Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Presentation and applications of mixing elements and dissolved isotopes in rivers (MEANDIR), a customizable MATLAB model for Monte Carlo inversion of dissolved river chemistry

Preston Cosslett Kemeny and Mark Albert Torres
American Journal of Science May 2021, 321 (5) 579-642; DOI: https://doi.org/10.2475/05.2021.03
Preston Cosslett Kemeny
*Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pkemeny@caltech.edu preston.kemeny@gmail.com
Mark Albert Torres
**Earth, Environmental, and Planetary Sciences, Rice University, Houston, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Aitchison J.
    , 1983, Principal component analysis of compositional data: Biometrika, v. 70, n. 1, p. 57–65, doi:https://doi.org/10.1093/biomet/70.1.57
    OpenUrlCrossRefWeb of Science
  2. ↵
    1. Baertschi P.
    , 1976, Absolute 18O content of standard mean ocean water: Earth and Planetary Science Letters, v. 31, n. 3, p. 341–344, doi:https://doi.org/10.1016/0012-821X(76)90115-1
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Berner R. A.
    , 1971, Worldwide sulfur pollution of rivers: Journal of Geophysical Research, v. 76, n. 27, p. 6597–6600, doi:https://doi.org/10.1029/JC076i027p06597
    OpenUrlCrossRefGeoRef
  4. ↵
    1. Bickle M. J.,
    2. Tipper E.,
    3. Galy A.,
    4. Chapman H.,
    5. Harris N.
    , 2015, On discrimination between carbonate and silicate inputs to Himalayan rivers: American Journal of Science, v. 315, n. 2, p. 120–166, doi:https://doi.org/10.2475/02.2015.02
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Bickle M. J.,
    2. Chapman H. J.,
    3. Tipper E.,
    4. Galy A.,
    5. De La Rocha C. L.,
    6. Ahmad T.
    , 2018, Chemical weathering outputs from the flood plain of the Ganga: Geochimica et Cosmochimica Acta, v. 225, p. 146–175, doi:https://doi.org/10.1016/j.gca.2018.01.003
    OpenUrlCrossRef
  6. ↵
    1. Bizzarro M.,
    2. Paton C.,
    3. Larsen K.,
    4. Schiller M.,
    5. Trinquier A.,
    6. Ulfbeck D.
    , 2011, High-precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS—implications for the relative and absolute Mg-isotope composition of the bulk silicate Earth: Journal of Analytical Atomic Spectrometry, v. 26, n. 3, p. 565–577, doi:https://doi.org/10.1039/c0ja00190b
    OpenUrlCrossRef
  7. ↵
    1. Blair N. E.,
    2. Aller R. C.
    , 2012, The fate of terrestrial organic carbon in the marine environment: Annual Review of Marine Science, v. 4, p. 401–423, doi:https://doi.org/10.1146/annurev-marine-120709-142717
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    1. Blattmann T. M.,
    2. Wang S.-L.,
    3. Lupker M.,
    4. Märki L.,
    5. Haghipour N.,
    6. Wacker L.,
    7. Chung L.-H.,
    8. Bernasconi S. M.,
    9. Plötze M.,
    10. Eglinton T. I.
    , 2019, Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks: Scientific reports, v. 9, 2945, doi:https://doi.org/10.1038/s41598-019-39272-5
    OpenUrlCrossRef
  9. ↵
    1. Bolton E. W.,
    2. Berner R. A.,
    3. Petsch S. T.
    , 2006, The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modeling: American Journal of Science, v. 306, n. 8, p. 575–615, doi:https://doi.org/10.2475/08.2006.01
    OpenUrlCrossRef
  10. ↵
    1. Bouchez J.,
    2. Beyssac O.,
    3. Galy V.,
    4. Gaillardet J.,
    5. France-Lanord C.,
    6. Maurice L.,
    7. Moreira-Turcq P.
    , 2010, Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2: Geology, v. 38, n. 3, p. 255–258, doi:https://doi.org/10.1130/G30608.1
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Bouchez J.,
    2. von Blanckenburg F.,
    3. Schuessler J. A.
    , 2013, Modeling novel stable isotope ratios in the weathering zone: American Journal of Science, v. 313, n. 4, p. 267–308, doi:https://doi.org/10.2475/04.2013.01
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Brand W. A.,
    2. Coplen T. B.,
    3. Vogl J.,
    4. Rosner M.,
    5. Prohaska T.
    , 2014, Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report): Pure and Applied Chemistry, v. 86, n. 3, p. 425-467, doi:https://doi.org/10.1515/pac-2013-1023
    OpenUrlCrossRef
  13. ↵
    1. Burke A.,
    2. Present T. M.,
    3. Paris G.,
    4. Rae E. C. M.,
    5. Sandilands B. H.,
    6. Gaillardet J.,
    7. Peucker-Ehrenbrink B.,
    8. Fischer W. W.,
    9. McClelland J. W.,
    10. Spencer R. G. M.,
    11. Voss B. M.
    , 2018, Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle: Earth and Planetary Science Letters, v. 496, p. 168–177, doi:https://doi.org/10.1016/j.epsl.2018.05.022
    OpenUrlCrossRef
  14. ↵
    1. Calmels D.,
    2. Gaillardet J.,
    3. Brenot A.,
    4. France-Lanord C.
    , 2007, Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives: Geology, v. 35, n. 11, p. 1003–1006, doi:https://doi.org/10.1130/G24132A.1
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Caves J. K.,
    2. Jost A. B.,
    3. Lau K. V.,
    4. Maher K.
    , 2016, Cenozoic carbon cycle imbalances and a variable weathering feedback: Earth and Planetary Science Letters, v. 450, p. 152–163, doi:https://doi.org/10.1016/j.epsl.2016.06.035
    OpenUrlCrossRef
  16. ↵
    1. Chang T.,
    2. Li W.
    , 1990, A calibrated measurement of the atomic weight of carbon: Chinese Science Bulletin, v. 35, n. 4, p. 290–296, doi:https://doi.org/https://doi.org/10.1360/sb1990-35-4-290
    OpenUrlCrossRefWeb of Science
  17. ↵
    1. Christophersen N.,
    2. Hooper R. P.
    , 1992, Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem: Water Resources Research, v. 28, n. 1, p. 99–107, doi:https://doi.org/10.1029/91WR02518
    OpenUrlCrossRef
  18. ↵
    1. Daëron M.,
    2. Blamart D.,
    3. Peral M.,
    4. Affek H. P.
    , 2016, Absolute isotopic abundance ratios and the accuracy of Δ47 measurements: Chemical Geology, v. 442, p. 83–96, doi:https://doi.org/10.1016/j.chemgeo.2016.08.014
    OpenUrlCrossRef
  19. ↵
    1. de Souza G. F.,
    2. Reynolds B. C.,
    3. Kiczka M.,
    4. Bourdon B.
    , 2010, Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed: Geochimica et Cosmochimica Acta, v. 74, n. 9, p. 2596–2614, doi:https://doi.org/10.1016/j.gca.2010.02.012
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Ding T.,
    2. Valkiers S.,
    3. Kipphardt H.,
    4. De Bièvre P.,
    5. Taylor P. D. P.,
    6. Gonfiantini R.,
    7. Krouse R.
    , 2001, Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur: Geochimica et Cosmochimica Acta, v. 65, n. 15, p. 2433–2437, doi:https://doi.org/10.1016/S0016-7037(01)00611-1
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Dunlea A. G.,
    2. Murray R. W.
    , 2015, Optimization of end‐members used in multiple linear regression geochemical mixing models: Geochemistry, Geophysics, Geosystems, v. 16, n. 11, p. 4021–4027, doi:https://doi.org/10.1002/2015GC006132
    OpenUrlCrossRef
  22. ↵
    1. Edmond J. M.,
    2. Measures C.,
    3. McDuff R. E.,
    4. Chan L. H.,
    5. Collier R.,
    6. Grant B.,
    7. Gordon L. I.,
    8. Corliss J. B.
    , 1979a, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data: Earth and Planetary Science Letters, v. 46, n. 1, p. 1–18. doi:https://doi.org/10.1016/0012-821X(79)90061-X
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    1. Edmond J. M.,
    2. Corliss J. B.,
    3. Gordon L. I.
    , 1979b, Ridge Crest‐Hydrothermal Metamorphism at the Galapagos Spreading Center and Reverse Weathering : Deep Drilling Results in the Atlantic Ocean: Ocean Crust, v. 2, p. 383–390, doi:https://doi.org/https://doi.org/10.1029/ME002p0383
    OpenUrlCrossRef
  24. ↵
    1. France-Lanord C.,
    2. Derry L. A.
    , 1997, Organic carbon burial forcing of the carbon cycle from Himalayan erosion: Nature, v. 390, n. 6655, p. 65–67, doi:https://doi.org/10.1038/36324
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Gaillardet J.,
    2. Dupré B.,
    3. Louvat P.,
    4. Allegre C. J.
    , 1999, Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers: Chemical geology, v. 159, n. 1–4, p. 3–30, doi:https://doi.org/10.1016/S0009-2541(99)00031-5
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Galy A.,
    2. France-Lanord C.
    , 1999, Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget: Chemical Geology, v. 159, n. 1–4, p. 31–60, doi:https://doi.org/10.1016/S0009-2541(99)00033-9
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Genereux D.
    , 1998, Quantifying uncertainty in tracer‐based hydrograph separations: Water Resources Research, v. 34, n. 4, p. 915–919, doi:https://doi.org/10.1029/98WR00010
    OpenUrlCrossRefGeoRef
  28. ↵
    1. Georg R. B.,
    2. Reynolds B. C.,
    3. West A. J.,
    4. Burton K. W.,
    5. Halliday A. N.
    , 2007, Silicon isotope variations accompanying basalt weathering in Iceland: Earth and Planetary Science Letters, v. 261, n. 3–4, p. 476–490, doi:https://doi.org/10.1016/j.epsl.2007.07.004
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Gíslason S. R.,
    2. Arnorsson S.,
    3. Armannsson H.
    , 1996, Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover: American Journal of Science, v. 296, n. 8, p. 837–907, doi:https://doi.org/10.2475/ajs.296.8.837
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Hartmann J.,
    2. Lauerwald R.,
    3. Moosdorf N.
    , 2014, A brief overview of the GLObal RIver CHemistry Database, GLORICH: Procedia Earth and Planetary Science, v. 10, p. 23–27, doi:https://doi.org/10.1016/j.proeps.2014.08.005
    OpenUrlCrossRef
  31. ↵
    1. He Z.,
    2. Unger-Shayesteh K.,
    3. Vorogushyn S.,
    4. Weise S. M.,
    5. Duethmann D.,
    6. Kalashnikova O.,
    7. Gafurov A.,
    8. Merz B.
    , 2020, Comparing Bayesian and traditional end-member mixing approaches for hydrograph separation in a glacierized basin: Hydrology and Earth System Sciences, v. 24, n. 6, p. 3289–3309, doi:https://doi.org/10.5194/hess-24-3289-2020
    OpenUrlCrossRef
  32. ↵
    1. Hemingway J. D.,
    2. Olson H.,
    3. Turchyn A. V.,
    4. Tipper E. T.,
    5. Bickle M. J.,
    6. Johnston D. T.
    , 2020, Triple oxygen isotope insight into terrestrial pyrite oxidation: Proceedings of the National Academy of Sciences of the United States of America, v. 117, n. 14, p. 7650–7657, doi:https://doi.org/10.1073/pnas.1917518117
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Hilton R. G.,
    2. West A. J.
    , 2020, Mountains, erosion and the carbon cycle: Nature Reviews Earth & Environment, v. 1, n. 6, p. 284–299, doi:https://doi.org/10.1038/s43017-020-0058-6
    OpenUrlCrossRef
  34. ↵
    1. Hilton R. G.,
    2. Gaillardet J.,
    3. Calmels D.,
    4. Birck J. L.
    , 2014, Geological respiration of a mountain belt revealed by the trace element rhenium: Earth and Planetary Science Letters, v. 403, p. 27–36, doi:https://doi.org/10.1016/j.epsl.2014.06.021
    OpenUrlCrossRefGeoRef
  35. ↵
    1. Hindshaw R. S.,
    2. Bourdon B.,
    3. von Strandmann P. A. E. P.,
    4. Vigier N.,
    5. Burton K. W.
    , 2013, The stable calcium isotopic composition of rivers draining basaltic catchments in Iceland: Earth and Planetary Science Letters, v. 374, p. 173–184, doi:https://doi.org/10.1016/j.epsl.2013.05.038
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Horan K.,
    2. Hilton R. G.,
    3. Dellinger M.,
    4. Tipper E.,
    5. Galy V.,
    6. Calmels D.,
    7. Selby D.,
    8. Gaillardet J.,
    9. Ottley C. J.,
    10. Parsons D. R.,
    11. Burton K. W.
    , 2019, Carbon dioxide emissions by rock organic carbon oxidation and the net geochemical carbon budget of the Mackenzie River Basin: American Journal of Science, v. 319, n. 6, p. 473–499, doi:https://doi.org/10.2475/06.2019.02
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Hubbard C. G.,
    2. Black S.,
    3. Coleman M. L.
    , 2009, Aqueous geochemistry and oxygen isotope compositions of acid mine drainage from the Río Tinto, SW Spain, highlight inconsistencies in current models: Chemical Geology, v. 265, n. 3–4, p. 321–334, doi:https://doi.org/10.1016/j.chemgeo.2009.04.009
    OpenUrlCrossRefGeoRef
  38. ↵
    1. Jacobson A. D.,
    2. Blum J. D.,
    3. Walter L. M.
    , 2002, Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters: Geochimica et Cosmochimica Acta, v. 66, n. 19, p. 3417–3429. doi:https://doi.org/10.1016/S0016-7037(02)00951-1
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Kemeny P. C.,
    2. Lopez G. I.,
    3. Dalleska N. F.,
    4. Torres M.,
    5. Burke A.,
    6. Bhatt M. P.,
    7. West A. J.,
    8. Hartmann J.,
    9. Adkins J. F.
    , 2021a, Sulfate sulfur isotopes and major ion chemistry reveal that pyrite oxidation counteracts CO2 drawdown from silicate weathering in the Langtang-Trisuli-Narayani River system, Nepal Himalaya: Geochimica et Cosmochimica Acta, v. 294, p. 43–69, doi:https://doi.org/10.1016/j.gca.2020.11.009
    OpenUrlCrossRef
  40. ↵
    1. Kemeny P. C.,
    2. Torres M. A.,
    3. Lamb M. P.,
    4. Webb S. M.,
    5. Dalleska N.,
    6. Cole T.,
    7. Hou Y.,
    8. Marske J.,
    9. Adkins J. F.,
    10. Fischer W. W.
    , 2021b, Organic sulfur fluxes and geomorphic control of sulfur isotope ratios in rivers: Earth and Planetary Science Letters, v. 562, p. 116838, doi:https://doi.org/10.1016/j.epsl.2021.116838
    OpenUrlCrossRef
  41. ↵
    1. Lerman A.,
    2. Wu L.,
    3. Mackenzie F. T.
    , 2007, CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance: Marine Chemistry, v. 106, n. 1–2, p. 326–350, doi:https://doi.org/10.1016/j.marchem.2006.04.004
    OpenUrlCrossRefGeoRef
  42. ↵
    1. Li G.,
    2. Elderfield H.
    , 2013, Evolution of carbon cycle over the past 100 million years: Geochimica et Cosmochimica Acta, v. 103, p. 11–25, doi:https://doi.org/10.1016/j.gca.2012.10.014
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Mayer A. J.,
    2. Wiser M. E.
    , 2014, The absolute isotopic composition and atomic weight of molybdenum in SRM 3134 using an isotopic double-spike: Journal of Analytical Atomic Spectrometry, v. 29, n. 1, p. 85–94, doi:https://doi.org/10.1039/C3JA50164G
    OpenUrlCrossRef
  44. ↵
    1. Miesch A. T.
    , 1976, Q-mode factor analysis of compositional data: Computers & Geosciences, v. 1, n. 3, p. 147–159, doi:https://doi.org/10.1016/0098-3004(76)90003-0
    OpenUrlCrossRef
  45. ↵
    1. Moon S.,
    2. Chamberlain C. P.,
    3. Hilley G. E.
    , 2014, New estimates of silicate weathering rates and their uncertainties in global rivers: Geochimica et Cosmochimica Acta, v. 134, p. 257–274, doi:https://doi.org/10.1016/j.gca.2014.02.033
    OpenUrlCrossRefGeoRef
  46. ↵
    1. Moore L. J.,
    2. Machlan L. A.
    , 1972, High-accuracy determination of calcium in blood serum by isotope dilution mass spectrometry: Analytical Chemistry, v. 44, n. 14, p. 2291–2296, doi:https://doi.org/10.1021/ac60322a014
    OpenUrlCrossRefPubMed
  47. ↵
    1. Moulton K. L.,
    2. West J.,
    3. Berner R.A.
    , 2000, Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering: American Journal of Science, v. 300, n. 7, p. 539–570, doi:https://doi.org/10.2475/ajs.300.7.539
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Négrel P.,
    2. Allègre C. J.,
    3. Dupré B.,
    4. Lewin E.
    , 1993, Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin case: Earth and Planetary Science Letters, v. 120, n. 1–2, p. 59–76, doi:https://doi.org/10.1016/0012-821X(93)90023-3
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Parnell A. C.,
    2. Inger R.,
    3. Bearhop S.,
    4. Jackson A. L.
    , 2010, Source partitioning using stable isotopes: coping with too much variation: PLoS ONE, v. 5, n. 3, p. e9672, doi:https://doi.org/10.1371/journal.pone.0009672
    OpenUrlCrossRefPubMed
  50. ↵
    1. Phillips D. L.,
    2. Gregg J. W.
    , 2001, Uncertainty in source partitioning using stable isotopes: Oecologia, v. 127, n. 2, p. 171–179, doi:https://doi.org/10.1007/s004420000578
    OpenUrlCrossRefPubMedWeb of Science
  51. ↵
    1. Phillips D. L.,
    2. Gregg J. W.,
    2003, Source partitioning using stable isotopes: coping with too many sources: Oecologia, v. 136, n. 2, p. 261–269, doi:https://doi.org/10.1007/s00442-003-1218-3
    OpenUrlCrossRefPubMedWeb of Science
  52. ↵
    1. Pisias N. G.,
    2. Murray R. W.,
    3. Scudder R. P.
    , 2013, Multivariate statistical analysis and partitioning of sedimentary geochemical data sets: General principles and specific MATLAB scripts: Geochemistry, Geophysics, Geosystems, v. 14, n. 10, p. 4015–4020, doi:https://doi.org/10.1002/ggge.20247
    OpenUrlCrossRef
  53. ↵
    1. Polsenaere P.,
    2. Abril G.
    , 2012, Modelling CO2 degassing from small acidic rivers using water pCO2, DIC and δ13C-DIC data: Geochimica et Cosmochimica Acta, v. 91, p. 220–239, doi:https://doi.org/10.1016/j.gca.2012.05.030
    OpenUrlCrossRefGeoRef
  54. ↵
    1. Qi H. P.,
    2. Taylor P. D. P.,
    3. Berglund M.,
    4. De Bièvre P.
    , 1997, Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016: International Journal of Mass Spectrometry and Ion Processes, v. 171, n. 1–3, p. 263–268, doi:https://doi.org/10.1016/S0168-1176(97)00125-0
    OpenUrlCrossRefWeb of Science
  55. ↵
    1. Scheingross J. S.,
    2. Repasch M. N.,
    3. Hovius N.,
    4. Sachse D.,
    5. Lupker M.,
    6. Fuchs M.,
    7. Halvy I.,
    8. Gröcke D. R.,
    9. Golombek N. Y.,
    10. Haghipour N.,
    11. Eglinton T. I.,
    12. Orfeo O.,
    13. Schleicher A. M.
    , 2021, The fate of fluvially-deposited organic carbon during transient floodplain storage: Earth and Planetary Science Letters, v. 561, p. 116822, doi:https://doi.org/10.1016/j.epsl.2021.116822
    OpenUrlCrossRef
  56. ↵
    1. Spence J.,
    2. Telmer K.
    , 2005, The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera: Geochimica et Cosmochimica Acta, v. 69, n. 23, p. 5441–5458, doi:https://doi.org/10.1016/j.gca.2005.07.011
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Stallard R. F.,
    2. Edmond J. M.
    , 1983, Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load: Journal of Geophysical Research: Oceans, v. 88, n. C14, p. 9671–9688, doi:https://doi.org/10.1029/JC088iC14p09671
    OpenUrlCrossRef
  58. ↵
    1. Stefánsson A.,
    2. Gíslason S. R.
    , 2001, Chemical weathering of basalts, Southwest Iceland: effect of rock crystallinity and secondary minerals on chemical fluxes to the ocean: American Journal of Science, v. 301, n. 6, p. 513–556, doi:https://doi.org/https://doi.org/10.2475/ajs.301.6.513
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Taylor P. D. P.,
    2. Maeck R.,
    3. De Biévre P.
    , 1992, Determination of the absolute isotopic composition and atomic weight of a reference sample of natural iron: International Journal of Mass Spectrometry and Ion Processes, v. 121, p. 111–125, doi:https://doi.org/10.1016/0168-1176(92)80075-C
    OpenUrlCrossRef
  60. ↵
    1. Thorpe M. T.,
    2. Hurowitz J. A.,
    3. Dehouck E.
    , 2019, Sediment geochemistry and mineralogy from a glacial terrain river system in southwest Iceland: Geochimica et Cosmochimica Acta, v. 263, p. 140–166, doi:https://doi.org/10.1016/j.gca.2019.08.003
    OpenUrlCrossRef
  61. ↵
    1. Tipper E. T.,
    2. Bickle M. J.,
    3. Galy A.,
    4. West A. J.,
    5. Pomiès C.,
    6. Chapman H. J.
    , 2006, The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry: Geochimica et Cosmochimica Acta, v. 70, n. 11, p. 2737–2754, doi:https://doi.org/10.1016/j.gca.2006.03.005
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Torres M. A.,
    2. West A. J.,
    3. Clark K. E.
    , 2015, Geomorphic regime modulates hydrologic control of chemical weathering in the Andes–Amazon: Geochimica et Cosmochimica Acta, v. 166, p. 105–128, doi:https://doi.org/10.1016/j.gca.2015.06.007
    OpenUrlCrossRefGeoRef
  63. ↵
    1. Torres M. A.,
    2. West A. J.,
    3. Clark K. E.,
    4. Paris G.,
    5. Bouchez J.,
    6. Ponton C.,
    7. Feakins S. J.,
    8. Galy V.,
    9. Adkins J. F.
    , 2016, The acid and alkalinity budgets of weathering in the Andes–Amazon system: Insights into the erosional control of global biogeochemical cycles: Earth and Planetary Science Letters, v. 450, p. 381–391, doi:https://doi.org/10.1016/j.epsl.2016.06.012
    OpenUrlCrossRef
  64. ↵
    1. Turowski J. M.,
    2. Hilton R. G.,
    3. Sparkes R.
    , 2016, Decadal carbon discharge by a mountain stream is dominated by coarse organic matter: Geology, v. 44, n. 1, p. 27–30, doi:https://doi.org/10.1130/G37192.1
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Urey H. C.
    , 1952, On the early chemical history of the earth and the origin of life: Proceedings of the National Academy of Sciences of the United States of America, v. 38, n. 4, p. 351–363, doi:https://doi.org/10.1073/pnas.38.4.351
    OpenUrlFREE Full Text
  66. ↵
    1. Valkiers S.,
    2. Ding T.,
    3. Inkret M.,
    4. Ruße K.,
    5. Taylor P.
    , 2005, Silicon isotope amount ratios and molar masses for two silicon isotope reference materials: IRMM-018a and NBS28: International Journal of Mass Spectrometry, v. 242, n. 2–3, p. 319–321, doi:https://doi.org/10.1016/j.ijms.2004.11.027
    OpenUrlCrossRef
  67. ↵
    1. Vigier N.,
    2. Gislason S. R.,
    3. Burton K. W.,
    4. Millot R.,
    5. Mokadem F.
    , 2009, The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland: Earth and Planetary Science Letters, v. 287, n. 3–4, p. 434–441. doi:https://doi.org/10.1016/j.epsl.2009.08.026
    OpenUrlCrossRef
  68. ↵
    1. Walker J. C. G.,
    2. Hays P. B.,
    3. Kasting J. F.
    , 1981, A negative feedback mechanism for the long-term stabilization of Earth's surface temperature: Journal of Geophysical Research: Oceans, v. 86, n. C10, p. 9776–9782, doi:https://doi.org/10.1029/JC086iC10p09776
    OpenUrlCrossRef
  69. ↵
    1. West A. J.,
    2. Lin C. W.,
    3. Lin T. C.,
    4. Hilton R. G.,
    5. Liu S. H.,
    6. Chang C.-T.,
    7. Lin K.-C.,
    8. Galy E.,
    9. Sparkes R. B.,
    10. Hovius N.
    , 2011, Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm: Limnology and Oceanography, v. 56, n. 1, p. 77–85, doi:https://doi.org/10.4319/lo.2011.56.1.0077
    OpenUrlCrossRef
  70. ↵
    1. Zeebe R. E.,
    2. Wolf-Gladrow D.
    , 2001, CO2 in seawater: equilibrium, kinetics, isotopes: Amsterdam, The Netherlands, Elsevier Oceanography Series, v. 65, p. 1–346.
    OpenUrl
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (5)
American Journal of Science
Vol. 321, Issue 5
1 May 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Presentation and applications of mixing elements and dissolved isotopes in rivers (MEANDIR), a customizable MATLAB model for Monte Carlo inversion of dissolved river chemistry
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Presentation and applications of mixing elements and dissolved isotopes in rivers (MEANDIR), a customizable MATLAB model for Monte Carlo inversion of dissolved river chemistry
Preston Cosslett Kemeny, Mark Albert Torres
American Journal of Science May 2021, 321 (5) 579-642; DOI: 10.2475/05.2021.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Presentation and applications of mixing elements and dissolved isotopes in rivers (MEANDIR), a customizable MATLAB model for Monte Carlo inversion of dissolved river chemistry
Preston Cosslett Kemeny, Mark Albert Torres
American Journal of Science May 2021, 321 (5) 579-642; DOI: 10.2475/05.2021.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION TO MEANDIR
    • MATHEMATICS OF MEANDIR
    • APPLICATIONS OF MEANDIR
    • CONCLUSIONS
    • CODE AVAILABILITY AND DATA SOURCES
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • River inversion
  • river geochemistry
  • chemical weathering
  • sulfide oxidation
  • petrogenic organic carbon
  • RZC
  • pCO2

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire