Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Paleoaltimetry of the Western Andes in Northern Chile (∼18.5–19.5°S)

Sebastian Jimenez-Rodriguez, Matthew Dettinger, Jay Quade and Kendra E. Murray
American Journal of Science May 2021, 321 (5) 491-533; DOI: https://doi.org/10.2475/05.2021.01
Sebastian Jimenez-Rodriguez
*Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jsjimenezr@email.arizona.edu
Matthew Dettinger
*Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
**Currently with Research Square Company, Durham, North Carolina 27701 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jay Quade
*Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kendra E. Murray
*Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
***Department of Geosciences, Idaho State University, Pocatello, Idaho 83209 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Alpers C.,
    2. Brimhall G. H.
    , 1988, Middle Miocene climatic change in the Atacama Desert, northern Chile: Evidence from supergene mineralization at La Escondida: Geological Society of America Bulletin, v. 100, n. 10, p. 1640–1656, doi:https://doi.org/10.1130/0016-7606(1988)100<1640:MMCCIT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Arriagada C.,
    2. Cobbold P. R.,
    3. Roperch P.
    , 2006, Salar de Atacama basin: A record of compressional tectonics in the central Andes since the mid-Cretaceous: Tectonics, v. 25, n. 1, p. TC1008, doi:https://doi.org/10.1029/2004TC001770
    OpenUrlCrossRef
  3. ↵
    1. Aravena R.,
    2. Suzuki O.,
    3. Peña H.,
    4. Pollastri A.,
    5. Fuenzalida H.,
    6. Grilli A.
    , 1999, Isotopic composition and origin of the precipitation in Northern Chile: Applied Geochemistry, v. 14, n. 4, p. 411–422, doi:https://doi.org/10.1016/S0883-2927(98)00067-5
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Barnes J. B.,
    2. Ehlers T. A.
    , 2009, End member models for Andean Plateau uplift: Earth-Science Reviews, v. 97, p. 105–132, doi:https://doi.org/10.1016/j.earscirev.2009.08.003
    OpenUrlCrossRefGeoRef
  5. ↵
    1. Bedaso Z. K.,
    2. DeLuca N. M.,
    3. Levin N. E.,
    4. Zaitichik B. F.,
    5. Waugh D. W.,
    6. Wu S.-Y.,
    7. Harman C. J.,
    8. Shanko D.
    , 2020, Spatial and temporal variation in the isotopic composition of Ethiopian precipitation: Journal of Hydrology, v. 585, p. 124364, doi:https://doi.org/10.1016/j.jhydrol.2019.124364
    OpenUrlCrossRef
  6. ↵
    1. Bershaw J.,
    2. Garzione C. N.,
    3. Higgins P.,
    4. MacFadden B. J.,
    5. Anaya F.,
    6. Alvarenga H.
    , 2010, Spatial–temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth: Earth and Planetary Science Letters, v. 289, n. 3–4, p. 530–538, doi:https://doi.org/10.1016/j.epsl.2009.11.047
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Bershaw J.,
    2. Saylor J. E.,
    3. Garzione C. N.,
    4. Leier A.,
    5. Sundell K. E.
    , 2016, Stable isotope variations (δ18O and δD) in modern waters across the Andean Plateau: Geochimica et Cosmochimica Acta, v. 194, p. 310–324, doi:https://doi.org/10.1016/j.gca.2016.08.011
    OpenUrlCrossRef
  8. ↵
    1. Bowen G. J.,
    2. Ehleringer J. R.,
    3. Chesson L. A.,
    4. Stange E.,
    5. Cerling T. E.
    , 2007, Stable isotope ratios of tap water in the contiguous United States: Water Resources Research, v. 43, n. 3, p. W03419, doi:https://doi.org/10.1029/2006WR005186
    OpenUrlCrossRef
  9. ↵
    1. Cailleteau C.,
    2. Angeli F.,
    3. Devreux F.,
    4. Gin S.,
    5. Jestin J.,
    6. Jollivet P.,
    7. Spalla O.
    , 2008, Insight into silicate-glass corrosion mechanisms: Nature Materials, v. 7, p. 978–983, doi:https://doi.org/10.1038/nmat2301
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    1. Canavan R. R.,
    2. Carrapa B.,
    3. Clementz M. T.,
    4. Quade J.,
    5. DeCelles P. G.,
    6. Schoenbohm L. M.
    , 2014, Early Cenozoic uplift of the Puna Plateau, Central Andes, based on stable isotope paleoaltimetry of hydrated volcanic glass: Geology, v. 42, n. 5, p. 447–450, doi:https://doi.org/10.1130/G35239.1
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Capuano R. M.
    , 1992, The temperature dependence of hydrogen isotope fractionation between clay minerals and water: Evidence from a geopressured system: Geochimica et Cosmochimica Acta, v. 56, n. 6, p. 2547–2554, doi:https://doi.org/10.1016/0016-7037(92)90208-Z
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. DeCelles P. G.,
    2. Ducea M. N.,
    3. Carrapa B.,
    4. Kapp P. A.
    1. Carrapa B.,
    2. DeCelles P. G.
    , 2015, Regional exhumation and kinematic history of the Central Andes in response to cyclical orogenic processes, in DeCelles P. G., Ducea M. N., Carrapa B., Kapp P. A., editors, Geodynamics of a Cordilleran orogenic system: The Central Andes of Argentina and Northern Chile: Geological Society of America, Memoir 212, p. 201–213, doi:https://doi.org/10.1130/2015.1212(11)
    OpenUrlCrossRef
  13. ↵
    1. Carrapa B.,
    2. Huntington K. W.,
    3. Clementz M.,
    4. Quade J.,
    5. Bywater-Reyes S.,
    6. Schoenbohm L. M.,
    7. Canavan R. R.
    , 2014, Uplift of the Central Andes of NW Argentina associated with upper crustal shortening, revealed by multiproxy isotopic analyses: Tectonics, v. 33, n. 6, p. 1039–1054, doi:https://doi.org/10.1002/2013TC003461
    OpenUrlCrossRefGeoRef
  14. ↵
    1. Cassel E. J.,
    2. Breecker D. O.
    , 2017, Long-term stability of hydrogen isotope ratios in hydrated volcanic glass: Geochimica et Cosmochimica Acta, v. 200, p. 67–86, doi:10.1016/j.gca.2016.12.001
    OpenUrlCrossRef
  15. ↵
    1. Cerling T. E.,
    2. Brown F. H.,
    3. Bowman J. R.
    , 1985, Low-temperature alteration of volcanic glass: Hydration, Na, K, 18O and Ar mobility: Chemical Geology: Isotope Geoscience Section, v. 52, n. 3–4, p. 281–293, doi:https://doi.org/10.1016/0168-9622(85)90040-5
    OpenUrlCrossRef
  16. ↵
    1. Charrier R.,
    2. Muñoz N.,
    3. Palma-Heldt S.
    , 1994, Edad y contenido paleoflorístico de la Formación Chucal y condiciones paleoclimáticas para el Oligoceno Tardío-Mioceno Inferior en el Altiplano de Arica, Chile: Congreso Geológico Chileno, v. 7, p. 434–437.
    OpenUrl
  17. ↵
    1. Charrier R.,
    2. Chávez A. N.,
    3. Elgueta S.,
    4. Hérail G.,
    5. Flynn J. J.,
    6. Croft D. A.,
    7. Wyss A. R.,
    8. Riquelme R.,
    9. García M.
    , 2005, Rapid tectonic and paleogeographic evolution associated with the development of the Chucal anticline and the Chucal-Lauca Basin in the Altiplano of Arica, northern Chile: Journal of South American Earth Sciences, v. 19, n. 1, p. 35–54, doi:https://doi.org/10.1016/j.jsames.2004.06.008
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Charrier R.,
    2. Hérail G.,
    3. Pinto L.,
    4. García M.,
    5. Riquelme R.,
    6. Farías M.,
    7. amd Muñoz N.
    , 2013, Cenozoic tectonic evolution in the Central Andes in northern Chile and west central Bolivia: implications for paleogeographic, magmatic and mountain building evolution: International Journal of Earth Sciences, v. 102, p. 235–264, doi:https://doi.org/10.1007/s00531-012-0801-4
    OpenUrlCrossRefWeb of Science
  19. ↵
    1. Clark A. H.,
    2. Tosdal R. M.,
    3. Farrar E.,
    4. Plazolles V. A.
    , 1990, Geomorphologic environment and age of supergene enrichment of the Cuajone, Quellaveco, and Toquepala porphyry copper deposits, southeastern Peru: Economic Geology, v. 85, n. 7, p. 1604–1628, doi:https://doi.org/10.2113/gsecongeo.85.7.1604
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Colwyn D. A.,
    2. Hren M. T.
    , 2019, An abrupt decrease in Southern Hemisphere terrestrial temperature during the Eocene–Oligocene transition: Earth and Planetary Science Letters, v. 512, p. 227–235, doi:https://doi.org/10.1016/j.epsl.2019.01.052
    OpenUrlCrossRef
  21. ↵
    1. Colwyn D. A.,
    2. Brandon M. T.,
    3. Hren M. T.,
    4. Hourigan J.,
    5. Pacini A.,
    6. Cosgrove M. G.,
    7. Midzik M.,
    8. Garreaud R. D.,
    9. Metzger C.
    , 2019, Growth and steady state of the Patagonian Andes: American Journal of Science, v. 319, n. 6, p. 431–472, doi:https://doi.org/10.2475/06.2019.01
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Cooper F. J.,
    2. Adams B. A.,
    3. Blundy J. D.,
    4. Farley K. A.,
    5. McKeon R. E.,
    6. Ruggiero A.
    , 2016, Aridity-induced Miocene canyon incision in the Central Andes: Geology, v. 44, n. 8, p. 675–678, doi:https://doi.org/10.1130/G38254.1
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Craig H.
    , 1961, Isotopic Variations in Meteoric Waters, Science, v. 133, n. 3465, p. 1702–1703, doi:https://doi.org/10.1126/science.133.3465.1702
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Dansgaard W.
    , 1964, Stable isotopes in precipitation: Tellus, v. 16, n. 4, p. 436–468, doi:https://doi.org/10.3402/tellusa.v16i4.8993
    OpenUrlCrossRefPubMed
  25. ↵
    1. DeCelles P. G.,
    2. Ducea M. N.,
    3. Kapp P.,
    4. Zandt G.
    , 2009, Cyclicity in Cordilleran orogenic systems: Nature Geoscience, v. 2, p. 251–257, doi:https://doi.org/10.1038/ngeo469
    OpenUrlCrossRef
  26. ↵
    1. DeCelles P. G.,
    2. Ducea M. N.,
    3. Carrapa B.,
    4. Kapp P. A.
    1. DeCelles P. G.,
    2. Zandt G.,
    3. Beck S. L.,
    4. Currie C. A.,
    5. Ducea M. N.,
    6. Kapp P.,
    7. Gehrels G. E.,
    8. Carrapa B.,
    9. Quade J.,
    10. Schoenbohm L. M.
    , 2015, Cyclical orogenic processes in the Cenozoic central Andes, in DeCelles P. G., Ducea M. N., Carrapa B., Kapp P. A., editors, Geodynamics of a Cordilleran orogenic system: The Central Andes of Argentina and Northern Chile: Geological Society of America Memoir 212, p. 459–490, doi:https://doi.org/10.1130/2015.1212(22)
    OpenUrlCrossRef
  27. ↵
    1. DeCelles P. G.,
    2. Ducea M. N.,
    3. Carrapa B.,
    4. Kapp P. A.
    1. Dettinger M. P.,
    2. Quade J.
    , 2015, Testing the analytical protocols and calibration of volcanic glass for the reconstruction of hydrogen isotopes in paleoprecipitation, in DeCelles P. G., Ducea M. N., Carrapa B., Kapp P. A., editors, Geodynamics of a Cordilleran orogenic system: The Central Andes of Argentina and Northern Chile: Geological Society of America Memoir 212, p. 261–276, doi:https://doi.org/10.1130/2015.1212(14)
    OpenUrlCrossRef
  28. ↵
    1. Dunai T. J.,
    2. López G. A. G.,
    3. Juez-Larré J.
    , 2005, Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms: Geology, v. 33, n. 4, p. 321–324, doi:https://doi.org/10.1130/G21184.1
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Evenstar L. A.,
    2. Hartley A. J.,
    3. Stuart F. M.,
    4. Mather A. E.,
    5. Rice C. M.,
    6. Chong G.
    , 2009, Multiphase development of the Atacama Planation Surface recorded by cosmogenic 3He exposure ages: Implications for uplift and Cenozoic climate change in western South America: Geology, v. 37, n. 1, p. 27–30, doi:https://doi.org/10.1130/G25437A.1
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Evenstar L. A.,
    2. Mather A. E.,
    3. Hartley A. J.,
    4. Stuart F. M.,
    5. Sparks R. S. J.,
    6. Cooper F. J.
    , 2017, Geomorphology on geologic timescales: Evolution of the late Cenozoic Pacific paleosurface in Northern Chile and Southern Peru: Earth-Science Reviews, v. 171, p. 1–27, doi:https://doi.org/10.1016/j.earscirev.2017.04.004
    OpenUrlCrossRef
  31. ↵
    1. Fiorella R. P.,
    2. Poulsen C. J.,
    3. Pillco Zolá R. S.,
    4. Barnes J. B.,
    5. Tabor C. R.,
    6. Ehlers T. A.
    , 2015a, Spatiotemporal variability of modern precipitation δ18 O in the central Andes and implications for paleoclimate and paleoaltimetry estimates: Journal of Geophysical Research: Atmospheres, v. 120, n. 10, p. 4630–4656, doi:https://doi.org/10.1002/2014JD022893
    OpenUrlCrossRef
  32. ↵
    1. Fiorella R. P.,
    2. Poulsen C. J.,
    3. Pillco Zolá R. S.,
    4. Jeffery M. L.,
    5. Ehlers T. A.
    , 2015b, Modern and long-term evaporation of central Andes surface waters suggests paleo archives underestimate Neogene elevations: Earth and Planetary Science Letters, v. 432, p. 59–72, doi:https://doi.org/10.1016/j.epsl.2015.09.045
    OpenUrlCrossRef
  33. ↵
    1. Swart P. K.,
    2. Lohmann K. C.,
    3. Mckenzie J.,
    4. Savin S.
    1. Friedman I.,
    2. Gleason J.,
    3. Sheppard R. A.,
    4. Gude A. J. 3rd.
    1993, Deuterium Fractionation as Water Diffuses into Silicic Volcanic Ash, in Swart P. K., Lohmann K. C., Mckenzie J., Savin S., editors, Climate Change in Continental Isotopic Records: Geophysical Monograph Series, p. 321–323, doi:https://doi.org/10.1029/GM078p0321
    OpenUrlCrossRefGeoRef
  34. ↵
    1. Fritz P.,
    2. Suzuki O.,
    3. Silva C.,
    4. Salati E.
    , 1981, Isotope hydrology of groundwaters in the Pampa del Tamarugal, Chile: Journal of Hydrology, v. 53, n. 1–2, p. 161–184, doi:https://doi.org/10.1016/0022-1694(81)90043-3
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Garcia M.
    , ms, 2001, Evolution oligo-miocène de l'Altiplano occidental (arc et avant arc du nord du Chili, Arica): tectonique, volcanisme, sédimentation, géomorphologie et bilan érosion-sédimentation: Grenoble, France, Université Joseph-Fourier-Grenoble I, Ph.D. thesis.
  36. ↵
    1. Garcıa M.,
    2. Herail G.,
    3. Charrier R.,
    4. Mascle G.,
    5. Fornari M.,
    6. Perez de Arce C.
    , 2002, Oligocene-Neogene tectonic evolution of the Altiplano of northern Chile (18°–19°S), In 5th International Symposium of Andean Geodynamics (ISAG), p. 235–238.
  37. ↵
    1. García M.,
    2. Gardeweg M.,
    3. Clavero J.,
    4. Hérail G.
    , 2004, Hoja Arica, Región de Tarapacá, escala 1:250.000, Carta Geológica de Chile, Serie Geologia Básica, n. 84: Santiago, Chili, SERNAGEOMIN, p. 150.
  38. ↵
    1. Garreaud R. D.,
    2. Molina A.,
    3. Farias M.
    , 2010, Andean uplift, ocean cooling and Atacama hyperaridity: A climate modeling perspective: Earth and Planetary Science Letters, v. 292, n. 1–2, p. 39–50, doi:https://doi.org/10.1016/j.epsl.2010.01.017
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Garzione C. N.,
    2. Molnar P.,
    3. Libarkin J. C.,
    4. MacFadden B. J.
    , 2006, Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere: Earth and Planetary Science Letters, v. 241, n. 3–4, p. 543–556, doi:https://doi.org/10.1016/j.epsl.2005.11.026
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Garzione C. N.,
    2. Hoke G. D.,
    3. Libarkin J. C.,
    4. Withers S.,
    5. MacFadden B.,
    6. Eiler J.,
    7. Ghosh P.,
    8. Mulch A.
    , 2008, Rise of the Andes: Science, v. 320, n. 5881, p. 1304–1307, doi:https://doi.org/10.1126/science.1148615
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Garzione C. N.,
    2. Auerbach D. J.,
    3. Smith J. J.-S,
    4. Rosario J. J.,
    5. Passey B. H.,
    6. Jordan T. E.,
    7. Eiler J. M.
    , 2014, Clumped isotope evidence for diachronous surface cooling of the Altiplano and pulsed surface uplift of the Central Andes: Earth and Planetary Science Letters, v. 393, p. 173–181, doi:https://doi.org/10.1016/j.epsl.2014.02.029
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Garzione C. N.,
    2. McQuarrie N.,
    3. Perez N. D.,
    4. Ehlers T. A.,
    5. Beck S. L.,
    6. Kar N.,
    7. Eichelberger N.,
    8. Chapman A. D.,
    9. Ward K. M.,
    10. Ducea M. N.,
    11. Lease R. O.,
    12. Poulsen C. J.,
    13. Wagner L. S.,
    14. Saylor J.E.,
    15. Zandt G.,
    16. Horton B. K.
    , 2017, Tectonic Evolution of the Central Andean Plateau and Implications for the Growth of Plateaus: Annual Review of Earth and Planetary Sciences, v. 45, p. 529–559, doi:https://doi.org/10.1146/annurev-earth-063016-020612
    OpenUrlCrossRef
  43. ↵
    1. Gehrels G. E.,
    2. Valencia V. A.,
    3. Ruiz J.
    , 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry: Geochemistry, Geophysics, Geosystems, v. 9, n. 3, p. q03017, doi:https://doi.org/10.1029/2007GC001805
    OpenUrlCrossRef
  44. ↵
    1. Ghosh P.,
    2. Garzione C. N.,
    3. Eiler J. M.
    , 2006, Rapid Uplift of the Altiplano Revealed Through 13C-18O Bonds in Paleosol Carbonates: Science, v. 311, n. 5760, p. 511–515, doi:https://doi.org/10.1126/science.1119365
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Gilg H. A.,
    2. Sheppard S. M. F.
    , 1996, Hydrogen isotope fractionation between kaolinite and water revisited: Geochimica et Cosmochimica Acta, v. 60, n. 3, p. 529–533, doi:https://doi.org/10.1016/0016-7037(95)00417-3
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Gregory-Wodzicki K. M.,
    2. McIntosh W. C.,
    3. Velasquez K.
    , 1998, Climatic and tectonic implications of the late Miocene Jakokkota flora, Bolivian Altiplano: Journal of South American Earth Sciences, v. 11, n. 6, p. 533–560, doi:https://doi.org/10.1016/S0895-9811(98)00031-5
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Hartley A. J.,
    2. Chong G.
    , 2002, Late Pliocene age for the Atacama Desert: Implications for the desertification of western South America: Geology, v. 30, n. 1, p. 43–46, doi:https://doi.org/10.1130/0091-7613(2002)030%3C0043:LPAFTA%3E2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Hartley A. J.,
    2. Evenstar L.
    , 2010, Cenozoic stratigraphic development in the north Chilean forearc: Implications for basin development and uplift history of the Central Andean margin: Tectonophysics, v. 495, n. 1–2, p. 67–77, doi:https://doi.org/10.1016/j.tecto.2009.05.013
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Henriquez S.,
    2. DeCelles P. G.,
    3. Carrapa. B.
    , 2019, Cretaceous to middle Cenozoic exhumation history of the Cordillera de Domeyko and Salar de Atacama basin, northern Chile: Tectonics, v. 38, n. 2, p. 395–416, doi:https://doi.org/10.1029/2018TC005203
    OpenUrlCrossRef
  50. ↵
    1. Herrera C.,
    2. Pueyo J. J.,
    3. Sáez A.,
    4. Valero-Garcés B. L.
    , 2006, Relación de aguas superficiales y subterráneas en el área del Lago Chungará y lagunas de Cotacotani, norte de Chile: un estudio isotópico: Revista geológica de Chile, v. 33, n. 2, p. 299–325, doi:https://doi.org/10.4067/S0716-02082006000200005
    OpenUrlCrossRef
  51. ↵
    1. Herrera S.,
    2. Pinto L.,
    3. Deckart K.,
    4. Cortes J.,
    5. Valenzuela J.
    , 2017, Cenozoic tectonostratigraphic evolution and architecture of the Central Andes in northern Chile based on the Aquine region, Western Cordillera 19°-19°30′S: Andean Geology, v. 44, n. 2, p. 87–122, doi:https://doi.org/10.5027/andgeoV44n2-a01
    OpenUrlCrossRef
  52. ↵
    1. Hoke G. D.,
    2. Garzione C. N.
    , 2008, Paleosurfaces, paleoelevation, and the mechanisms for the late Miocene topographic development of the Altiplano plateau: Earth and Planetary Science Letters, v. 271, n. 1–4, p. 192–201, doi:https://doi.org/10.1016/j.epsl.2008.04.008
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Hoke G. D.,
    2. Isacks B. L.,
    3. Jordan T. E.,
    4. Blanco N.,
    5. Tomlinson A. J.,
    6. Ramezani J.
    , 2007, Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30′–22°S: Tectonics, v. 26, n. 5, p. TC5021, doi:https://doi.org/10.1029/2006TC002082
    OpenUrlCrossRef
  54. ↵
    1. Horton B. K.,
    2. Hampton B. A.,
    3. Waanders G. L.
    , 2001, Paleogene synorogenic sedimentation in the Altiplano plateau and implications for initial mountain building in the central Andes: Geological Society of America Bulletin, v. 113, n. 11, p. 1387–1400, doi:https://doi.org/10.1130/0016-7606(2001)113%3C1387:PSSITA%3E2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Horton B. K.,
    2. Hampton B. A.,
    3. LaReau B. N.,
    4. Baldellon E.
    , 2002, Tertiary provenance history of the northern and central Altiplano (central Andes, Bolivia): A detrital record of plateau-margin tectonics: Journal of Sedimentary Research, v. 72, n. 5, p. 711–726, doi:https://doi.org/10.1306/020702720711
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Houston J.
    , 2006, Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes: Journal of Hydrology, v. 330, n. 3–4, p. 402–412, doi:https://doi.org/10.1016/j.jhydrol.2006.03.036
    OpenUrlCrossRefGeoRef
  57. ↵
    1. Houston J.,
    2. Hartley A. J.
    , 2003, The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert: International Journal of Climatology, v. 23, n. 12, p. 1453–1464, doi:https://doi.org/10.1002/joc.938
    OpenUrlCrossRefWeb of Science
  58. ↵
    1. Jordan T. E.,
    2. Nester P. L.,
    3. Blanco N.,
    4. Hoke G. D.,
    5. Dávila F.,
    6. Tomlinson A. J.
    , 2010, Uplift of the Altiplano-Puna plateau: A view from the west: Tectonics, v. 29, n. 5, p. TC5007, doi:https://doi.org/10.1029/2010TC002661
    OpenUrlCrossRef
  59. ↵
    1. Kar N.,
    2. Garzione C. N.,
    3. Jaramillo C.,
    4. Shanahan T.,
    5. Carlotto V.,
    6. Pullen A.,
    7. Moreno F.,
    8. Anderson V.,
    9. Moreno E.,
    10. Eiler J.
    , 2016, Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction: Earth and Planetary Science Letters, v. 447, p. 33–47, doi:https://doi.org/10.1016/j.epsl.2016.04.025
    OpenUrlCrossRef
  60. ↵
    1. Lamb S.,
    2. Davis P.
    , 2003, Cenozoic climate change as a possible cause for the rise of the Andes: Nature, v. 425, 792–797, doi:https://doi.org/10.1038/nature02049
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  61. ↵
    1. Lear C. H.,
    2. Elderfield H.,
    3. Wilson P. A.
    , 2000, Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite: Science, v. 287, n. 5451, p. 269–272, doi:https://doi.org/10.1126/science.287.5451.269
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. Leier A.,
    2. McQuarrie N.,
    3. Garzione C.,
    4. Eiler J.
    , 2013, Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia: Earth and Planetary Science Letters, v. 371–372, p. 49–58, doi:https://doi.org/10.1016/j.epsl.2013.04.025
    OpenUrlCrossRef
  63. ↵
    1. Liotta M.,
    2. Favara R.,
    3. Valenza M.
    , 2006, Isotopic composition of the precipitations in the central Mediterranean: Origin marks and orographic precipitation effects: Journal of Geophysical Research: Atmospheres, v. 111, n. D19, p. D19302, doi:https://doi.org/10.1029/2005JD006818
    OpenUrlCrossRef
  64. ↵
    1. Magaritz M.,
    2. Aravena R.,
    3. Peña H.,
    4. Suzuki O.,
    5. Grilli A.
    , 1989, Water chemistry and isotope study of streams and springs in northern Chile: Journal of Hydrology, v. 108, p. 323–341, doi:https://doi.org/10.1016/0022-1694(89)90292-8
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Mamani M.,
    2. Wörner G.,
    3. Sempere T.
    , 2010, Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space: Geological Society of America Bulletin, v. 122, n. 1–2, p. 162–182, doi:https://doi.org/10.1130/B26538.1
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Mégard F.
    , 1984, The Andean orogenic period and its major structures in central and northern Peru: Journal of the Geological Society, v. 141, n. 5, p. 893–900, doi:https://doi.org/10.1144/gsjgs.141.5.0893
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Miall A.D.
    , 1977. Lithofacies types and vertical profile models in braided river deposits: A summary, Fluvial Sedimentology: Dallas Geological Society, Memoir 5, p. 597–604.
    OpenUrl
  68. ↵
    1. Montgomery D. R.,
    2. Balco G.,
    3. Willet S. D.
    , 2001, Climate, tectonics, and the morphology of the Andes: Geology, v. 29, n. 7, p. 579–582, doi:https://doi.org/10.1130/0091-7613(2001)029%3C0579:CTATMO%3E2.0.CO;2
    OpenUrlCrossRef
  69. ↵
    1. Mulch A.,
    2. Sarna-Wojcicki A. M.,
    3. Perkins M. E.,
    4. Chamberlain C. P.
    , 2008, A Miocene to Pleistocene climate and elevation record of the Sierra Nevada (California): Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 19, p. 6819–6824, doi:https://doi.org/10.1073/pnas.0708811105
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Muñoz N.,
    2. Charrier R.
    , 1996, Uplift of the western border of the Altiplano on a west-vergent thrust system, Northern Chile: Journal of South American Earth Sciences, v. 9, n. 3–4, p. 171–181, doi:https://doi.org/10.1016/0895-9811(96)00004-1
    OpenUrlCrossRefGeoRefWeb of Science
  71. ↵
    1. Nolan G. S.,
    2. Bindeman I. N.
    , 2013, Experimental investigation of rates and mechanisms of isotope exchange (O, H) between volcanic ash and isotopically-labeled water: Geochimica et Cosmochimica Acta, v. 111, p. 5–27, doi:https://doi.org/10.1016/j.gca.2013.01.020
    OpenUrlCrossRefGeoRef
  72. ↵
    1. Pardo-Casas F.,
    2. Molnar P.
    , 1987, Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time: Tectonics, v. 6, n. 3, p. 233–248, doi:https://doi.org/10.1029/TC006i003p00233
    OpenUrlCrossRefGeoRefWeb of Science
  73. ↵
    1. Poage M. A.,
    2. Chamberlain C. P.
    , 2001, Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change: American Journal of Science, v. 301, n. 1, p. 1–15, doi:https://doi.org/10.2475/ajs.301.1.1
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Poulsen C. J.,
    2. Jeffery M. L.
    , 2011, Climate change imprinting on stable isotopic compositions of high-elevation meteoric water cloaks past surface elevations of major orogens: Geology, v. 39, n. 6, p. 595–598, doi:https://doi.org/10.1130/G32052.1
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. DeCelles P. G.,
    2. Ducea M. N.,
    3. Carrapa B.,
    4. Kapp P. A.
    1. Quade J.,
    2. Dettinger M. P.,
    3. Carrapa B.,
    4. DeCelles P.,
    5. Murray K. E.,
    6. Huntington K. W.,
    7. Cartwright A.,
    8. Canavan R. R.,
    9. Gehrels G.,
    10. Clementz M.
    , 2015, The growth of the central Andes, 22°S–26°S, in DeCelles P. G., Ducea M. N., Carrapa B., Kapp P. A., editors, Geodynamics of a Cordilleran orogenic system: The Central Andes of Argentina and Northern Chile: Geological Society of America Memoir 212, p. 277–308, doi:https://doi.org/10.1130/2015.1212(15)
    OpenUrlCrossRef
  76. ↵
    1. Quade J.,
    2. Rasbury E. T.,
    3. Huntington K. W.,
    4. Hudson A. M.,
    5. Vonhof H.,
    6. Anchukaitis K.,
    7. Betancourt J.,
    8. Latorre C.,
    9. Pepper M.
    , 2017, Isotopic characterization of late Neogene travertine deposits at Barrancas Blancas in the eastern Atacama Desert, Chile: Chemical Geology, v. 466, p. 41–56, doi:https://doi.org/10.1016/j.chemgeo.2017.05.004
    OpenUrlCrossRef
  77. ↵
    1. Quade J.,
    2. Rech J. A.,
    3. Latorre C.,
    4. Betancourt J. L.,
    5. Gleeson E.,
    6. Kalin M. T. K.
    , 2007, Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile: Geochimica et Cosmochimica Acta, v. 71, n. 15, p. 3772–3795, doi:https://doi.org/10.1016/j.gca.2007.02.016
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Rech J. A.,
    2. Currie B. S.,
    3. Michalski G.,
    4. Cowan A. M.
    , 2006, Neogene climate change and uplift in the Atacama Desert, Chile: Geology, v. 34, n. 9, p. 761–764, doi:https://doi.org/10.1130/G22444.1
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Rech J. A.,
    2. Currie B. S.,
    3. Shullenberger E. D.,
    4. Dunagan S. P.,
    5. Jordan T. E.,
    6. Blanco N.,
    7. Tomlinson A. J.,
    8. Rowe H. D.,
    9. Houston J.
    , 2010, Evidence for the development of the Andean rain shadow from a Neogene isotopic record in the Atacama Desert, Chile: Earth and Planetary Science Letters, v. 292, n. 3–4, p. 371–382, doi:https://doi.org/10.1016/j.epsl.2010.02.004
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Rech J. A.,
    2. Currie B. S.,
    3. Jordan T. E.,
    4. Riquelme R.,
    5. Lehmann S. B.,
    6. Kirk-Lawlor N. E.,
    7. Li S.,
    8. Gooley J. T.
    , 2019, Massive middle Miocene gypsic paleosols in the Atacama Desert and the formation of the Central Andean rain-shadow: Earth and Planetary Science Letters, v. 506, p. 184–194, doi:https://doi.org/10.1016/j.epsl.2018.10.040
    OpenUrlCrossRef
  81. ↵
    1. Ritter B.,
    2. Stuart F. M.,
    3. Binnie S. A.,
    4. Gerdes A.,
    5. Wennrich V.,
    6. Dunai T. J.
    , 2018, Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert: Scientific reports, v. 8, p. 13952, doi:https://doi.org/10.1038/s41598-018-32339-9
    OpenUrlCrossRef
  82. ↵
    1. Rozanski K.,
    2. Araguás-Araguás L.,
    3. Gonfiantini R.
    , 1993, Isotopic patterns in modern global precipitation: Climate Change in Continental Isotopic Records, v. 78, p. 1–36, doi:https://doi.org/10.1029/GM078p0001
    OpenUrlCrossRef
  83. ↵
    1. Rowley D. B.
    , 2007, Stable Isotope-Based Paleoaltimetry: Theory and Validation: Reviews in Mineralogy and Geochemistry, v. 66, n. 1, p. 23–52, doi:https://doi.org/10.2138/rmg.2007.66.2
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Saylor J. E.,
    2. Horton B. K.
    , 2014, Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru: Earth and Planetary Science Letters, v. 387, p. 120–131, doi:https://doi.org/10.1016/j.epsl.2013.11.015
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Scott E. M.,
    2. Allen M. B.,
    3. Macpherson C. G.,
    4. McCaffrey K. J. W.,
    5. Davidson J. P.,
    6. Saville C.,
    7. Ducea M. N.
    , 2018, Andean surface uplift constrained by radiogenic isotopes of arc lavas: Nature Communications, v. 9, p. 969, doi:https://doi.org/10.1038/s41467-018-03173-4
    OpenUrlCrossRef
  86. ↵
    1. Sempere T.,
    2. Hérail G.,
    3. Oller J.,
    4. Bonhomme M. G.
    , 1990, Late Oligocene-early Miocene major tectonic crisis and related basins in Bolivia: Geology, v. 18, n., p. 946–949, doi:https://doi.org/10.1130/0091-7613(1990)018<0946:LOEMMT>2.3.CO;2
    OpenUrlCrossRef
  87. ↵
    Servicio Nacional de Geología y Minería (2003). Mapa Geológico de Chile, Santiago, Chile, 1 Mapa, escala 1:1,000,000.
  88. ↵
    1. Sillitoe R. H.,
    2. McKee E. H.
    , 1996, Age of supergene oxidation and enrichment in the Chilean porphyry copper province: Economic Geology, v. 91, n. 1, p. 164–179, doi:https://doi.org/10.2113/gsecongeo.91.1.164
    OpenUrlAbstract/FREE Full Text
  89. ↵
    1. Somoza R.
    , 1998, Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for mountain building in the central Andean region: Journal of South American Earth Sciences, v. 11, n. 3, p. 211–215, doi:https://doi.org/10.1016/S0895-9811(98)00012-1
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Strecker M.R.,
    2. Alonso R.N.,
    3. Bookhagen B.,
    4. Carrapa B.,
    5. Hilley G.E.,
    6. Sobel E.R.,
    7. Trauth M.H.
    , 2007, Tectonics and climate of the southern central Andes: Annual Review of Earth and Planetary Sciences, v. 35, p. 747–787, doi:https://doi.org/10.1146/annurev.earth.35.031306.140158
    OpenUrlCrossRef
  91. ↵
    1. Strecker M. R.,
    2. Alonso R.,
    3. Bookhagen B.,
    4. Carrapa B.,
    5. Coutland I.,
    6. Hain M. P.,
    7. Hilley G. E.,
    8. Mortimer E.,
    9. Schoenbohm L.,
    10. Sobel E. R.
    , 2009, Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?: Geology, v. 37, n. 7, p. 643–646, doi:https://doi.org/10.1130/G25545A.1
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Sundell K. E.,
    2. Saylor J. E.,
    3. Lapen T. J.,
    4. Horton B. K.
    , 2019, Implications of variable late Cenozoic surface uplift across the Peruvian central Andes: Scientific Reports, v. 9, p. 4877, doi:https://doi.org/10.1038/s41598-019-41257-3
    OpenUrlCrossRef
  93. ↵
    1. Valle N.,
    2. Verney-Carron A.,
    3. Sterpenich J.,
    4. Libourel G.,
    5. Deloule E.,
    6. Jolivet P.
    , 2010, Elemental and isotopic (29Si and 18O) tracing of glass alteration mechanisms: Geochimica et Cosmochimica Acta, v. 74, n. 12, p. 3412–3431, doi:https://doi.org/10.1016/j.gca.2010.03.028
    OpenUrlCrossRefGeoRefWeb of Science
  94. ↵
    1. Ericksen G. E.,
    2. Canas Pinochet M. T.,
    3. Reinemund J. A.
    1. Vicente J. -C.
    , 1990, Early late Cretaceous overthrusting in the Western Cordillera of southern Peru, in Ericksen G. E., Canas Pinochet M. T., Reinemund J. A., editors, Geology of the Andes and its relation to hydrocarbon and mineral resources: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, v. 11, p, 91–117.
    OpenUrl
  95. ↵
    1. Victor P.,
    2. Oncken O.,
    3. Glodny J.
    , 2004, Uplift of the western Altiplano plateau: Evidence from the Precordillera between 20° and 21°S (northern Chile): Tectonics, v. 23, n. 4, p. TC4004, doi:https://doi.org/10.1029/2003TC001519
    OpenUrlCrossRef
  96. ↵
    Weatherbase.com, 2019. Canty and associates LLC, http://www.weatherbase.com/weather/weather.php3?s=3258&cityname=Charana-La-Paz-Bolivia&units=metric
  97. ↵
    IAEA/WMO, 2021, Global network of Isotopes in Precipitation, The GNIP Database, http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html
  98. ↵
    1. Wörner G.,
    2. Hammerschmidt K.,
    3. Henjes-Kunst F.,
    4. Lezaun J.,
    5. Wilke H.
    , 2000, Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from Northern Chile (18-22°S): implications for magmatism and tectonic evolution of the central Andes: Revista Geológica de Chile, v. 27, n. 2, p. 205–240, doi:https://dx.doi.org/10.4067/S0716-02082000000200004
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Wörner G.,
    2. Uhlig D.,
    3. Kohler I.,
    4. Seyfried H.
    , 2002, Evolution of the West Andean Escarpment at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time: Tectonophysics, v. 345, n. 1–4, p. 183–198, doi:https://doi.org/10.1016/S0040-1951(01)00212-8
    OpenUrlCrossRefGeoRefWeb of Science
  100. ↵
    1. Wotzlaw J. F.,
    2. Decou A.,
    3. von Eynatten H.,
    4. Wörner G.,
    5. Frei D.
    , 2011, Jurassic to Palaeogene tectono-magmatic evolution of northern Chile and adjacent Bolivia from detrital zircon U-Pb geochronology and heavy mineral provenance: Jurassic-Palaeogene evolution of north Chile and Bolivia: Terra Nova, v. 23, n. 6, p. 399–406, doi:https://doi.org/10.1111/j.1365-3121.2011.01025.x
    OpenUrlCrossRefGeoRefWeb of Science
  101. ↵
    1. Zachos J.,
    2. Pagani M.,
    3. Sloan L.,
    4. Thomas E.,
    5. Billups K.
    , 2001, Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present: Science, v. 292, n. 5517, p. 686–693, doi:https://doi.org/10.1126/science.1059412
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (5)
American Journal of Science
Vol. 321, Issue 5
1 May 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Paleoaltimetry of the Western Andes in Northern Chile (∼18.5–19.5°S)
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Paleoaltimetry of the Western Andes in Northern Chile (∼18.5–19.5°S)
Sebastian Jimenez-Rodriguez, Matthew Dettinger, Jay Quade, Kendra E. Murray
American Journal of Science May 2021, 321 (5) 491-533; DOI: 10.2475/05.2021.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Paleoaltimetry of the Western Andes in Northern Chile (∼18.5–19.5°S)
Sebastian Jimenez-Rodriguez, Matthew Dettinger, Jay Quade, Kendra E. Murray
American Journal of Science May 2021, 321 (5) 491-533; DOI: 10.2475/05.2021.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGY OF THE WESTERN ANDES AT 18.5 TO 19.5°S
    • STRATIGRAPHY
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Stable Isotopes
  • Paleoaltimetry
  • Western Cordillera
  • Central Andes
  • Atacama Desert

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire