Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Reconstructing lost plates of the Panthalassa Ocean through paleomagnetic data from circum-Pacific accretionary orogens

Lydian M. Boschman, Douwe J.J. van Hinsbergen, Cor G. Langereis, Kennet E. Flores, Peter J.J. Kamp, David L. Kimbrough, Hayato Ueda, Suzanna H.A. van de Lagemaat, Erik van der Wiel and Wim Spakman
American Journal of Science June 2021, 321 (6) 907-954; DOI: https://doi.org/10.2475/06.2021.08
Lydian M. Boschman
*Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands
**Now at Department of Environmental System Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lydian.boschman@usys.ethz.ch
Douwe J.J. van Hinsbergen
*Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cor G. Langereis
*Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kennet E. Flores
***Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill 104 South Road, CB #3315, Chapel Hill, North Carolina, 27599-3315, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter J.J. Kamp
§School of Science, University of Waikato, Hamilton 3240, New Zealand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David L. Kimbrough
§§Department of Geological Sciences, San Diego State University, San Diego, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hayato Ueda
§§§Department of Science, Niigata University, Niigata, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Suzanna H.A. van de Lagemaat
*Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erik van der Wiel
*Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wim Spakman
*Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Ackerman L.,
    2. Hajná J.,
    3. Žák J.,
    4. Erban V.,
    5. Sláma J.,
    6. Polák L.,
    7. Kachlík V.,
    8. Strnad L.,
    9. Trubač J.
    , 2019, Architecture and composition of ocean floor subducted beneath northern Gondwana during Neoproterozoic to Cambrian: A palinspastic reconstruction based on Ocean Plate Stratigraphy (OPS): Gondwana Research, v. 76, p. 77–97, doi:https://doi.org/10.1016/j.gr.2019.07.001
    OpenUrlCrossRef
  2. ↵
    1. Adams C. J.,
    2. Campbell H. J.,
    3. Griffin W. L.
    , 2007, Provenance comparisons of Permian to Jurassic tectonostratigraphic terranes in New Zealand: Perspectives from detrital zircon age patterns: Geological Magazine, v. 144, n. 4, doi:https://doi.org/10.1017/S0016756807003469
    OpenUrlCrossRef
  3. ↵
    1. Adams C. J.,
    2. Mortimer N.,
    3. Campbell H. J.,
    4. Griffin W. L.
    , 2009, Age and isotopic characterisation of metasedimentary rocks from the Torlesse Supergroup and Waipapa Group in the central North Island, New Zealand: New Zealand Journal of Geology and Geophysics, v. 52, n. 2, p. 149–170, doi:https://doi.org/10.1080/00288300909509883
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Adams C. J.,
    2. Mortimer N.,
    3. Campbell H. J.,
    4. Griffin W. L.,
    2012, Detrital zircon geochronology and sandstone provenance of basement Waipapa Terrane (Triassic–Cretaceous) and Cretaceous cover rocks (Northland Allochthon and Houhora Complex) in northern North Island, New Zealand: Geological Magazine, v. 150, p. 89–109, doi:https://doi.org/10.1017/S0016756812000258
    OpenUrlCrossRef
  5. ↵
    1. Advokaat E. L.,
    2. Marshall N. T.,
    3. Li S.,
    4. Spakman W.,
    5. Krijgsman W.,
    6. van Hinsbergen D. J. J.
    , 2018, Cenozoic rotation history of Borneo and Sundaland, SE Asia revealed by paleomagnetism, seismic tomography, and kinematic reconstruction: Tectonics, v. 37, n. 8, p. 2486–2512, doi:https://doi.org/10.1029/2018TC005010
    OpenUrlCrossRef
  6. ↵
    1. Alvarez W.,
    2. Kent D. V.,
    3. Premoli Silva I.,
    4. Schweickert R. A.,
    5. Larson R. A.
    , 1980, Franciscan Complex limestone deposited at 17 south paleolatitude: GSA Bulletin, v. 91, n. 8, p. 476–484, doi:https://doi.org/10.1130/0016-7606(1980)91<476:FCLDAS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Ando A.,
    2. Kodama K.,
    3. Kojima S.
    , 2001, Low-latitude and Southern Hemisphere origin of Anisian (Triassic) bedded chert in the Inuyama area, Mino terrane, central Japan: Journal of Geophysical Research: Solid Earth, v. 106, n. B6, p. 1973–1986, doi:https://doi.org/10.1029/2000JB900305
    OpenUrlCrossRef
  8. ↵
    1. Bandini A. N.,
    2. Baumgartner P. O.,
    3. Flores K.,
    4. Dumitrica P.,
    5. Jackett S. J.
    , 2011, Early Jurassic to Early Late Cretaceous Radiolarians from the Santa Rosa Accretionary Complex (Northwestern Costa Rica): Ofioliti, v. 36, n. 1, p. 1–35, doi:https://doi.org/10.4454/ofioliti.v36i1.392
    OpenUrlCrossRefGeoRef
  9. ↵
    1. Baumgartner P. O.,
    2. Denyer P.
    , 2006, Evidence for middle Cretaceous accretion at Santa Elena Peninsul a (Santa Rosa Accretionary Complex), Costa Rica: Geologica Acta, v. 4, n. 1–2, p. 179–191.
  10. ↵
    1. Baumgartner P. O.,
    2. Flores K.,
    3. Bandini A. N.,
    4. Girault F.,
    5. Cruz D.
    , 2008, Upper Triassic to Cretaceous radiolaria from Nicaragua and Northern Costa Rica – The Mesquito Composite Oceanic Terrane: Ofioliti, v. 33, n. 1, p. 1–19, doi:https://doi.org/10.4454/ofioliti.v33i1.356
    OpenUrlCrossRefGeoRef
  11. ↵
    1. Bijwaard H.,
    2. Spakman W.,
    3. Engdahl E. R.
    , 1998, Closing the gap between regional and global travel time tomography: Journal of Geophysical Research: Solid Earth, v. 103, n. B12, p. 30055–30078, doi:https://doi.org/10.1029/98JB02467
    OpenUrlCrossRef
  12. ↵
    1. Blome C. D.
    , 1984, Upper Triassic Radiolaria and radiolarian zonation from western North America: Bulletin of American Paleontology, v. 85, p. 1–88.
    OpenUrl
  13. ↵
    1. Boschman L.
    , ms, 2019, Reconstructing lost plates of the Panthalassa Ocean: Utrecht, The Netherlands, Ph. D. thesis, 311 p.
  14. ↵
    1. Boschman L. M.,
    2. van Hinsbergen D. J. J.
    , 2016, On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean: Science Advances, v. 2, n. 7, e1600022, doi:https://doi.org/10.1126/sciadv.1600022
    OpenUrlFREE Full Text
  15. ↵
    1. Boschman L. M.,
    2. van Hinsbergen D. J. J.,
    3. Torsvik T. H.,
    4. Spakman W.,
    5. Pindell J. L.
    , 2014, Kinematic reconstruction of the Caribbean region since the Early Jurassic: Earth-Science Reviews, v. 138, p. 102–136, doi:https://doi.org/10.1016/j.earscirev.2014.08.007
    OpenUrlCrossRefGeoRef
  16. ↵
    1. Boschman L. M.,
    2. Garza R. S. M.,
    3. Langereis C. G.,
    4. van Hinsbergen D. J. J.
    , 2018a, Paleomagnetic constraints on the kinematic relationship between the Guerrero terrane (Mexico) and North America since Early Cretaceous time: GSA Bulletin, v. 130, n. 7–8, p. 1131–1142, doi:https://doi.org/10.1130/B31916.1
    OpenUrlCrossRef
  17. ↵
    1. Boschman L. M.,
    2. van Hinsbergen D. J. J.,
    3. Kimbrough D. L.,
    4. Langereis C. G.,
    5. Spakman W.
    , 2018b, The dynamic history of 220 million years of subduction below Mexico: A correlation between slab geometry and overriding plate deformation based on geology, paleomagnetism, and seismic tomography: Geochemistry, Geophysics, Geosystems, v. 19, n. 12, p. 4649–4672, doi:https://doi.org/10.1029/2018GC007739
    OpenUrlCrossRef
  18. ↵
    1. Boschman L. M.,
    2. van der Wiel E.,
    3. Flores K. E.,
    4. Langereis C.,
    5. van Hinsbergen D. J. J.
    , 2019, The Caribbean and Farallon plates connected: Constraints from stratigraphy and paleomagnetism of the Nicoya Peninsula, Costa Rica: Journal of Geophysical Research: Solid Earth, v. 124, n. 7, p. 6243–6266, doi:https://doi.org/10.1029/2018JB016369
    OpenUrlCrossRef
    1. Boschman L. M.,
    2. van Hinsbergen D. J. J.,
    3. Spakman W.
    , 2021, Reconstructing Jurassic-Cretaceous intra-oceanic subduction evolution in the northwestern Panthalassa Ocean using Ocean Plate Stratigraphy from Hokkaido, Japan: Tectonics, v. 40, n. 8, e2019TC005673, doi:https://doi.org/10.1029/2019TC005673
    OpenUrlCrossRef
  19. ↵
    1. Boyden J.,
    2. Müller R. D.,
    3. Gurnis M.,
    4. Torsvik T.,
    5. Clark J. A.,
    6. Turner M.,
    7. Ivey-Law H.,
    8. Watson R. J.,
    9. Cannon J. S.
    , 2011, Next-generation plate-tectonic reconstructions using GPlates: Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences: Cambridge, England, Cambridge University Press, p. 95–114, doi:https://doi.org/10.1017/CBO9780511976308.008
    OpenUrlCrossRef
  20. ↵
    1. Buchs D. M.,
    2. Pilet S.,
    3. Cosca M.,
    4. Flores K. E.,
    5. Bandini A. N.,
    6. Baumgartner P. O.
    , 2013, Low-volume intraplate volcanism in the Early/Middle Jurassic Pacific basin documented by accreted sequences in Costa Rica: Geochemistry, Geophysics, Geosystems, v. 14, n. 5, p. 1552–1568, doi:https://doi.org/10.1002/ggge.20084
    OpenUrlCrossRefGeoRef
    1. Butler R. F.
    , 1992, Paleomagnetism: magnetic domains to geologic terranes: Boston, Massachusetts, Blackwell Scientific Publications, v. 319, 336 p.
  21. ↵
    1. Butterworth N. P.,
    2. Talsma A. S.,
    3. Müller R. D.,
    4. Seton M.,
    5. Bunge H.-P.,
    6. Schuberth B. S. A.,
    7. Shephard G. E.,
    8. Heine C.
    , 2014, Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs: Journal of Geodynamics, v. 73, p. 1–13, doi:https://doi.org/10.1016/j.jog.2013.10.006
    OpenUrlCrossRefGeoRef
  22. ↵
    1. Cabral-Cano E.,
    2. Lang H. R.,
    3. Harrison C. G. A.
    , 2000, Stratigraphic assessment of the Arcelia-Teloloapan area, southern Mexico: Implications for southern Mexico's post-Neocomian tectonic evolution: Journal of South American Earth Sciences, v. 13, n. 4–5, p. 443–457, doi:https://doi.org/10.1016/S0895-9811(00)00035-3
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    1. Campbell M. J.,
    2. Rosenbaum G.,
    3. Allen C. M.,
    4. Mortimer N.,
    5. Shaanan U.
    , 2020, Episodic behavior of the eastern Gondwanan margin: Insights from detrital zircon petrochronology from the Murihiku Terrane, New Zealand: Lithos, v. 356–357, p. 105367, doi:https://doi.org/10.1016/j.lithos.2020.105367
    OpenUrlCrossRef
  24. ↵
    1. Cawood P. A.,
    2. Nemchin A. A.,
    3. Leverenz A.,
    4. Saeed A.,
    5. Balance P. F.
    , 1999, U/Pb dating of detrital zircons: Implications for the provenance record of Gondwana margin terranes: GSA Bulletin, v. 111, n. 8, p. 1107–1119, doi:https://doi.org/10.1130/0016-7606(1999)111<1107:UPDODZ>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Cawood P. A.,
    2. Kröner A.,
    3. Collins W. J.,
    4. Kusky T. M.,
    5. Mooney W. D.,
    6. Windley B. F.
    , 2009, Accretionary orogens through Earth history: Geological Society, London, Special Publications, v. 318, p. 1–36, doi:https://doi.org/10.1144/SP318.1
    OpenUrlCrossRef
  26. ↵
    1. Cawood P. A.,
    2. Pisarevsky S. A.,
    3. Leitch E. C.
    , 2011, Unraveling the New England orocline, east Gondwana accretionary margin: Tectonics, v. 30, n. 5, doi:https://doi.org/10.1029/2011TC002864
    OpenUrlCrossRef
  27. ↵
    1. Cawood P. A.,
    2. Hawkesworth C. J.,
    3. Pisarevsky S. A.,
    4. Dhuime B.,
    5. Capitanio F. A.,
    6. Nebel O.
    , 2018, Geological archive of the onset of plate tectonics: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 376, issue 2132, p. 20170405, doi:https://doi.org/10.1098/rsta.2017.0405
    OpenUrlCrossRefPubMed
  28. ↵
    1. Centeno-García E.,
    2. Corona-Chávez P.,
    3. Talavera-Mendoza O.,
    4. Iriondo A.
    , 2003, Geologic and tectonic evolution of the western Guerrero terrane—A transect from Puerto Vallarta to Zihuatanejo, Mexico, Geologic transects across Cordilleran Mexico: Puerto Vallarta, Jalisco, Mexico Guidebook for the field trips of the 99th Geological Society of America Cordilleran section annual meeting, p. 4–7.
  29. ↵
    1. Draut A. E.,
    2. Clift P. D.,
    3. Scholl D. W.
    1. Centeno-García E.,
    2. Guerrero-Suastegui M.,
    3. Talavera-Mendoza O.
    , 2008, The Guerrero Composite Terrane of western Mexico: Collision and subsequent rifting in a supra-subduction zone, in Draut A. E., Clift P. D., Scholl D. W., editors, Formation and Applications of the Sedimentary Record in Arc Collision Zones: Geological Society of America Special Paper 436, p. 279–308, doi:https://doi.org/10.1130/2008.2436(13)
    OpenUrlCrossRefWeb of Science
  30. ↵
    1. Centeno-García E.,
    2. Busby C.,
    3. Busby M.,
    4. Gehrels G.
    , 2011, Evolution of the Guerrero composite terrane along the Mexican margin, from extensional fringing arc to contractional continental arc: GSA Bulletin, v. 123, n. 9–10, p. 1776–1797, doi:https://doi.org/10.1130/B30057.1
    OpenUrlAbstract/FREE Full Text
    1. Centeno-García E.
    , 2017, Mesozoic tectono-magmatic evolution of Mexico: An overview: Ore Geology Reviews, v. 81, Part 3, p. 1035–1052, doi:https://doi.org/10.1016/j.oregeorev.2016.10.010
    OpenUrlCrossRef
  31. ↵
    1. Clennett E. J.,
    2. Sigloch K.,
    3. Mihalynuk M. G.,
    4. Seton M.,
    5. Henderson M. A.,
    6. Hosseini K.,
    7. Mohammadzaheri A.,
    8. Johnston S. T.,
    9. Müller R. D.
    , 2020, A Quantitative Tomotectonic Plate Reconstruction of Western North America and the Eastern Pacific Basin: Geochemistry, Geophysics, Geosystems, v. 21, n. 8, p. e2020GC009117, doi:https://doi.org/10.1029/2020GC009117
    OpenUrlCrossRef
  32. ↵
    1. Collombat H.,
    2. Rochette P.,
    3. Kent D. V.
    , 1993, Detection and correction of inclination shallowing in deep-sea sediments using the anisotropy of anhysteretic remanence: Bulletin de la Société Géologique de France, v. 164, p. 103–111.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Coltice N.,
    2. Shephard G. E.
    , 2018, Tectonic predictions with mantle convection models: Geophysical Journal International, v. 213, n. 1, p. 16–29, doi:https://doi.org/10.1093/gji/ggx531
    OpenUrlCrossRef
  34. ↵
    1. Cox A.,
    2. Hart R. B.
    , 1986, Plate Tectonics - How it works: Palo Alto, California, Blackwell Scientific Publications, 392 p.
  35. ↵
    1. De Wever P.
    , 1985, Découverte de materiel océanique du Lias-Dogger inférieur dans la peninsula de Santa Elena (Costa Rica, Amerique Centrale): Comptes Rendus de l'Academie des Sciences de Paris Serie II, v. 15, p. 759–764.
    OpenUrl
  36. ↵
    1. De Wever P.,
    2. Dumitrica P.,
    3. Caulet J. P.,
    4. Nigrini C.,
    5. Caridroit M.
    , 2002, Radiolarians in the sedimentary record: Boca Raton, Florida, CRC Press, 533 p., doi:https://doi.org/10.1201/9781482283181
    OpenUrlCrossRef
  37. ↵
    1. Deenen M. H. L.,
    2. Langereis C. G.,
    3. van Hinsbergen D. J. J.,
    4. Biggin A. J.
    , 2011, Geomagnetic secular variation and the statistics of palaeomagnetic directions: Geophysical Journal International, v. 186, n. 2, p. 509–520, doi:https://doi.org/10.1111/j.1365-246X.2011.05050.x
    OpenUrlCrossRefGeoRef
  38. ↵
    1. Denyer P.,
    2. Gazel E.
    , 2009, The Costa Rican Jurassic to Miocene oceanic complexes: Origin, tectonics and relations: Journal of South American Earth Sciences, v. 28, n. 4, p. 429–442, doi:https://doi.org/10.1016/j.jsames.2009.04.010
    OpenUrlCrossRefGeoRef
  39. ↵
    1. Dickinson W. R.,
    2. Lawton T. F.
    , 2001, Carboniferous to Cretaceous assembly and fragmentation of Mexico: GSA Bulletin, v. 113, n. 9, p. 1142–1160, doi:https://doi.org/10.1130/0016-7606(2001)113<1142:CTCAAF>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Domeier M.
    , 2016, A plate tectonic scenario for the Iapetus and Rheic oceans: Gondwana Research, v. 36, p. 275–295, doi:https://doi.org/10.1016/j.gr.2015.08.003
    OpenUrlCrossRef
  41. ↵
    1. Domeier M.,
    2018, Early Paleozoic tectonics of Asia: Towards a full-plate model: Geoscience Frontiers, v. 9, n. 3, p. 789–862, doi:https://doi.org/10.1016/j.gsf.2017.11.012
    OpenUrlCrossRef
  42. ↵
    1. Domeier M.,
    2. Torsvik T. H.
    , 2014, Plate tectonics in the late Paleozoic: Geoscience Frontiers, v. 5, n. 3, p. 303–350, doi:https://doi.org/10.1016/j.gsf.2014.01.002
    OpenUrlCrossRef
  43. ↵
    1. Domeier M.,
    2. Torsvik T. H.,
    2019, Full-plate modelling in pre-Jurassic time: Geological Magazine, v. 156, n. 2, p. 261–280, doi:https://doi.org/10.1017/S0016756817001005
    OpenUrlCrossRef
  44. ↵
    1. Domeier M.,
    2. Doubrovine P. V.,
    3. Torsvik T. H.,
    4. Spakman W.,
    5. Bull A. L.
    , 2016, Global correlation of lower mantle structure and past subduction: Geophysical Research Letters, v. 43, n. 10, p. 4945–4953, doi:https://doi.org/10.1002/2016GL068827
    OpenUrlCrossRef
  45. ↵
    1. Domeier M.,
    2. Shephard G. E.,
    3. Jakob J.,
    4. Gaina C.,
    5. Doubrovine P. V.,
    6. Torsvik T. H.
    , 2017, Intraoceanic subduction spanned the Pacific in the Late Cretaceous–Paleocene: Science Advances, v. 3, n. 11, doi:https://doi.org/10.1126/sciadv.aao2303
    OpenUrlCrossRef
  46. ↵
    1. Doubrovine P. V.,
    2. Tarduno J. A.
    , 2008, A revised kinematic model for the relative motion between Pacific oceanic plates and North America since the Late Cretaceous: Journal of Geophysical Research, v. 113, n. B12, doi:https://doi.org/10.1029/2008JB005585
    OpenUrlCrossRef
  47. ↵
    1. Doubrovine P. V.,
    2. Steinberger B.,
    3. Torsvik T. H.
    , 2012, Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans: Journal of Geophysical Research: Solid Earth, v. 117, n. B9, doi:https://doi.org/10.1029/2011JB009072
    OpenUrlCrossRef
  48. ↵
    1. Eichelberger N.,
    2. McQuarrie N.
    , 2015, Kinematic reconstruction of the Bolivian orocline: Geosphere, v. 11, n. 2, p. 445–462, doi:https://doi.org/10.1130/GES01064.1
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Elias-Herrera M.,
    2. Sánchez-Zavala J. L.,
    3. Macias-Romo C.
    , 2000, Geologic and geochronologic data from the Guerrero terrane in the Tejupilco area, southern Mexico: New constraints on its tectonic interpretation: Journal of South American Earth Sciences, v. 13, n. 4–5, p. 355–375, doi:https://doi.org/10.1016/S0895-9811(00)00029-8
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Engebretson D. C.,
    2. Cox A.,
    3. Gordon R. G.
    , 1985, Relative Motions Between Oceanic and Continental Plates in the Pacific Basin: Geological Society of America Special Papers, v. 206, doi:https://doi.org/10.1130/SPE206-p1
    OpenUrlCrossRef
  51. ↵
    1. Escuder-Viruete J.,
    2. Baumgartner P. O.
    , 2014, Structural evolution and deformation kinematics of a subduction-related serpentinite-matrix mélange, Santa Elena peninsula, northwest Costa Rica: Journal of Structural Geology, v. 66, p. 356–381, doi:https://doi.org/10.1016/j.jsg.2014.06.003
    OpenUrlCrossRef
  52. ↵
    1. Alaniz-Alvarez S. A.,
    2. Nieto-Samaniego A. F.
    1. Ferrari L.,
    2. Valencia-Moreno M.,
    3. Bryan S.
    , 2007, Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America, in Alaniz-Alvarez S. A., Nieto-Samaniego A. F., editors, Geology of México: Celebrating the Centenary of the Geological Society of México: Geological Society of America Special Paper, v. 422, p. 1–39, doi:https://doi.org/10.1130/2007.2422(01)
    OpenUrlCrossRef
  53. ↵
    1. Fisher R. A.
    , 1953, Dispersion on a Sphere: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 217, n. 1130, p. 295–305, doi:https://doi.org/10.1098/rspa.1953.0064
    OpenUrlCrossRef
  54. ↵
    1. Fitz-Díaz E.,
    2. Lawton T. F.,
    3. Juárez-Arriaga E.,
    4. Chávez-Cabello G.
    , 2018, The Cretaceous-Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics: Earth-Science Reviews, v. 183, p. 56–84, doi:https://doi.org/10.1016/j.earscirev.2017.03.002
    OpenUrlCrossRef
  55. ↵
    1. Flores K. E.,
    2. Gazel E.
    , 2020, A 100 m.y. record of volcanic arc evolution in Nicaragua: Island Arc, v. 29, n. 1, p. e12346, doi:https://doi.org/10.1111/iar.12346
    OpenUrlCrossRef
  56. ↵
    1. Franke W.,
    2. Cocks L. R. M.,
    3. Torsvik T. H.
    , 2017, The Palaeozoic Variscan oceans revisited: Gondwana Research, v. 48, p. 257–284, doi:https://doi.org/10.1016/j.gr.2017.03.005
    OpenUrlCrossRef
  57. ↵
    1. Fu R. R.,
    2. Kent D. V.
    , 2018, Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander: Earth and Planetary Science Letters, v. 490, p. 20–30, doi:https://doi.org/10.1016/j.epsl.2018.02.034
    OpenUrlCrossRef
  58. ↵
    1. Gazel E.,
    2. Denyer P.,
    3. Baumgartner P. O.
    , 2006, Magmatic and geotectonic significance of Santa Elena Peninsula, Costa Rica: Geologica Acta, v. 4, p. 193–202.
    OpenUrlGeoRef
  59. ↵
    1. Grand S. P.,
    2. van der Hilst R. D.,
    3. Widiyantoro S.
    , 1997, Global Seismic Tomography: A Snapshot of Convection in the Earth: GSA Today, v. 7, p. 1–7.
    OpenUrlGeoRefPubMed
  60. ↵
    1. Grindley G.,
    2. Oliver P.,
    3. Sukroo J.
    , 1980, Lower Mesozoic position of southern New Zealand determined from paleomagnetism of the Glenham Porphyry, Murihiku Terrane, eastern Southland: Wellington, New Zealand, Gondwana Five, p. 319–326.
  61. ↵
    1. Gurnis M.,
    2. Yang T.,
    3. Cannon J.,
    4. Turner M.,
    5. Williams S.,
    6. Flament N.,
    7. Müller R. D.
    , 2018, Global tectonic reconstructions with continuously deforming and evolving rigid plates: Computers & Geosciences, v. 116, p. 32–41, doi:https://doi.org/10.1016/j.cageo.2018.04.007
    OpenUrlCrossRef
  62. ↵
    1. Hagstrum J. T.,
    2. Murchey B. L.
    , 1996, Paleomagnetism of Jurassic radiolarian chert above the Coast Range ophiolite at Stanley Mountain, California, and implications for its paleogeographic origins: Geological Society of America Bulletin, v. 108, n. 6, p. 643–652, doi:https://doi.org/10.1130/0016-7606(1996)108<0643:POJRCA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Hagstrum J. T.,
    2. Sedlock R. L.
    , 1990, Remagnetization and northward translation of Mesozoic red chert from Cedros Island and the San Benito Islands, Baja California, Mexico: Geological Society of America Bulletin, v. 102, n. 7, p. 983–991, doi:https://doi.org/10.1130/0016-7606(1990)102<0983:RANTOM>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Hagstrum J. T.,
    2. Sedlock R. L.,
    1992, Paleomagnetism of Mesozoic Red Chert from Cedros Island and the San-Benito Islands, Baja-California, Mexico Revisited: Geophysical Research Letters, v. 19, n. 3, p. 329–332, doi:https://doi.org/10.1029/91GL02692
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Hall R.
    , 2002, Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations: Journal of Asian Earth Sciences, v. 20, n. 4, p. 353–431, doi:https://doi.org/10.1016/S1367-9120(01)00069-4
    OpenUrlCrossRefWeb of Science
  66. ↵
    1. Hallam A.
    , 1986, Evidence of displaced terranes from Permian to Jurassic faunas around the Pacific margins: Journal of the Geological Society, v. 143, p. 209–216, doi:https://doi.org/10.1144/gsjgs.143.1.0209
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Haston R. B.,
    2. Luyendyk B. P.
    , 1991, Paleomagnetic Results from the Waipapa Terrane, Northland Peninsula, North Island, New-Zealand - Tectonic Implications from Widespread Remagnetizations: Tectonics, v. 10, n. 5, p. 986–994, doi:https://doi.org/10.1029/91TC00861
    OpenUrlCrossRefGeoRef
  68. ↵
    1. Hauff F.,
    2. Hoernle K.,
    3. van den Bogaard P.,
    4. Alvarado G.,
    5. Garbe‐Schönberg D.
    , 2000, Age and geochemistry of basaltic complexes in western Costa Rica: Contributions to the geotectonic evolution of Central America. Geochemistry, Geophysics, Geosystems, v. 1, n. 5, doi:https://doi.org/10.1029/1999GC000020
    OpenUrlCrossRef
  69. ↵
    1. Hayami I.
    , 1961, On the Jurassic pelecypod faunas in Japan: University of Tokyo, Journal of the Faculty of Science University of Tokyo, v. 13, n. 2, p. 243–343.
    OpenUrl
  70. ↵
    Hayami, L., 1984, Jurassic marine bivalve faunas and biogeography in Southeast Asia: University of Tokyo, Geology and Palaeontology of Southeast Asia, v. 25, p. 229–237.
    OpenUrl
  71. ↵
    1. Hilde T. W. C.,
    2. Uyeda S.,
    3. Kroenke L.
    , 1977, Evolution of the western Pacific and its margin: Tectonophysics, v. 38, n. 1–2, p. 145–165, doi:https://doi.org/10.1016/0040-1951(77)90205-0
    OpenUrlCrossRefGeoRefWeb of Science
  72. ↵
    1. Hildebrand R. S.
    , 2013, Mesozoic assembly of the North American Cordillera: Geological Society of America Special Paper 495, 169 p., doi:https://doi.org/10.1130/SPE495
    OpenUrlCrossRef
  73. ↵
    1. Horton B. K.
    , 2018, Sedimentary record of Andean mountain building: Earth-Science Reviews, v. 178, p. 279–309, doi:https://doi.org/10.1016/j.earscirev.2017.11.025
    OpenUrlCrossRef
  74. ↵
    1. Huang W.,
    2. Van Hinsbergen D. J. J.,
    3. Maffione M.,
    4. Orme D. A.,
    5. Dupont-Nivet G.,
    6. Guilmette C.,
    7. Ding L.,
    8. Guo Z.,
    9. Kapp P.
    , 2015, Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: Evidence from paleomagnetism, sediment provenance, and stratigraphy: Earth and Planetary Science Letters, v. 415, p. 142–153, doi:https://doi.org/10.1016/j.epsl.2015.01.032
    OpenUrlCrossRefGeoRef
  75. ↵
    1. Ichikawa K.,
    2. Shinohara M.,
    3. Miyata T.
    , 1979, Stratigraphy of the Izumi Group in Izumi Mountains, in Proceedings of the Kansai Branch, Geological Society of Japan: Geological Society of Japan, v. 85, p. 10–11.
  76. ↵
    1. Ichikawa K.,
    2. Miyata T.,
    3. Shinohara M.
    , 1981, Eastward stepwise shift of the Izumi sedimentary basin with reference to the movement picture of the Median Tectonic Line: Proceedings of the Kansai Branch, Geological Society of Japan: Geological Society of Japan, v. 89, p. 11–12.
  77. ↵
    1. Hein J. R.,
    2. Obradović J., editors
    1. Iijima A.,
    2. Kakuwa Y.,
    3. Matsuda H.
    , 1989, Silicified wood from the Adoyama chert, Kuzuh, Central Honshu, and its bearing on compaction and depositional environment of radiolarian bedded chert, in Hein J. R., Obradović J., editors, Siliceous deposits of the Tethys and Pacific Regions: Berlin, Springer, p. 151–168, doi:https://doi.org/10.1007/978-1-4612-3494-4_11
    OpenUrlCrossRef
  78. ↵
    1. Ikeda T.,
    2. Harada T.,
    3. Kouchi Y.,
    4. Morita S.,
    5. Yokogawa M.,
    6. Yamamoto K.,
    7. Otoh S.
    , 2016, Provenance analysis based on detrital-zircon-age spectra of the Lower Cretaceous formations in the Ryoseki–Monobe area, Outer Zone of Southwest Japan: Memoir of the Fukui Prefectural Dinosaur Museum, v. 15, p. 33–84.
    OpenUrl
  79. ↵
    1. Ishiga H.,
    2. Ishiyama D.
    , 1987, Jurassic accretionary complex in Kaminokuni terrane, southwestern Hokkaido, Japan: Mining Geology, v. 37, p. 381–394.
    OpenUrl
  80. ↵
    1. Isozaki Y.
    , 1988, Sanbagawa metamorphism and the formation of the Sanbosan-Shimanto belt: Earth Monthly, v. 10, p. 367–371.
    OpenUrl
  81. ↵
    1. Isozaki Y.,
    1996, Anatomy and genesis of a subduction‐related orogen: A new view of geotectonic subdivision and evolution of the Japanese Islands: Island Arc, v. 5, n. 3, p. 289–320, doi:https://doi.org/10.1111/j.1440-1738.1996.tb00033.x
    OpenUrlCrossRefGeoRef
  82. ↵
    1. Isozaki Y.
    2000, The Japanese Islands: Its origin, evolution, and future: Science Journal Kagaku, v. 70, p. 133–145.
    OpenUrl
  83. ↵
    1. Isozaki Y.,
    2014, Memories of Pre-Jurassic Lost Oceans: How To Retrieve Them From Extant Lands: Geoscience Canada, v. 41, n. 3, p. 283–311, doi:https://doi.org/10.12789/geocanj.2014.41.050
    OpenUrlCrossRef
  84. ↵
    1. Isozaki Y.,
    2. Itaya T.
    , 1991, Pre-Jurassic klippe in northern Chichibu Belt in west-central Shikoku, Southwest Japan-Kurosegawa terrrane as a tectonic outlier of the pre-Jurassic rocks of the Inner zone: Journal of the Geological Society of Japan, v. 97, n. 6, p. 431–450, doi:https://doi.org/10.5575/geosoc.97.431
    OpenUrlCrossRefGeoRef
  85. ↵
    1. Isozaki Y.,
    2. Ota A.
    , 2001, Middle-Upper Permian (Maokouan-Wuchiapingian) boundary in mid-oceanic paleo-atoll limestone of Kamura and Akasaka, Japan: Proceedings of the Japan Academy, Series B, v. 77, n. 6, p. 104–109, doi:https://doi.org/10.2183/pjab.77.104
    OpenUrlCrossRef
  86. ↵
    1. Isozaki Y.,
    2. Maruyama S.,
    3. Furuoka F.
    , 1990, Accreted Oceanic Materials in Japan: Tectonophysics, v. 181, n. 1–4, p. 179–205, doi:https://doi.org/10.1016/0040-1951(90)90016-2
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Isozaki Y.,
    2. Aoki K.,
    3. Nakama T.,
    4. Yanai S.
    , 2010, New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands: Gondwana Research, v. 18, n. 1, p. 82–105, doi:https://doi.org/10.1016/j.gr.2010.02.015
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Ito T.,
    2. Kojima Y.,
    3. Kodaira S.,
    4. Sato H.,
    5. Kaneda Y.,
    6. Iwasaki T.,
    7. Kurashimo E.,
    8. Tsumura N.,
    9. Fujiwara A.,
    10. Miyauchi T.,
    11. Hirata N.,
    12. Harder S.,
    13. Miller K.,
    14. Murata A.,
    15. Yamakita S.,
    16. Onishi M.,
    17. Abe S.,
    18. Sato T.,
    19. Ikawa T.
    , 2009, Crustal structure of southwest Japan, revealed by the integrated seismic experiment Southwest Japan 2002: Tectonophysics, v. 472, n. 1–4, p. 124–134, doi:https://doi.org/10.1016/j.tecto.2008.05.013
    OpenUrlCrossRefGeoRefWeb of Science
  89. ↵
    1. Jackson M. J.,
    2. Banerjee S. K.,
    3. Marvin J. A.,
    4. Lu R.,
    5. Gruber W.
    , 1991, Detrital remanence, inclination errors, and anhysteretic remanence anisotropy: Quantitative model and experimental results: Geophysical Journal International, v. 104, n. 1, p. 95–103, doi:https://doi.org/10.1111/j.1365-246X.1991.tb02496.x
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Jasin B.,
    2. Tongkul F.
    , 2013, Cretaceous radiolarians from Baliojong ophiolite sequence, Sabah, Malaysia: Journal of Asian Earth Sciences, v. 76, p. 258–265, doi:https://doi.org/10.1016/j.jseaes.2012.10.038
    OpenUrlCrossRefGeoRef
  91. ↵
    1. Johnson C. L.,
    2. Constable C. G.,
    3. Tauxe L.,
    4. Barendregt R.,
    5. Brown L. L.,
    6. Coe R. S.,
    7. Layer P.,
    8. Mejia V.,
    9. Opdyke N. D.,
    10. Singer B. S.,
    11. Staudigel H.,
    12. Stone D. B.
    , 2008, Recent investigations of the 0-5 Ma geomagnetic field recorded by lava flows: Geochemistry, Geophysics, Geosystems, v. 9, n. 4, p. Q04032, doi:https://doi.org/10.1029/2007GC001696
    OpenUrlCrossRef
  92. ↵
    1. Johnson S. E.,
    2. Tate M. C.,
    3. Fanning C. M.
    , 1999, New geologic mapping and SHRIMP U-Pb zircon data in the Peninsular Ranges batholith, Baja California, Mexico: Evidence for a suture?: Geology, v. 27, n. 8, p. 743–746, doi:https://doi.org/10.1130/0091-7613(1999)027<0743:NGMASU>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  93. ↵
    1. Johnston S. T.
    , 2001, The Great Alaskan Terrane Wreck: Reconciliation of paleomagnetic and geological data in the northern Cordillera: Earth and Planetary Science Letters, v. 193, n. 3–4, p. 259–272, doi:https://doi.org/10.1016/S0012-821X(01)00516-7
    OpenUrlCrossRefGeoRefWeb of Science
    1. Johnston S. T.,
    2008, The cordilleran ribbon continent of North America: Annual Review of Earth and Planetsry Sciences, v. 36, p. 495–530, doi:https://doi.org/10.1146/annurev.earth.36.031207.124331
    OpenUrlCrossRef
  94. ↵
    1. Kasuya A.,
    2. Isozaki Y.,
    3. Igo H.
    , 2012, Constraining paleo-latitude of a biogeographic boundary in mid-Panthalassa: Fusuline province shift on the Late Guadalupian (Permian) migrating seamount: Gondwana Research, v. 21, n. 2–3, p. 611–623, doi:https://doi.org/10.1016/j.gr.2011.06.001
    OpenUrlCrossRefGeoRefWeb of Science
  95. ↵
    1. Kear D.,
    2. Mortimer N.
    , 2003, Waipa Supergroup, New Zealand: A proposal: Journal of the Royal Society of New Zealand, v. 33, n. 1, p. 149–163, doi:https://doi.org/10.1080/03014223.2003.9517725
    OpenUrlCrossRefGeoRefWeb of Science
  96. ↵
    1. Kennan L.,
    2. Pindell J. L.
    , 2009, Dextral shear, terrane accretion and basin formation in the Northern Andes: Best explained by interaction with a Pacific-derived Caribbean Plate?: Geological Society, London, Special Publications, v. 328, p. 487–531, doi:https://doi.org/10.1144/SP328.20
    OpenUrlAbstract/FREE Full Text
  97. ↵
    1. Kent D. V.,
    2. Tauxe L.
    , 2005, Corrected Late Triassic latitudes for continents adjacent to the North Atlantic: Science, v. 307, n. 5707, p. 240–244, doi:https://doi.org/10.1126/science.1105826
    OpenUrlCrossRef
  98. ↵
    1. Johnson S. E.,
    2. Paterson S. R.,
    3. Fletcher J. M.,
    4. Girty G. H.,
    5. Kimbrough D. A.,
    6. Martin-Barajas A.
    1. Kimbrough D. L.,
    2. Moore T. E.
    , 2003, Ophiolite and volcanic arc assemblages on the Vizcaino Peninsula and Cedros Island, Baja California Sur, México: Mesozoic forearc lithosphere of the Cordilleran magmatic arc, in Johnson S. E., Paterson S. R., Fletcher J. M., Girty G. H., Kimbrough D. A., Martin-Barajas A., editors, Tectonic evolution of northwestern Mexico and the southwestern USA: Geological Society of America Special Paper, v. 374, p. 43–71, doi:https://doi.org/10.1130/0-8137-2374-4.43
    OpenUrlCrossRef
  99. ↵
    1. Kiminami K.
    , 1992, Cretaceous-Paleogene arc-trench systems in Hokkaido, Paleozoic and Mesozoic terranes: basement of the Japanese Island arcs : 29th IGC field trip guidebook, v. 1, p. 1–43.
    OpenUrl
  100. ↵
    1. Kirschvink J. L.
    , 1980, The least-squares line and plane and the analysis of palaeomagnetic data: Geophysical Journal International, v. 62, n. 3, p. 699–718, doi:https://doi.org/10.1111/j.1365-246X.1980.tb02601.x
    OpenUrlCrossRefWeb of Science
  101. ↵
    1. Kirschvink J. L.,
    2. Isozaki Y.,
    3. Shibuya H.,
    4. Otofuji Y.-i.,
    5. Raub T. D.,
    6. Hilburn I. A.,
    7. Kasuya T.,
    8. Yokoyama M.,
    9. Bonifacie M.
    , 2015, Challenging the sensitivity limits of paleomagnetism: Magnetostratigraphy of weakly magnetized Guadalupian–Lopingian (Permian) limestone from Kyushu, Japan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 418, p. 75–89, doi:https://doi.org/10.1016/j.palaeo.2014.10.037
    OpenUrlCrossRefGeoRef
  102. ↵
    1. Kleinrock M. C.,
    2. Morgan J. P.
    , 1988, Triple junction reorganization: Journal of Geophysical Research: Solid Earth, v. 93. n. B4, p. 2981–2996, doi:https://doi.org/10.1029/JB093iB04p02981
    OpenUrlCrossRef
  103. ↵
    1. Kobayashi T.,
    2. Tamura M.
    , 1984, The Triassic bivalvia of Malaysia, Thailand and adjacent areas: Geology and Palaeontology of Southeast Asia, v. 25, p. 201–228.
    OpenUrlGeoRef
  104. ↵
    1. Kodama K. P.
    , 2009, Simplification of the anisotropy-based inclination correction technique for magnetite-and haematite-bearing rocks: A case study for the Carboniferous Glenshaw and Mauch Chunk Formations, North America: Geophysical Journal International, v. 176, n. 2, p. 467-–77, doi:https://doi.org/10.1111/j.1365-246X.2008.04013.x
    OpenUrlCrossRefGeoRef
  105. ↵
    1. Spörli,
    2. Takemura A.,
    3. Hori R. S.
    1. Kodama K.,
    2. Fukuoka M.,
    3. Aita Y.,
    4. Sakai T.,
    5. Hori R. S.,
    6. Takemura A.,
    7. Campbell H. J.,
    8. Hollis C.,
    9. Grant-Mackie J. A.,
    10. Spörli K. B.
    , 2007, Paleomagnetic results from Arrow Rocks in the framework of paleomagnetism in pre-Neogene rocks from New Zealand, in Spörli, Takemura A., Hori R. S., editors, The Oceanic Permian/Triassic Boundary Sequence at Arrow Rocks (Oruatemanu), Northland, New Zealand: Lower Hutt, New Zealand: Geological and Nuclear Science Monograph, v. 24, p. 177–196.
    OpenUrl
  106. ↵
    1. Konrad K.,
    2. Koppers A. A. P.,
    3. Steinberger B.,
    4. Finlayson V. A.,
    5. Konter J. G.,
    6. Jackson M. G.
    , 2018, On the relative motions of long-lived Pacific mantle plumes: Nature Communications, v. 9, article number, 854, doi:https://doi.org/10.1038/s41467-018-03277-x
    OpenUrlCrossRef
  107. ↵
    1. Koymans M. R.,
    2. Langereis C. G.,
    3. Pastor-Galán D.,
    4. van Hinsbergen D. J. J.
    , 2016, Paleomagnetism.org: An online multi-platform open source environment for paleomagnetic data analysis: Computers & Geosciences, v. 93, p. 127–137, doi:https://doi.org/10.1016/j.cageo.2016.05.007
    OpenUrlCrossRef
  108. ↵
    1. Koymans M. R.,
    2. van Hinsbergen D. J. J.,
    3. Pastor‐Galán D.,
    4. Vaes B.,
    5. Langereis C. G.
    , 2020, Towards FAIR paleomagnetic data management through Paleomagnetism. org 2.0: Geochemistry, Geophysics, Geosystems, v. 21, n. 2, p. e2019GC008838, doi:https://doi.org/10.1029/2019GC008838
    OpenUrlCrossRef
  109. ↵
    1. Krijgsman W.,
    2. Tauxe L.
    , 2006, E/I corrected paleolatitudes for the sedimentary rocks of the Baja British Columbia hypothesis: Earth and Planetary Science Letters, v. 242, n. 1–2, p. 205–216, doi:https://doi.org/10.1016/j.epsl.2005.11.052
    OpenUrlCrossRefGeoRefWeb of Science
  110. ↵
    1. Kusky T. M.,
    2. Windley B. F.,
    3. Safonova I.,
    4. Wakita K.,
    5. Wakabayashi J.,
    6. Polat A.,
    7. Santosh M.
    , 2013, Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion: Gondwana Research, v. 24, n. 2, p. 501–547, doi:https://doi.org/10.1016/j.gr.2013.01.004
    OpenUrlCrossRefGeoRefWeb of Science
  111. ↵
    1. Lancelot Y.,
    2. Larson R.
    , 1975, Sedimentary and tectonic evolution of the northwestern Pacific: Initial Reports Deep Sea Drilling Reports and Publications, v. 32, p. 925–939, doi:https://doi.org/10.2973/dsdp.proc.32.138.1975
    OpenUrlCrossRef
  112. ↵
    1. Larson R. L.,
    2. Chase C., G.
    , 1972, Late Mesozoic Evolution of the Western Pacific Ocean: GSA Bulletin, v. 83, n. 12, p. 3627–3644, doi:https://doi.org/10.1130/0016-7606(1972)83[3627:LMEOTW]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Larson R. L.,
    2. Pitman W. C. III.
    , 1972, World-Wide Correlation of Mesozoic Magnetic Anomalies, and Its Implications: GSA Bulletin, v. 83, n. 12, p. 3645–3662, doi:https://doi.org/10.1130/0016-7606(1972)83[3645:WCOMMA]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  114. ↵
    1. Li Z.-X.,
    2. Bogdanova S. V.,
    3. Collins A. S.,
    4. Davidson A.,
    5. De Waele B.,
    6. Ernst R. E.,
    7. Fitzsimons I. C. W.,
    8. Fuck R. A.,
    9. Gladkochub D. P.,
    10. Jacobs J.,
    11. Karlstrom K. E.,
    12. Lu S.,
    13. Natapov L. M.,
    14. Pease V.,
    15. Pisarevsky S. A.,
    16. Thrane K.,
    17. Vernikovsky V.
    , 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, v. 160, n. 1–2, p. 179–210, doi:https://doi.org/10.1016/j.precamres.2007.04.021
    OpenUrlCrossRef
    1. Li Z. X.,
    2. Mitchell R. N.,
    3. Spencer C. J.,
    4. Ernst R.,
    5. Pisarevsky S.,
    6. Kirscher U.,
    7. Murphy J. B.
    , 2019, Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes: Precambrian Research, v. 323, p. 1–5, doi:https://doi.org/10.1016/j.precamres.2019.01.009
    OpenUrlCrossRef
  115. ↵
    1. Ma Y.,
    2. Yang T.,
    3. Yang Z.,
    4. Zhang S.,
    5. Wu H.,
    6. Li H.,
    7. Li H.,
    8. Chen W.,
    9. Zhang J.,
    10. Ding J.
    , 2014, Paleomagnetism and U‐Pb zircon geochronology of Lower Cretaceous lava flows from the western Lhasa terrane: New constraints on the India‐Asia collision process and intracontinental deformation within Asia: Journal of Geophysical Research: Solid Earth, v. 119, n. 10, p. 7404–7424, doi:https://doi.org/10.1002/2014JB011362
    OpenUrlCrossRef
  116. ↵
    1. Madrigal P.,
    2. Gazel E.,
    3. Denyer P.,
    4. Smith I.,
    5. Jicha B.,
    6. Flores K. E.,
    7. Coleman D.,
    8. Snow J.
    , 2015, A melt-focusing zone in the lithospheric mantle preserved in the Santa Elena Ophiolite, Costa Rica: Lithos, v. 230, p. 189–205, doi:https://doi.org/10.1016/j.lithos.2015.04.015
    OpenUrlCrossRefGeoRef
  117. ↵
    1. Martini M.,
    2. Mori L.,
    3. Solari L.,
    4. Centeno-García E.
    , 2011, Sandstone Provenance of the Arperos Basin (Sierra de Guanajuato, Central Mexico): Late Jurassic–Early Cretaceous Back-Arc Spreading as the Foundation of the Guerrero Terrane: The Journal of Geology, v. 119, n. 6, p. 597–617, doi:https://doi.org/10.1086/661989
    OpenUrlCrossRefGeoRefWeb of Science
    1. Martini M.,
    2. Solari L.,
    3. López-Martínez M.
    , 2014, Correlating the Arperos Basin from Guanajuato, central Mexico, to Santo Tomás, southern Mexico: Implications for the paleogeography and origin of the Guerrero terrane: Geosphere, v. 10, n. 6, p. 1385–1401, doi:https://doi.org/10.1130/GES01055.1
    OpenUrlAbstract/FREE Full Text
  118. ↵
    1. Maruyama S.,
    2. Seno T.
    , 1986, Orogeny and relative plate motions: Example of the Japanese Islands: Tectonophysics, v. 127, n. 3–4, p. 305–329, doi:https://doi.org/10.1016/0040-1951(86)90067-3
    OpenUrlCrossRefGeoRefWeb of Science
  119. ↵
    1. Maruyama S.,
    2. Isozaki Y.,
    3. Kimura G.,
    4. Terabayashi M.
    , 1997, Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present: Island Arc, v. 6, n. 1, p. 121–142, doi:https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
    OpenUrlCrossRefGeoRef
  120. ↵
    1. Matsuda T.,
    2. Isozaki Y.
    , 1982, Radiolarians around the Triassic-Jurassic boundary from the bedded chert in the Kamiaso area, Southwest Japan. Appendix:” Anisian Radiolarians": News of Osaka Micropaleontoly, Special Volume, v. 5, p. 93–101.
    OpenUrl
  121. ↵
    1. Matsuda T.,
    2. Isozaki Y.,
    1991, Well-Documented Travel History of Mesozoic Pelagic Chert in Japan - from Remote Ocean to Subduction Zone: Tectonics, v. 10, n. 2, p. 475–499, doi:https://doi.org/10.1029/90TC02134
    OpenUrlCrossRefGeoRefWeb of Science
  122. ↵
    1. Matsumoto T.
    , 1978, Japan and adjoining areas: Mesozoic A, p. 79–144.
  123. ↵
    1. Matsuoka A.
    , 1992, Jurassic and Early Cretaceous radiolarians from ODP Leg 129, Sites 800 and 801, western Pacific ocean: College Station, Texas, USA, Proceedings of the Ocean Drilling Program, Scientific results, v. 129, p. 203–220, doi:https://doi.org/10.2973/odp.proc.sr.129.121.1992
  124. ↵
    1. Matsuoka A.,
    1995, Jurassic and Lower Cretaceous radiolarian zonation in Japan and in the western Pacific: Island Arc, v. 4, n. 2, p. 140–153, doi:https://doi.org/10.1111/j.1440-1738.1995.tb00138.x
    OpenUrlCrossRefGeoRef
  125. ↵
    1. Matthews K. J.,
    2. Maloney K. T.,
    3. Zahirovic S.,
    4. Williams S. E.,
    5. Seton M.,
    6. Müller R. D.
    , 2016, Global plate boundary evolution and kinematics since the late Paleozoic: Global and Planetary Change, v. 146, p. 226–250, doi:https://doi.org/10.1016/j.gloplacha.2016.10.002
    OpenUrlCrossRef
  126. ↵
    1. McFadden P. L.,
    2. McElhinny M. W.
    , 1988, The combined analysis of remagnetization circles and direct observations in palaeomagnetism: Earth and Planetary Science Letters, v. 87, n. 1–2, p. 161–172, doi:https://doi.org/10.1016/0012-821X(88)90072-6
    OpenUrlCrossRefGeoRefWeb of Science
  127. ↵
    1. McQuarrie N.,
    2. Wernicke B. P.
    , 2005, An animated tectonic reconstruction of southwestern North America since 36 Ma: Geosphere, v. 1. n. 3, p. 147–172, doi:https://doi.org/10.1130/GES00016.1
    OpenUrlAbstract/FREE Full Text
  128. ↵
    1. Merdith A. S.,
    2. Collins A. S.,
    3. Williams S. E.,
    4. Pisarevsky S.,
    5. Foden J. D.,
    6. Archibald D. B.,
    7. Blades M. L.,
    8. Alessio B. L.,
    9. Armistead S.,
    10. Plavsa D.,
    11. Clark C.,
    12. Müller R. D.
    , 2017, A full-plate global reconstruction of the Neoproterozoic: Gondwana Research, v. 50, p. 84–134, doi:https://doi.org/10.1016/j.gr.2017.04.001
    OpenUrlCrossRef
  129. ↵
    1. Miyata T.
    , 1990, Slump strain indicative of paleoslope in Cretaceous Izumi sedimentary basin along Median tectonic line, southwest Japan: Geology, v. 18, n. 5, p. 392–394, doi:https://doi.org/10.1130/0091-7613(1990)018<0392:SSIOPI>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  130. ↵
    1. Monger J.,
    2. Price R.
    , 2002, The Canadian Cordillera: Geology and tectonic evolution: CSEG Recorder, v. 27, p. 17–36.
    OpenUrl
  131. ↵
    1. Montes C.,
    2. Rodriguez-Corcho A. F.,
    3. Bayona G.,
    4. Hoyos N.,
    5. Zapata S.,
    6. Cardona A.
    , 2019, Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin: Earth-Science Reviews, v. 198, p. 102903, doi:https://doi.org/10.1016/j.earscirev.2019.102903
    OpenUrlCrossRef
    1. Mortimer N.
    , 2004, New Zealand's Geological Fundations: Gondwana Research, v. 7, n. 1, p.261–272, doi:https://doi.org/10.1016/S1342-937X(05)70324-5
    OpenUrlCrossRef
    1. Mortimer N.,
    2. Rattenbury M. S.,
    3. King P. R.,
    4. Bland K. J.,
    5. Barrell D. J. A.,
    6. Bache F.,
    7. Begg J. G.,
    8. Campbell H. J.,
    9. Cox S. C.,
    10. Crampton J. S.,
    11. Edbrooke S. W.,
    12. Forsyth P. J.,
    13. Johnston M. R.,
    14. Jongens R.,
    15. Lee J. M.,
    16. Leonard G. S.,
    17. Raine J. I.,
    18. Skinner D. N. B.,
    19. Timm C.,
    20. Townsend D. B.,
    21. Tulloch A. J.,
    22. Turnbull I. M.,
    23. Turnbull R. E.
    , 2014, High-level stratigraphic scheme for New Zealand rocks: New Zealand Journal of Geology and Geophysics, v. 57, n. 4, p. 402–419, doi:https://doi.org/10.1080/00288306.2014.946062
    OpenUrlCrossRefGeoRef
  132. ↵
    1. Müller R. D.,
    2. Seton M.,
    3. Zahirovic S.,
    4. Williams S. E.,
    5. Matthews K. J.,
    6. Wright N. M.,
    7. Shephard G. E.,
    8. Maloney K. T.,
    9. Barnett-Moore N.,
    10. Hosseinpour M.,
    11. Bower D. J.,
    12. Cannon J.
    , 2016, Ocean basin evolution and global-scale plate reorganization events since Pangea breakup: Annual Review of Earth and Planetary Sciences, v. 44, p. 107–138, doi:https://doi.org/10.1146/annurev-earth-060115-012211
    OpenUrlCrossRef
  133. ↵
    1. Müller R. D.,
    2. Cannon J.,
    3. Qin X.,
    4. Watson R. J.,
    5. Gurnis M.,
    6. Williams S.,
    7. Pfaffelmoser T.,
    8. Seton M.,
    9. Russell S. H.,
    10. Zahirovic S.
    , 2018, GPlates: building a virtual Earth through deep time: Geochemistry, Geophysics, Geosystems, v. 19, n. 7, p. 2243–2261, doi:https://doi.org/10.1029/2018GC007584
    OpenUrlCrossRef
  134. ↵
    1. Müller R. D.,
    2. Zahirovic S.,
    3. Williams S. E.,
    4. Cannon J.,
    5. Seton M.,
    6. Bower D. J.,
    7. Tetley M. G.,
    8. Heine C.,
    9. Le Breton E.,
    10. Liu S.,
    11. Russel S. H. J.,
    12. Yang T.,
    13. Leonard J.,
    14. Gurnis M.
    , 2019, A global plate model including lithospheric deformation along major rifts and orogens since the Triassic: Tectonics, v. 38, n. 6, p. 1884–1907, doi:https://doi.org/10.1029/2018TC005462
    OpenUrlCrossRef
  135. ↵
    1. Nance R. D.,
    2. Gutiérrez-Alonso G.,
    3. Keppie J. D.,
    4. Linnemann U.,
    5. Murphy J. B.,
    6. Quesada C.,
    7. Strachan R. A.,
    8. Woodcock N. H.
    , 2010, Evolution of the Rheic Ocean: Gondwana Research, v. 17, n. 2–3, p. 194–222, doi:https://doi.org/10.1016/j.gr.2009.08.001
    OpenUrlCrossRefGeoRefWeb of Science
  136. ↵
    1. Nance R. D.,
    2. Murphy J. B.,
    3. Santosh M.
    , 2014, The supercontinent cycle: A retrospective essay: Gondwana Research, v. 25, p. 4–29, doi:https://doi.org/10.1016/j.gr.2012.12.026
    OpenUrlCrossRefGeoRefWeb of Science
  137. ↵
    1. Noda A.,
    2. Sato D.
    , 2018, Submarine slope–fan sedimentation in an ancient forearc related to contemporaneous magmatism: The Upper Cretaceous Izumi Group, southwestern Japan: Island Arc, v. 27, n. 2, p. e12240, doi:https://doi.org/10.1111/iar.12240
    OpenUrlCrossRef
  138. ↵
    1. Noda A.,
    2. Toshimitsu S.
    , 2009, Backward stacking of submarine channel–fan successions controlled by strike-slip faulting: The Izumi Group (Cretaceous), southwest JapanSubmarine-fan successions controlled by strike-slip faulting: Lithosphere, v. 1, n. 1, p. 41–59, doi:https://doi.org/10.1130/L19.1
    OpenUrlAbstract/FREE Full Text
  139. ↵
    1. Nokleberg W. J.,
    2. Parfenov L. M.,
    3. Monger J. W. H.,
    4. Norton I. O.,
    5. Khanchuk A. I.,
    6. Stone D. B.,
    7. Scotese C. R.,
    8. Scholl D. W.,
    9. Fujita K.
    , 2000, Phanerozoic Tectonic Evolution of the Circum-North Pacific: U.S. Geological Survey Professional Papr 1626, https://pubs.usgs.gov/pp/2000/1626/
  140. ↵
    1. Oda H.,
    2. Suzuki H.
    , 2000, Paleomagnetism of Triassic and Jurassic red bedded chert of the Inuyama area, central Japan: Journal of Geophysical Research: Solid Earth, v. 105, n. B11, p. 25743–25767, doi:https://doi.org/10.1029/2000JB900267
    OpenUrlCrossRef
  141. ↵
    1. Okada A.
    , 1973, On the quaternary faulting along the median tectonic line in the central part of Shikoku: Geographical Review of Japan, v. 45, n. 5, p. 295–322, doi:https://doi.org/10.4157/grj.46.295
    OpenUrlCrossRef
  142. ↵
    1. Oliver P.
    , 1994, The tectonic significance of paleomagnetic results from the Triassic and Jurassic Murihiku sedimentary rocks of the Kawhia region, North Island, New Zealand, in Van der Lingen G. J., Swanson K. M., Muir R. J., editors Evolution of the Tasman Sea basin: Rotterdam, The Netherlands, Balkema, Proceedings of the Tasman Sea conference, p. 67–82.
  143. ↵
    1. Johnson S. E.,
    2. Paterson S. R.,
    3. Fletcher J. M.,
    4. Girty G. H.,
    5. Kimbrough D. L.,
    6. Martin-Barajas A.
    1. Ortega Rivera A.
    , 2003, Geochronological constraints on the tectonic history of the Peninsular Ranges batholith of Alta and Baja California: Tectonic implications for western México, in Johnson S. E., Paterson S. R., Fletcher J. M., Girty G. H., Kimbrough D. L., Martin-Barajas A., editors, Tectonic evolution on north-western México and the southwestern USA: Boulder, Colorado, Geological Society of America Special Papers, v. 374, p. 297–335, doi:https://doi.org/10.1130/0-8137-2374-4.297
    OpenUrlCrossRef
  144. ↵
    1. Ota A.,
    2. Isozaki Y.
    , 2006, Fusuline biotic turnover across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic carbonate buildups: Biostratigraphy of accreted limestone in Japan: Journal of Asian Earth Sciences, v. 26, n. 3–4, p. 353–368, doi:https://doi.org/10.1016/j.jseaes.2005.04.001
    OpenUrlCrossRefGeoRefWeb of Science
  145. ↵
    1. Pessagno E. A. Jr..,
    2. Finch W.,
    3. Abbott P. L.
    , 1979, Upper Triassic Radiolaria from the San Hipolito Formation, Baja California: Micropaleontology, v. 25, n. 2, p. 160–197, doi:https://doi.org/10.2307/1485265
    OpenUrlAbstract
  146. ↵
    1. Pindell J. L.,
    2. Dewey J. F.
    , 1982, Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region: Tectonics, v. 1, n. 2, p. 179–211, doi:https://doi.org/10.1029/TC001i002p00179
    OpenUrlCrossRefGeoRefWeb of Science
  147. ↵
    1. Pisarevsky S. A.,
    2. Elming S.-Å.,
    3. Pesonen L. J.,
    4. Li Z.-X.
    , 2014, Mesoproterozoic paleogeography: Supercontinent and beyond: Precambrian Research, v. 244, p. 207–225, doi:https://doi.org/10.1016/j.precamres.2013.05.014
    OpenUrlCrossRefGeoRef
  148. ↵
    1. Price R.,
    2. Mortimer N.,
    3. Smith I.,
    4. Maas R.
    , 2015, Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand: New Zealand Journal of Geology and Geophysics, v. 58, n. 3, p. 213–228, doi:https://doi.org/10.1080/00288306.2015.1026832
    OpenUrlCrossRef
  149. ↵
    1. Rangin C.
    , 1978, Speculative model of Mesozoic geodynamics, central Baja California to northeastern Sonora (Mexico), Mesozoic Paleogeography of the Western United States: Pacific Section S.E.P.M.
  150. ↵
    1. McKenzie G. D.
    1. Retallack G. J.
    , 1987, Triassic vegetation and geography of the New Zealand portion of the Gondwana supercontinent, in McKenzie G. D., editor, Gondwana Six: Stratigraphy, Sedimentology, and Paleontology: Geophysical Monograph Series, v. 41, doi:https://doi.org/10.1029/GM041p0029
    OpenUrlCrossRef
  151. ↵
    1. Riisager P.,
    2. Hall S.,
    3. Antretter M.,
    4. Zhao X.
    , 2003, Paleomagnetic paleolatitude of Early Cretaceous Ontong Java Plateau basalts: Implications for Pacific apparent and true polar wander: Earth and Planetary Science Letters, v. 208, n. 3–4, p. 235–252, doi:https://doi.org/10.1016/S0012-821X(03)00046-3
    OpenUrlCrossRefGeoRefWeb of Science
    1. Mann P.
    1. Rogers R. D.,
    2. Mann P.,
    3. Emmet P. A.
    , 2007, Tectonic terranes of the Chortis block based on integration of regional aeromagnetic and geologic data, in Mann P., editor, Geologic and Tectonic Development of the Caribbean Plate Boundary in Northern Central America: Geological Society of America Special Papers, v. 428, p. 65–88, doi:https://doi.org/10.1130/2007.2428(04)
    OpenUrlCrossRef
  152. ↵
    1. Sakashima T.,
    2. Terada K.,
    3. Takeshita T.,
    4. Sano Y.
    , 2003, Large-scale displacement along the Median Tectonic Line, Japan: Evidence from SHRIMP zircon U–Pb dating of granites and gneisses from the South Kitakami and paleo-Ryoke belts: Journal of Asian Earth Sciences, v. 21, n. 9, p. 1019–1039, doi:https://doi.org/10.1016/S1367-9120(02)00108-6
    OpenUrlCrossRefWeb of Science
  153. ↵
    1. Sano H.,
    2. Nakashima K.
    , 1997, Lowermost Triassic (Griesbachian) microbial bindstone-cementstone facies, southwest Japan: Facies, v. 36, p. 1–24, doi:https://doi.org/10.1007/BF02536874
    OpenUrlCrossRefWeb of Science
    1. Sato H.,
    2. Kojima Y.,
    3. Murata A.,
    4. Ito T.,
    5. Kaneda Y.,
    6. Onishi M.,
    7. Iwasaki T.,
    8. Oho Y.,
    9. Ogino S.,
    10. Kano K.,
    11. Kawamura T.,
    12. Kurashimo e.,
    13. Koshiya s.,
    14. Takasu A.,
    15. Takeshita T.,
    16. Tsumura N.,
    17. Terabayashi Y.,
    18. Toyohara F.,
    19. Nakajima T.,
    20. Noda K.,
    21. Hashimoto Y.,
    22. Hasegawa S.,
    23. Hirata N.,
    24. Miyauchi t.,
    25. Miyata T.,
    26. Yamakita S.,
    27. Yoshida T.,
    28. Harder S.,
    29. Miller K.,
    30. Kapi G.,
    31. Ozawa T.,
    32. Ikawa T.
    , 2005, Crustal structure of the outer zone in southwest Japan revealed by Shikoku and Seto-Inland-Sea seismic profiling in 2002: Bulletin of the Earthquake Research Institute, v. 80, p. 53–71.
    OpenUrl
    1. Sato H.,
    2. Kato N.,
    3. Abe S.,
    4. Van Horne A.,
    5. Takeda T.
    , 2015, Reactivation of an old plate interface as a strike-slip fault in a slip-partitioned system: Median Tectonic Line, SW Japan: Tectonophysics, v. 644–645, p. 58–67, doi:https://doi.org/10.1016/j.tecto.2014.12.020
    OpenUrlCrossRef
  154. ↵
    1. Sato T.
    , 1962, Études biostratigraphiques des ammonites du Jurassique du Japon: Mémoires de la Societé géologique de France NS, v. 94, p. 1–122.
    OpenUrl
  155. ↵
    1. Schellart W.
    , 2017, A geodynamic model of subduction evolution and slab detachment to explain Australian plate acceleration and deceleration during the latest Cretaceous–early Cenozoic: Lithosphere, v. 9, n. 6, p. 976–986, doi:https://doi.org/10.1130/L675.1
    OpenUrlCrossRef
  156. ↵
    1. Schepers G.,
    2. van Hinsbergen D. J. J.,
    3. Spakman W.,
    4. Kosters M. E.,
    5. Boschman L. M.,
    6. McQuarrie N.
    , 2017, South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes: Nature Communications, v. 8, article number 15249, doi:https://doi.org/10.1038/ncomms15249
    OpenUrlCrossRef
  157. ↵
    1. Scotese C. R.
    , 2004, A continental drift flipbook: The Journal of Geology, v. 112, n. 6, p. 729–741, doi:https://doi.org/10.1086/424867
    OpenUrlCrossRefGeoRefWeb of Science
    1. Sedlock R. L.
    , 1988, Tectonic setting of blueschist and island-arc terranes of west-central Baja California, Mexico: Geology, v. 16, n. 7, p. 623–626, doi:https://doi.org/10.1130/0091-7613(1988)016<0623:TSOBAI>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  158. ↵
    1. Sedlock R. L.,
    2. Isozaki Y.
    , 1990, Lithology and Biostratigraphy of Franciscan-Like Chert and Associated Rocks in West-Central Baja-California, Mexico: GSA Bulletin, v. 102, n. 7, p. 852–864, doi:https://doi.org/10.1130/0016-7606(1990)102<0852:LABOFL>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  159. ↵
    1. Seton M.,
    2. Mortimer N.,
    3. Williams S.,
    4. Quilty P.,
    5. Gans P.,
    6. Meffre S.,
    7. Micklethwaite S.,
    8. Zahirovic S.,
    9. Moore J.,
    10. Matthews K. J.
    , 2016, Melanesian back-arc basin and arc development: Constraints from the eastern Coral Sea: Gondwana Research, v. 39, p. 77–95, doi:https://doi.org/10.1016/j.gr.2016.06.011
    OpenUrlCrossRef
  160. ↵
    1. Shibuya H.,
    2. Sasajima S.
    , 1986, Paleomagnetism of red cherts: A case study in the Inuyama area, central Japan: Journal of Geophysical Research: Solid Earth, v. 91, n. B14, p. 14105–14116, doi:https://doi.org/10.1029/JB091iB14p14105
    OpenUrlCrossRef
  161. ↵
    1. Sigloch K.,
    2. Mihalynuk M. G.
    , 2013, Intra-oceanic subduction shaped the assembly of Cordilleran North America: Nature, v. 496, p. 50–6, doi:https://doi.org/10.1038/nature12019
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  162. ↵
    1. Sigloch K.,
    2. McQuarrie N.,
    3. Nolet G.
    , 2008, Two-stage subduction history under North America inferred from multiple-frequency tomography: Nature Geoscience, v. 1, p. 458–462, doi:https://doi.org/10.1038/ngeo231
    OpenUrlCrossRef
  163. ↵
    1. Spörli K. B.,
    2. Grant-Mackie J. A.
    , 1976, Upper Jurassic fossils from the Waipapa Group of Tawharanui Peninsula, North Auckland, New Zealand: New Zealand Journal of Geology and Geophysics, v. 19, n. 1, p. 21–34, doi:https://doi.org/10.1080/00288306.1976.10423547
    OpenUrlCrossRefGeoRefWeb of Science
  164. ↵
    1. Spörli K. B.,
    2. Aita Y.,
    3. Gibson G. W.
    , 1989, Juxtaposition of Tethyan and Non-Tethyan Mesozoic radiolarian faunas in melanges, Waipapa Terrane, North-Island, New-Zealand: Geology, v. 17, n. 8, p. 753–756, doi:https://doi.org/10.1130/0091-7613(1989)017<0753:JOTANT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  165. ↵
    1. Stampfli G. M.,
    2. Borel G. D.
    , 2002, A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons: Earth and Planetary Science Letters, v. 196, n. 1–2, p. 17–33, doi:https://doi.org/10.1016/S0012-821X(01)00588-X
    OpenUrlCrossRefGeoRefWeb of Science
  166. ↵
    1. Steiner M. B.,
    2. Wallick B. P.
    , 1992, Jurassic to Paleocene paleolatitudes of the Pacific plate derived from the paleomagnetism of the sedimentary sequences at Sites 800, 801, and 802: Proceedings of the Ocean Drilling Program, Scientific Results, v. 129, p. 431–446, doi:https://doi.org/10.2973/odp.proc.sr.129.136.1992
  167. ↵
    1. Sugiyama Y.
    , 1994, Neotectonics of southwest Japan due to the right-oblique subduction of the Philippine Sea plate: Geofísica Internacional, v. 33, n. 1, p. 53–76, doi:https://doi.org/10.22201/igeof.00167169p.1994.33.1.540
    OpenUrlCrossRefGeoRef
  168. ↵
    1. Taira A.,
    2. Saito Y.,
    3. Hashimoto M.
    , 1983, The role of oblique subduction and strike‐slip tectonics in the evolution of Japan: Geodynamics of the Western Pacific‐Indonesian Region, v. 11, p. 303–316, doi:https://doi.org/10.1029/GD011p0303
    OpenUrlCrossRef
  169. ↵
    1. Talavera-Mendoza O.,
    2. Ruiz J.,
    3. Gehrels G. E.,
    4. Valencia V. A.,
    5. Centeno-García E.
    , 2007, Detrital zircon U/Pb geochronology of southern Guerrero and western Mixteca arc successions (southern Mexico): New insights for the tectonic evolution of southwestern North America during the late Mesozoic: GSA Bulletin, v. 119, n. 9–10, p. 1052–1065, doi:https://doi.org/10.1130/B26016.1
    OpenUrlAbstract/FREE Full Text
  170. ↵
    1. Tarduno J. A.,
    2. McWilliams M.,
    3. Sliter W. V.,
    4. Cook H. E.,
    5. Blake M. C. Jr..,
    6. Premoli-Silva I.
    , 1986, Southern hemisphere origin of the Cretaceous Laytonville limestone of California: Science, v. 231, n. 4744, p. 1425–1428, doi:https://doi.org/10.1126/science.231.4744.1425
    OpenUrlAbstract/FREE Full Text
  171. ↵
    1. Tauxe L.
    , 2010, Essentials of Paleomagnetism: Oakland, California, University of California Press, 512 p., doi:https://doi.org/10.1525/9780520946378
    OpenUrlCrossRef
  172. ↵
    1. Channell J. E. T.,
    2. Kent D. V.,
    3. Lowrie W.,
    4. Meert J. G.
    1. Tauxe L.,
    2. Kent D. V.
    , 2004, A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar? in Channell J. E. T., Kent D. V., Lowrie W., Meert J. G., editors, Timescales of the Paleomagnetic Field: Geophysical Monograph Series, v. 145, p. 101–115, doi:https://doi.org/10.1029/145GM08
    OpenUrlCrossRef
  173. ↵
    1. Tauxe L.,
    2. Watson G. S.
    , 1994, The Fold Test - an Eigen Analysis Approach: Earth and Planetary Science Letters, v. 122, n. 3–4, p. 331–341, doi:https://doi.org/10.1016/0012-821X(94)90006-X
    OpenUrlCrossRefGeoRefWeb of Science
  174. ↵
    1. Tazawa J.-I.,
    2001, Middle Permian brachiopod faunas of Japan and South Primorye, Far East Russia: Their palaeobiogeographic and tectonic implications: Geosciences Journal, v. 5, article number 19, doi:https://doi.org/10.1007/BF02910170
    OpenUrlCrossRef
  175. ↵
    1. Tazawa J.-I.
    , 2002, Late Paleozoic brachiopod faunas of the South Kitakami Belt, northeast Japan, and their paleobiogeographic and tectonic implications: Island Arc, v. 11, n. 4, p. 287–301, doi:https://doi.org/10.1046/j.1440-1738.2002.00369.x
    OpenUrlCrossRefGeoRef
  176. ↵
    1. Tomurtogoo O.,
    2. Windley B. F.,
    3. Kröner A.,
    4. Badarch G.,
    5. Liu D. Y.
    , 2005, Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: Constraints on the evolution of the Mongol–Okhotsk ocean, suture and orogen: Journal of the Geological Society, v. 162, n. 1, p. 125–134, doi:https://doi.org/10.1144/0016-764903-146
    OpenUrlAbstract/FREE Full Text
  177. ↵
    1. Torsvik T. H.
    , 2003, Geology. The Rodinia jigsaw puzzle: Science, v. 300, n. 5624, p. 1379–81, doi:https://doi.org/10.1126/science.1083469
    OpenUrlAbstract/FREE Full Text
  178. ↵
    1. Torsvik T. H.,
    2. Van der Voo R.
    , 2002, Refining Gondwana and Pangea palaeogeography: Estimates of Phanerozoic non-dipole (octupole) fields: Geophysical Journal International, v. 151, n. 3, p. 771–794, doi:https://doi.org/10.1046/j.1365-246X.2002.01799.x
    OpenUrlCrossRefWeb of Science
  179. ↵
    1. Torsvik T. H.,
    2. Smethurst M. A.,
    3. Meert J. G.,
    4. Van der Voo R.,
    5. McKerrow W. S.,
    6. Brasier M. D.,
    7. Sturt B. A.,
    8. Walderhaug H. J.
    , 1996, Continental break-up and collision in the Neoproterozoic and Palaeozoic—A tale of Baltica and Laurentia: Earth-Science Reviews, v. 40, n. 1–4, p. 229–258, doi:https://doi.org/10.1016/0012-8252(96)00008-6
    OpenUrlCrossRefGeoRef
  180. ↵
    1. Torsvik T. H.,
    2. Müller R. D.,
    3. Van der Voo R.,
    4. Steinberger B.,
    5. Gaina C.
    , 2008, Global plate motion frames: Toward a unified model: Reviews of Geophysics, v. 46, n. 3, doi:https://doi.org/10.1029/2007RG000227
    OpenUrlCrossRef
  181. ↵
    1. Torsvik T. H.,
    2. Steinberger B.,
    3. Gurnis M.,
    4. Gaina C.
    , 2010, Plate tectonics and net lithosphere rotation over the past 150 My: Earth and Planetary Science Letters, v. 291, n. 1–4, p. 106–112, doi:https://doi.org/10.1016/j.epsl.2009.12.055
    OpenUrlCrossRefGeoRefWeb of Science
  182. ↵
    1. Torsvik T. H.,
    2. Van der Voo R.,
    3. Preeden U.,
    4. Mac Niocaill C.,
    5. Steinberger B.,
    6. Doubrovine P. V.,
    7. van Hinsbergen D. J. J.,
    8. Domeier M.,
    9. Gaina C.,
    10. Tohver E.,
    11. Meert J. G.,
    12. McCausland P. J. A.,
    13. Cocks L. R. M.
    , 2012, Phanerozoic polar wander, palaeogeography and dynamics: Earth-Science Reviews, v. 114, n. 3–4, p. 325–368, doi:https://doi.org/10.1016/j.earscirev.2012.06.007
    OpenUrlCrossRefGeoRef
  183. ↵
    1. Torsvik T. H.,
    2. Steinberger B.,
    3. Shephard G. E.,
    4. Doubrovine P. V.,
    5. Gaina C.,
    6. Domeier M.,
    7. Conrad C. P.,
    8. Sager W. W.
    , 2019, Pacific‐Panthalassic reconstructions: Overview, errata and the way forward: Geochemistry, Geophysics, Geosystems, v. 20, n. 7, p. 3659–3689, doi:https://doi.org/10.1029/2019GC008402
    OpenUrlCrossRef
  184. ↵
    1. Tournon J.
    , 1994, The Santa Elena Peninsula: an ophiolitic nappe and a sedimentary volcanic relative autochthonous: Profil, v. 7, p. 87–96.
    OpenUrl
  185. ↵
    1. Tulloch A. J.,
    2. Kimbrough D. L.,
    3. Landis C. A.,
    4. Mortimer N.,
    5. Johnston M. R.
    , 1999, Relationships between the Brook Street terrane and Median Tectonic Zone (Median batholith): Evidence from Jurassic conglomerates: New Zealand Journal of Geology and Geophysics, v. 42, n. 2, p. 279–293, doi:https://doi.org/10.1080/00288306.1999.9514845
    OpenUrlCrossRefGeoRef
  186. ↵
    1. Ueda H.
    , 2003, Accretionary complex of remnant-arc origin: Greenstone-conglomerate-chert succession in the Oku-Niikappu area of the Idonnappu Zone, Hokkaido, Japan: The Journal of the Geological Society of Japan, v. 109, n. 9, p. XVII-XVIII, doi:https://doi.org/10.5575/geosoc.109.XVII
    OpenUrlCrossRef
  187. ↵
    1. Ueda H.,
    2016, Hokkaido, in Moreno T., Wallis S., Kojima T., Gibbons W., editors, The Geology of Japan: London, England, Geological Society, Geology of Series, p. 201–221.
  188. ↵
    1. Ueda H.,
    2. Miyashita S.
    , 2003, Discovery of sheeted dikes in the Cretaceous accretionary complex of the Idonnappu Zone, Hokkaido, Japan: The Journal of the Geological Society of Japan, v. 109, n. 9, p. 559–562, doi:https://doi.org/10.5575/geosoc.109.559
    OpenUrlCrossRef
  189. ↵
    1. Ueda H.,
    2. Miyashita S.,
    2005, Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest: Island Arc, v. 14, n. 4, p. 582–598, doi:https://doi.org/10.1111/j.1440-1738.2005.00486.x
    OpenUrlCrossRefGeoRef
  190. ↵
    1. Uno K.,
    2. Furukawa K.,
    3. Hada S.
    , 2011, Margin-parallel translation in the western Pacific: Paleomagnetic evidence from an allochthonous terrane in Japan: Earth and Planetary Science Letters, v. 303, n. 1–2, p. 153–161, doi:https://doi.org/10.1016/j.epsl.2011.01.002
    OpenUrlCrossRefGeoRef
  191. ↵
    1. Vaes B.,
    2. van Hinsbergen D. J. J.,
    3. Boschman L. M.
    , 2019, Reconstruction of subduction and back‐arc spreading in the NW Pacific and Aleutian Basin: Clues to causes of Cretaceous and Eocene plate reorganizations: Tectonics, v. 38, n. 4, p. 1367–1413, doi:https://doi.org/10.1029/2018TC005164
    OpenUrlCrossRef
  192. ↵
    1. Vaes B.,
    2. Li S.,
    3. Langereis C. G.,
    4. van Hinsbergen D. J.
    , 2021, Reliability of palaeomagnetic poles from sedimentary rocks: Geophysical Journal International, v. 225, b. 2, p. 1281–1303, doi:https://doi.org/10.1093/gji/ggab016
    OpenUrlCrossRef
  193. ↵
    1. van de Lagemaat S. H. A.,
    2. Boschman L. M.,
    3. Kamp P. J. J.,
    4. Langereis C. G.,
    5. van Hinsbergen D. J. J.
    , 2018b, Post-remagnetisation vertical axis rotation and tilting of the Murihiku Terrane (North Island, New Zealand): New Zealand Journal of Geology and Geophysics, v. 61, n. 1, p. 9–25, doi:https://doi.org/10.1080/00288306.2017.1400983
    OpenUrlCrossRef
  194. ↵
    1. van de Lagemaat S. H.,
    2. van Hinsbergen D. J. J.,
    3. Boschman L. M.,
    4. Kamp P. J. J.,
    5. Spakman W.
    , 2018a, Southwest Pacific absolute plate kinematic reconstruction reveals major Cenozoic Tonga‐Kermadec slab dragging: Tectonics, v. 37, n. 8, p. 2647–2674, doi:https://doi.org/10.1029/2017TC004901
    OpenUrlCrossRef
  195. ↵
    1. van der Meer D. G.,
    2. Spakman W.,
    3. van Hinsbergen D. J. J.,
    4. Amaru M. L.,
    5. Torsvik T. H.
    , 2010, Towards absolute plate motions constrained by lower-mantle slab remnants: Nature Geoscience, v. 3, p. 36–40, doi:https://doi.org/10.1038/ngeo708
    OpenUrlCrossRef
  196. ↵
    1. van der Meer D. G.,
    2. Torsvik T. H.,
    3. Spakman W.,
    4. van Hinsbergen D. J. J.,
    5. Amaru M. L.
    , 2012, Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure: Nature Geoscience, v. 5, p. 215–219, doi:https://doi.org/10.1038/ngeo1401
    OpenUrlCrossRef
  197. ↵
    1. van der Meer D. G.,
    2. van Hinsbergen D. J. J.,
    3. Spakman W.
    , 2018, Atlas of the Underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity: Tectonophysics, v. 723, p. 309–448, doi:https://doi.org/10.1016/j.tecto.2017.10.004
    OpenUrlCrossRef
  198. ↵
    1. van Hinsbergen D. J. J.,
    2. Schmid S. M.
    , 2012, Map view restoration of Aegean-West Anatolian accretion and extension since the Eocene: Tectonics, v. 31, n. 5, doi:https://doi.org/10.1029/2012TC003132
    OpenUrlCrossRef
  199. ↵
    1. van Hinsbergen D. J. J.,
    2. Schouten T. L. A.
    , 2021, Deciphering paleogeography from orogenic architecture: Constructing orogens in a future supercontinent as thought experiment: American Journal of Science, v. 321, doi:https://doi.org/10.2475/06.2021.02
    OpenUrlCrossRef
  200. ↵
    1. van Hinsbergen D. J. J.,
    2. Lippert P. C.,
    3. Li S.,
    4. Huang W.,
    5. Advokaat E. L.,
    6. Spakman W.
    , 2019, Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives: Tectonophysics, v. 760, p. 69–94, doi:https://doi.org/10.1016/j.tecto.2018.04.006
    OpenUrlCrossRef
  201. ↵
    1. Viso R. F.,
    2. Larson R. L.,
    3. Pockalny R. A.
    , 2005, Tectonic evolution of the Pacific–Phoenix–Farallon triple junction in the South Pacific Ocean: Earth and Planetary Science Letters, v. 233, n. 1–2, p. 179–194, doi:https://doi.org/10.1016/j.epsl.2005.02.004
    OpenUrlCrossRefGeoRefWeb of Science
  202. ↵
    1. Wallick B. P.,
    2. Steiner M. B.
    , 1992, Paleomagnetic and rock magnetic properties of Jurassic quiet zone basalts, hole 801C1: Proceedings of the Ocean Drilling Program, Scientific Results, v. 129, p. 455–470, doi:https://doi.org/10.2973/odp.proc.sr.129.135.1992
  203. ↵
    1. Wessel P.,
    2. Kroenke L. W.
    , 2009, Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes: Earth and Planetary Science Letters, v. 284, n. 3–4, p. 467–472, doi:https://doi.org/10.1016/j.epsl.2009.05.012
    OpenUrlCrossRefGeoRefWeb of Science
  204. ↵
    1. Windley B. F.,
    2. Alexeiev D.,
    3. Xiao W.,
    4. Kröner A.,
    5. Badarch G.
    , 2007, Tectonic models for accretion of the Central Asian Orogenic Belt: Journal of the Geological Society, London, v. 164, n. 1, p. 31–47, doi:https://doi.org/10.1144/0016-76492006-022
    OpenUrlAbstract/FREE Full Text
  205. ↵
    1. Wright N. M.,
    2. Seton M.,
    3. Williams S. E.,
    4. Müller R. D.
    , 2016, The Late Cretaceous to recent tectonic history of the Pacific Ocean basin: Earth-Science Reviews, v. 154, p. 138–173, doi:https://doi.org/10.1016/j.earscirev.2015.11.015
    OpenUrlCrossRef
  206. ↵
    1. Wu J.,
    2. Suppe J.,
    3. Lu R.,
    4. Kanda R.
    , 2016, Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods: Journal of Geophysical Research: Solid Earth, v. 121, n. 6, p. 4670–4741, doi:https://doi.org/10.1002/2016JB012923
    OpenUrlCrossRef
  207. ↵
    1. Xiao W. J.,
    2. Windley B. F.,
    3. Huang B. C.,
    4. Han C. M.,
    5. Yuan C.,
    6. Chen H. L.,
    7. Sun M.,
    8. Sun S.,
    9. Li J. L.
    , 2009, End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia: International Journal of Earth Sciences, v. 98, p. 1189–1217, doi:https://doi.org/10.1007/s00531-008-0407-z
    OpenUrlCrossRefGeoRefWeb of Science
  208. ↵
    1. Xiao W. J.,
    2. Huang B.,
    3. Han C.,
    4. Sun S.,
    5. Li J.
    , 2010a, A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens: Gondwana Research, v. 18, n. 2–3, p. 253–273, doi:https://doi.org/10.1016/j.gr.2010.01.007
    OpenUrlCrossRefGeoRefWeb of Science
  209. ↵
    1. Xiao W. J.,
    2. Mao Q. G.,
    3. Windley B. F.,
    4. Han C. M.,
    5. Qu J. F.,
    6. Zhang J. E.,
    7. Ao S. J.,
    8. Guo Q. Q.,
    9. Cleven N. R.,
    10. Lin S. F.,
    11. Shan Y. H.,
    12. Li J. L.
    , 2010b, Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage: American Journal of Science, v. 310, n. 10, p. 1553–1594, doi:https://doi.org/10.2475/10.2010.12
    OpenUrlAbstract/FREE Full Text
  210. ↵
    1. Yamakita S.,
    2. Otoh S.
    , 2000, Estimation of the amount of Late Cretaceous left-lateral strike-slip displacement along the Median Tectonic Line and its implications in juxtaposition of some geologic belts of Southwest Japan: Association for Geological Collaboration in Japan Monograph, v. 49, p. 93–104.
    OpenUrl
  211. ↵
    1. Yang T.,
    2. Ma Y.,
    3. Zhang S.,
    4. Bian W.,
    5. Yang Z.,
    6. Wu H.,
    7. Li H.,
    8. Chen W.,
    9. Ding J.
    , 2015, New insights into the India–Asia collision process from Cretaceous paleomagnetic and geochronologic results in the Lhasa terrane: Gondwana Research, v. 28, n. 2, p. 625–641, doi:https://doi.org/10.1016/j.gr.2014.06.010
    OpenUrlCrossRef
  212. ↵
    1. Yao A.
    , 2000, Terrane arrangement of Southwest Japan in view of the Paleozoic-Mesozoic tectonics of East Asia: Association for Geological Collaboration in Japan Monograph, v. 49, p. 145–155.
    OpenUrl
  213. ↵
    1. Yao A.,
    2. Matsuda T.,
    3. Isozaki Y.
    , 1980, Triassic and Jurassic radiolarians from the Inuyama area, central Japan: Osaka, Japan, Osaka City University, Journal of Geoscience, v. 23, article 4, p. 135–154,
    OpenUrl
  214. ↵
    1. Young A.,
    2. Flament N.,
    3. Maloney K.,
    4. Williams S.,
    5. Matthews K.,
    6. Zahirovic S.,
    7. Müller R. D.
    , 2019, Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era: Geoscience Frontiers, v. 10, n. 3, p. 989–1013, doi:https://doi.org/10.1016/j.gsf.2018.05.011
    OpenUrlCrossRef
  215. ↵
    1. Zahirovic S.,
    2. Seton M.,
    3. Müller R. D.
    , 2014, The Cretaceous and Cenozoic tectonic evolution of Southeast Asia: Solid Earth, v. 5, p. 227–273, doi:https://doi.org/10.5194/se-5-227-2014
    OpenUrlCrossRef
  216. ↵
    1. Collinson D. W.,
    2. Crees K. M.,
    3. Runcorn S. K.
    1. Zijderveld J. D. A.
    , 2013, A.C. Demagnetization of rocks: Analysis of results, in Collinson D. W., Crees K. M., Runcorn S. K., editors, Methods in Paleomagnetism: Developments in Solid Earth Geophysics, v. 3, p. 254–286, doi:https://doi.org/10.1016/B978-1-4832-2894-5.50049-5
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (6)
American Journal of Science
Vol. 321, Issue 6
1 Jun 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reconstructing lost plates of the Panthalassa Ocean through paleomagnetic data from circum-Pacific accretionary orogens
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
12 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Reconstructing lost plates of the Panthalassa Ocean through paleomagnetic data from circum-Pacific accretionary orogens
Lydian M. Boschman, Douwe J.J. van Hinsbergen, Cor G. Langereis, Kennet E. Flores, Peter J.J. Kamp, David L. Kimbrough, Hayato Ueda, Suzanna H.A. van de Lagemaat, Erik van der Wiel, Wim Spakman
American Journal of Science Jun 2021, 321 (6) 907-954; DOI: 10.2475/06.2021.08

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Reconstructing lost plates of the Panthalassa Ocean through paleomagnetic data from circum-Pacific accretionary orogens
Lydian M. Boschman, Douwe J.J. van Hinsbergen, Cor G. Langereis, Kennet E. Flores, Peter J.J. Kamp, David L. Kimbrough, Hayato Ueda, Suzanna H.A. van de Lagemaat, Erik van der Wiel, Wim Spakman
American Journal of Science Jun 2021, 321 (6) 907-954; DOI: 10.2475/06.2021.08
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RECONSTRUCTING PANTHALASSA PLATES: OUTSIDE-IN, INSIDE-OUT, BOTTOM-UP, AND FROM ACCRETED REMNANTS
    • TECTONIC SETTING, AVAILABLE PALEOMAGNETIC DATA, AND SAMPLING OF SELECTED CIRCUM-PACIFIC OPS
    • METHODS
    • RESULTS
    • INTERPRETATION OF PALEOMAGNETIC RESULTS
    • RECONSTRUCTION: RELATIVE PLATE MOTION, MANTLE REFERENCE FRAMES, AND PALEOMAGNETIC DATA
    • DISCUSSION: FUTURE IMPROVEMENTS IN RECONSTRUCTING LOST OCEANIC PLATES
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Panthalassa
  • plate reconstruction
  • paleomagnetism
  • Ocean Plate Stratigraphy
  • subduction
  • radiolarian chert
  • Farallon
  • Izanagi
  • Phoenix

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire