n. 3, p. 485–494, doi:https://doi.org/10.1016/0016-7037(73)90213-5
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Li Z. X.,
    2. Bogdanova S. V.,
    3. Collins A. S.,
    4. Davidson A.,
    5. De Waele B.,
    6. Ernst R. E.,
    7. Fitzsimons I. C. W.,
    8. Fuck R. A.,
    9. Gladkochub D. P.,
    10. Jacobs J.,
    11. Karlstrom K. E.,
    12. Lu S.,
    13. Natapov L. M.,
    14. Pease V.,
    15. Pisarevsky S. A.,
    16. Thrane K.,
    17. Vernikovsky V.
    , 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, v. 160, n. 1–2, p. 179–210, doi:https://doi.org/10.1016/j.precamres.2007.04.021
    OpenUrlCrossRef
  45. ↵
    1. Lin S.,
    2. Brem A. G.,
    3. van Staal C. R.,
    4. Davis D. W.,
    5. McNicoll V. J.,
    6. Pehrsson S.
    , 2013, The Corner Brook Lake block in the Newfoundland Appalachians: A suspect terrane along the Laurentian margin and evidence for large-scale orogen-parallel motion: GSA Bulletin, v. 125, n. 9–10, p. 1618–1632, doi:https://doi.org/10.1130/B30805.1
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Ludwig K.R.
    , 2003, User's manual for IsoPlot 3.0. A Geochronological Toolkit for Microsoft Excel, 71: Berkeley, California.
  47. ↵
    1. Macdonald F. A.,
    2. Ryan-Davis J.,
    3. Coish R. A.,
    4. Crowley J. L.,
    5. Karabinos P.
    , 2014, A newly identified Gondwanan terrane in the northern Appalachian Mountains: Implications for the Taconic orogeny and closure of the Iapetus Ocean: Geology, v. 42, n. 6, p. 539–542, doi:https://doi.org/10.1130/G35659.1
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Macdonald F. A.,
    2. Karabinos P. M.,
    3. Crowley J. L.,
    4. Hodgin E. B.,
    5. Crockford P. W.,
    6. Delano J. W.
    , 2017, Bridging the gap between the foreland and the hinterland II: Geochronology and tectonic setting of Ordovician magmatism and basin formation on the Laurentian margin of New England and Newfoundland: American Journal of Science, v. 371, n. 5, p. 555–596, doi:https://doi.org/10.2475/05.2017.02
    OpenUrlCrossRef
  49. ↵
    1. Martin A. J.,
    2. Bosbyshell H.
    , 2019, Further detrital zircon evidence for peri-Gondwanan blocks in the central Appalachian Piedmont Province, USA: Canadian Journal of Earth Sciences, v. 56, n. 10,doi:https://doi.org/10.1139/cjes-2018-0253
    OpenUrlCrossRef
  50. ↵
    1. Mattinson J. M.
    , 2005, Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages: Chemical Geology, v. 220, n. 1–2, p. 47–66, doi:https://doi.org/10.1016/j.chemgeo.2005.03.011
    OpenUrlCrossRefGeoRefWeb of Science
    1. McLelland J.,
    2. Hamilton M.,
    3. Selleck B.,
    4. McLelland J.,
    5. Walker D.,
    6. Orrell S.
    , 2001, Zircon U-Pb geochronology of the Ottawan orogeny, Adirondack highlands, New York: Regional and tectonic implications: Precambrian Research, v. 109, n. 1–2, p. 39–72, doi:https://doi.org/10.1016/S0301-9268(01)00141-3
    OpenUrlCrossRef
  51. ↵
    1. McLelland J. M.,
    2. Selleck B. W.,
    3. Hamilton M. A.,
    4. Bickford M. E.
    , 2010, Late-to post-tectonic setting of some major Proterozoic anorthosite–mangerite–charnockite–granite (AMCG) suites: The Canadian Mineralogist, v. 48, n. 4, p. 729–750, doi:https://doi.org/10.3749/canmin.48.4.729
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Merdith A. S.,
    2. Collins A. S.,
    3. Williams S. E.,
    4. Pisarevsky S.,
    5. Foden J. D.,
    6. Archibald D. B.,
    7. Blades M. L.,
    8. Alessio B. L.,
    9. Armistead S.,
    10. Plavsa D.,
    11. Clark C.,
    12. Müller R. D.
    , 2017, A full-plate global reconstruction of the Neoproterozoic: Gondwana Research, v. 50, p. 84–134, doi:https://doi.org/10.1016/j.gr.2017.04.001
    OpenUrlCrossRef
  53. ↵
    1. Miller B. V.,
    2. Barr S. M.
    , 2004, Metamorphosed gabbroic dikes related to opening of Iapetus ocean at the St. Lawrence Promontory: Blair River Inlier, Nova Scotia, Canada: The Journal of Geology, v. 112, n. 3, p. 277–288, doi:https://doi.org/10.1086/382759
    OpenUrlCrossRef
  54. ↵
    1. Miller B. V.,
    2. Dunning G. R.,
    3. Barr S. M.,
    4. Raeside R. P.,
    5. Jamieson R. A.,
    6. Reynolds P. H.
    , 1996, Magmatism and metamorphism in a Grenvillian fragment: U-Pb and 40Ar/39Ar ages from the Blair River Complex, northern Cape Breton Island, Nova Scotia, Canada: GSA Bulletin, v. 108, n. 2, p. 127–140, doi:https://doi.org/10.1130/0016-7606(1996)108<0127:MAMIAG>2.3.CO;2
    OpenUrlCrossRef
  55. ↵
    1. Moecher D. P.,
    2. Bowersox J. R.,
    3. Hickman J. B.
    , 2018, Zircon U-Pb geochronology of two basement cores (Kentucky, USA): Implications for late Mesoproterozoic sedimentation and tectonics in the eastern Midcontinent: The Journal of Geology, v. 126, n. 1, p. 25–39, doi:https://doi.org/10.1086/694825
    OpenUrlCrossRef
  56. ↵
    1. Oberti R.,
    2. Smith D. C.,
    3. Rossi G.,
    4. Caucia F.
    , 1991, The crystal-chemistry of high-aluminium titanites: European Journal of Mineralogy, v. 3, n. 5, p. 777–792, doi:https://doi.org/10.1127/ejm/3/5/0777
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Owen J. V.,
    2. Longstaffe F. J.,
    3. Greenough J. D.
    , 2003, Petrology of sapphirine granulite and associated sodic gneisses from the Indian Head Range, Newfoundland: Lithos, v. 68, n. 3–4, p. 91–114, doi:https://doi.org/10.1016/S0024-4937(03)00043-4
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. Parnell J.,
    2. Mark D.,
    3. Fallick A. E.,
    4. Boyce A.,
    5. Thackrey S.
    , 2011, The age of the Mesoproterozoic Stoer Group sedimentary and impact deposits, NW Scotland: Journal of the Geological Society, v. 168, n. 2, p. 349–358, doi:https://doi.org/10.1144/0016-76492010-099
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Pettersson C. H.,
    2. Pease V.,
    3. Frei D.
    , 2009, U–Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: Implications for the Grenvillian–Sveconorwegian orogeny and development of Rodinia: Precambrian Research, v. 175, n. 1–4, p. 206–220, doi:https://doi.org/10.1016/j.precamres.2009.09.010
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Rainbird R.,
    2. Cawood P.,
    3. Gehrels G.
    , 2012, The great Grenvillian sedimentation episode: Record of supercontinent Rodinia's assembly: Tectonics of sedimentary basins: Recent Advances, p. 583–601, doi:https://doi.org/10.1002/9781444347166.ch29
    OpenUrlCrossRef
  61. ↵
    1. Rivers T.
    , 1997, Lithotectonic elements of the Grenville Province: Review and tectonic implications: Precambrian Research, v. 86, n. 3–4, p. 117–154, doi:https://doi.org/10.1016/S0301-9268(97)00038-7
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Rubatto D.
    , 2017, Zircon: The metamorphic mineral: Reviews in Mineralogy and Geochemistry, v. 83, n. 1, p. 261–295, doi:https://doi.org/10.2138/rmg.2017.83.9
    OpenUrlFREE Full Text
  63. ↵
    1. Santos J. O. S.,
    2. Hartmann L. A.,
    3. McNaughton N. J.,
    4. Easton R. M.,
    5. Rea R. G.,
    6. Potter P. E.
    , 2002, Sensitive high resolution ion microprobe (SHRIMP) detrital zircon geochronology provides new evidence for a hidden Neoproterozoic foreland basin to the Grenville Orogen in the eastern Midwest, USA: Canadian Journal of Earth Sciences, v. 39, n. 10, p. 1505–1515, doi:https://doi.org/10.1139/e02-052
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Schaltegger U.,
    2. Fanning C. M.,
    3. Günther D.,
    4. Maurin J. C.,
    5. Schulmann K.,
    6. Gebauer D.
    , 1999, Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: Conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence: Contributions to Mineralogy and Petrology, v. 134, n. 2–3, p. 186–201, doi:https://doi.org/10.1007/s004100050478
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Schmitz M. D.,
    2. Schoene B.
    , 2007, Derivation of isotope ratios, errors, and error correlations for U‐Pb geochronology using 205Pb‐235U‐(233U)‐spiked isotope dilution thermal ionization mass spectrometric data: Geochemistry, Geophysics, Geosystems, v. 8, n. 8, doi:https://doi.org/10.1029/2006GC001492
    OpenUrlCrossRef
  66. ↵
    1. Sláma J.,
    2. Košler J.,
    3. Condon D. J.,
    4. Crowley J. L.,
    5. Gerdes A.,
    6. Hanchar J. M.,
    7. Horstwood M. S. A.,
    8. Morris G. A.,
    9. Nasdala L.,
    10. Norberg N.,
    11. Schaltegger U.,
    12. Schoene B.,
    13. Tubrett M. N.,
    14. Whitehouse M. J.
    , 2008, Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, n. 1–2, p. 1–35, doi:https://doi.org/10.1016/j.chemgeo.2007.11.005
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Spandler C.,
    2. Hammerli J.,
    3. Sha P.,
    4. Hilbert-Wolf H.,
    5. Hu Y.,
    6. Roberts E.,
    7. Schmitz M.
    , 2016, MKED1: A new titanite standard for in situ analysis of Sm-Nd isotopes and U-Pb geochronology: Chemical Geology, v. 425, p. 110–126, doi:https://doi.org/10.1016/j.chemgeo.2016.01.002
    OpenUrlCrossRefGeoRef
  68. ↵
    1. Strachan R. A.,
    2. Nutman A. P.,
    3. Friderichsen J. D.
    , 1995, SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides: Journal of the Geological Society, v. 152, n. 5, p. 779–784, doi:https://doi.org/10.1144/gsjgs.152.5.0779
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Stukas V.,
    2. Reynolds P. H.
    , 1974, 40Ar/39Ar dating of the Long Range dikes, Newfoundland: Earth and Planetary Science Letters, v. 22, n. 3, p. 256–266, doi:https://doi.org/10.1016/0012-821X(74)90089-2
    OpenUrlCrossRefGeoRefWeb of Science
  70. ↵
    1. Sung G. W.
    , ms, 1992, Geology and metamorphic evolution of the Indian Head Range, a Grenvillian inlier in West Newfoundland: St. John's, Newfoundland, Canada, Memorial University of Newfoundland, M.S. thesis, 260 p.
  71. ↵
    1. Tollo R. P.,
    2. Corriveau L.,
    3. McLelland J.,
    4. Bartholomew M. J.
    , 2004a, Proterozoic tectonic evolution of the Grenville orogen in North America: An introduction, in Tollo R. P., Corriveau L., McLelland J., Bartholomew M. J., editors, Proterozoic Tectonic Evolution of the Grenville Orogen in North America: Geological Society of America Memoirs, v. 197, p. 1–18, doi:https://doi.org/10.1130/0-8137-1197-5.1
    OpenUrlCrossRef
  72. ↵
    1. Tollo R. P.,
    2. Aleinikoff J. N.,
    3. Borduas E. A.,
    4. Hackley P. C.,
    5. Fanning C. M.
    , 2004b, Petrologic and geochronologic evolution of the Grenville orogen, northern Blue Ridge Province, Virginia, in Tollo, R. P., Corriveau, L., McLelland J., Bartholomew M. J., editors, Proterozoic Tectonic Evolution of the Grenville Orogen in North America: Geological Society of America Memoirs, v. 197, p. 647–677, doi:https://doi.org/10.1130/0-8137-1197-5.647
    OpenUrlCrossRef
  73. ↵
    1. Tucker R. D.,
    2. Gower C. F.
    , 1994, A U-Pb geochronological framework for the Pinware terrane, Grenville Province, southeast Labrador: The Journal of Geology, v. 102, n. 1, p. 67–78, doi:https://doi.org/10.1086/629648
    OpenUrlCrossRefGeoRefWeb of Science
  74. ↵
    1. van Berkel J. T.,
    2. Currie K. L.
    , 1988, Geology of the Puddle Pond (12A/5) and Little Grand Lake (12A/12) map areas, southwestern Newfoundland: Current Research, Newfoundland Department of Mines and Energy, Mineral Development Division, Report, v. 88–1, p. 99–107, doi:https://doi.org/10.4095/130717
    OpenUrlCrossRef
  75. ↵
    1. van Staal C. R.,
    2. Whalen J. B.,
    3. McNicoll V. J.,
    4. Pehrsson S.,
    5. Lissenberg C. J.,
    6. Zagorevski A.,
    7. Van Breemen O.,
    8. Jenner G. A.
    , 2007, The Notre Dame arc and the Taconic orogeny in Newfoundland: Geological Society of America Memoirs, v. 200, p. 511–552, doi:https://doi.org/10.1130/2007.1200(26)
    OpenUrlAbstract/FREE Full Text
    1. van Staal C. R.,
    2. Chew D. M.,
    3. Zagorevski A.,
    4. McNicoll V.,
    5. Hibbard J.,
    6. Skulski T.,
    7. Escayola M. P.,
    8. Castonguay S.,
    9. Sylvester P. J.
    , 2013, Evidence of Late Ediacaran hyperextension of the Laurentian Iapetan margin in the Birchy Complex, Baie Verte Peninsula, northwest Newfoundland: Implications for the opening of Iapetus, formation of peri-Laurentian microcontinents and Taconic–Grampian orogenesis: Geoscience Canada, v. 40, n. 2, p. 94–117, doi:https://doi.org/10.12789/geocanj.2013.40.006
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Waldron J. W.,
    2. Milne J. V.
    , 1991, Tectonic history of the central Humber Zone, western Newfoundland Appalachians: Post-Taconian deformation in the Old Man's Pond area: Canadian Journal of Earth Sciences, v. 28, n. 3, p. 398–410, doi:https://doi.org/10.1139/e91-036
    OpenUrlAbstract
  77. ↵
    1. Waldron J. W.,
    2. van Staal C.R.
    , 2001, Taconian orogeny and the accretion of the Dashwoods block: A peri-Laurentian microcontinent in the Iapetus Ocean: Geology, v. 29, n. 9, p. 811–814, doi:https://doi.org/10.1130/0091-7613(2001)029<0811:TOATAO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Waldron J. W.,
    2. Anderson S. D.,
    3. Cawood P. A.,
    4. Goodwin L. B.,
    5. Hall J.,
    6. Jamieson R. A.,
    7. Palmer S. E.,
    8. Stockmal G. S.,
    9. Williams P. F.
    , 1998, Evolution of the Appalachian Laurentian margin: Lithoprobe results in western Newfoundland: Canadian Journal of Earth Sciences, v. 35, n. 11, p. 1271–1287, doi:https://doi.org/10.1139/e98-053
    OpenUrlAbstract
  79. ↵
    1. Wasteneys H. A.,
    2. Kamo S. L.,
    3. Moser D.,
    4. Krogh T. E.,
    5. Gower C. F.,
    6. Owen J. V.
    , 1997, U-Pb geochronological constraints on the geological evolution of the Pinware terrane and adjacent areas, Grenville Province, southeast Labrador, Canada: Precambrian Research, v. 81, n. 1–2, p. 101–128, doi:https://doi.org/10.1016/S0301-9268(96)00030-7
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Watson E. B.,
    2. Wark D. A.,
    3. Thomas J. B.
    , 2006, Crystallization thermometers for zircon and rutile: Contributions to Mineralogy and Petrology, v. 151, n. 4, p. 413, doi:https://doi.org/10.1007/s00410-006-0068-5
    OpenUrlCrossRefGeoRefWeb of Science
  81. ↵
    1. Watt G. R.,
    2. Kinny P. D.,
    3. Friderichsen J. D.
    , 2000, U–Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides: Journal of the Geological Society, v. 157, n. 5, p. 1031–1048, doi:https://doi.org/10.1144/jgs.157.5.1031
    OpenUrlAbstract/FREE Full Text
  82. ↵
    1. Wendt I.,
    2. Carl C.
    , 1991, The statistical distribution of the mean squared weighted deviation: Chemical Geology: Isotope Geoscience Section, v. 86, n. 4, p. 275–285, doi:https://doi.org/10.1016/0168-9622(91)90010-T
    OpenUrlCrossRefGeoRefWeb of Science
  83. ↵
    1. Sinha A. Kr.,
    2. Whalen J. B.,
    3. Hogan J. P.
    1. Whalen J. B.,
    2. Jenner G. A.,
    3. Longstaffe F. J.,
    4. Gariepy C.,
    5. Fryer B. J.
    , 1997, Implications of granitoid geochemical and isotopic (Nd, O, Pb) data from the Cambrian-Ordovician Notre Dame arc for the evolution of the Central Mobile belt, Newfoundland Appalachians, in Sinha A. Kr., Whalen J. B., Hogan J. P., editors, The nature of magmatism in the Appalachian orogen: Geological Society of America Memoirs, v. 191, p. 367–395, doi:https://doi.org/10.1130/0-8137-1191-6.367
    OpenUrlCrossRef
  84. ↵
    1. Whalen J. B.,
    2. McNicoll V. J.,
    3. van Staal C. R.,
    4. Lissenberg C. J.,
    5. Longstaffe F. J.,
    6. Jenner G. A.,
    7. van Breeman O.
    , 2006, Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off: Lithos, v. 89, n. 3–4, p. 377–404, doi:https://doi.org/10.1016/j.lithos.2005.12.011
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Williams H.
    , 1975, Structural succession, nomenclature, and interpretation of transported rocks in western Newfoundland: Canadian Journal of Earth Sciences, v. 12, n. 11, p. 1874–1894, doi:https://doi.org/10.1139/e75-166
    OpenUrlAbstract
  86. ↵
    1. Williams H.,
    1979, Appalachian orogen in Canada: Canadian Journal of Earth Sciences, v. 16, n. 3, p. 792–807, doi:https://doi.org/10.1139/e79-070
    OpenUrlAbstract
  87. ↵
    1. Williams H.,
    2. Cawood P. A.
    , 1989, Geology of the Humber Arm allochthon, Newfoundland: Geological Survey of Canada, Ottawa, Ontario, Map 1678A, scale 1:250,000, doi:https://doi.org/10.4095/126990
    OpenUrlCrossRef
  88. ↵
    1. Williams H.,
    2. Gillespie R. T.,
    3. Breemen O. V.
    , 1985, A late Precambrian rift-related igneous suite in western Newfoundland: Canadian Journal of Earth Sciences, v. 22, n. 11, p. 1727–1735, doi:https://doi.org/10.1139/e85-181
    OpenUrlAbstract
    1. Yang J.,
    2. Cawood P. A.,
    3. Du Y.,
    4. Huang H.,
    5. Huang H.,
    6. Tao P.
    , 2012, Large Igneous Province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China: Sedimentary Geology, v. 261–262, p. 120–131, doi:https://doi.org/10.1016/j.sedgeo.2012.03.018
    OpenUrlCrossRef
  89. ↵
    1. Zotto S. C.,
    2. Moecher D. P.,
    3. Niemi N. A.,
    4. Thigpen J. R.,
    5. Samson S. D.
    , 2020, Persistence of Grenvillian dominance in Laurentian detrital zircon age systematics explained by sedimentary recycling: Evidence from detrital zircon double dating and detrital monazite textures and geochronology: Geology, v. 48, n. 8, p. 792–797, doi:https://doi.org/10.1130/G47530.1
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (7)
American Journal of Science
Vol. 321, Issue 7
1 Sep 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Laurentian cratonic reference from the distal Proterozoic basement of Western Newfoundland using tandem in situ and isotope dilution U-pb zircon and titanite geochronology
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 11 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A Laurentian cratonic reference from the distal Proterozoic basement of Western Newfoundland using tandem in situ and isotope dilution U-pb zircon and titanite geochronology
Eben B. Hodgin, Francis A. Macdonald, James L. Crowley, Mark D. Schmitz
American Journal of Science Sep 2021, 321 (7) 1045-1079; DOI: 10.2475/07.2021.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Laurentian cratonic reference from the distal Proterozoic basement of Western Newfoundland using tandem in situ and isotope dilution U-pb zircon and titanite geochronology
Eben B. Hodgin, Francis A. Macdonald, James L. Crowley, Mark D. Schmitz
American Journal of Science Sep 2021, 321 (7) 1045-1079; DOI: 10.2475/07.2021.02
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL BACKGROUND
    • METHODS
    • GEOCHRONOLOGICAL RESULTS SUMMARY
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • Appendix
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • U-Pb geochronology
  • Corner Brook Lake Block
  • Humber Margin
  • Iapetus Ocean
  • Grenvillian foreland
  • detrital titanite

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire