Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Silurian-Devonian tectonic evolution of mid-coastal Maine, U.S.A.: Details of polyphase orogenic processes

David P. West, Emily M. Peterman and Jessica Chen
American Journal of Science April 2021, 321 (4) 458-489; DOI: https://doi.org/10.2475/04.2021.03
David P. West JR.
*Department of Geology, Middlebury College, Middlebury, Vermont 05753
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dwest@middlebury.edu
Emily M. Peterman
**Department of Earth and Oceanographic Science, Bowdoin College, Brunswick, Maine 04011
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jessica Chen
*Department of Geology, Middlebury College, Middlebury, Vermont 05753
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Detailed bedrock mapping, structural geology, meta-igneous whole rock geochemistry, and U-Pb geochronology from rocks sampled along a portion of a complexly deformed tectonic boundary between the Ordovician peri-Gondwanan Liberty-Orrington belt and Silurian syn-orogenic strata of the Fredericton trough (a.k.a. the Dog Bay Line) in mid-coastal Maine aid in deciphering the Silurian-Devonian tectonic evolution of the region. The new results provide constraints on several key events. First, initial terrane juxtapositioning occurred along the east-verging Boothbay thrust fault (D1). This tectonism occurred prior to 423 Ma and is associated with the accretion of the Ganderian microcontinent to the Laurentian margin (that is, the Salinic orogeny). Subsequently, intrusion of an ultra-potassic magma, the protolith of the Edgecomb Gneiss, occurred at ca. 413 Ma. Its distinctive whole rock geochemical signature allows for correlation with rocks of similar composition and age along a relatively narrow 140 kilometer long distance on the northwestern margin of the Fredericton trough. This restricted area of ultra-potassic magma generation is attributed to the breakoff of the descending Salinic oceanic slab that triggered decompression melting of a previously metasomatized mantle wedge region beneath the accreted Ganderian microcontinent. Early thrust faults (D1) and the ca. 413 Edgecomb Gneiss igneous protolith were overprinted by an episode of upright folding (D2) and low-pressure amphibolite facies metamorphism associated with the Early to Middle Devonian Acadian orogeny. Zircon overgrowths in the Edgecomb Gneiss dated at ca. 399 Ma grew during this tectonic episode. Comparisons with previous geochronological studies across the region suggest this dominant phase of Acadian deformation and metamorphism was long-lived (ca. 40 m.y.) and associated with the outboard accretion of the Avalonian microcontinent. Dextral shear structures represent the final phase of deformation (D3) superimposed on this terrane boundary and are associated with the Norumbega fault and shear zone system that was active in Middle Devonian-Carboniferous time.

  • Appalachians
  • Salinic orogeny
  • Acadian orogeny
  • Ganderia
  • structural geology
  • tectonics
  • metamorphism
  • igneous geochemistry
  • U-Pb geochronology
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (4)
American Journal of Science
Vol. 321, Issue 4
1 Apr 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Silurian-Devonian tectonic evolution of mid-coastal Maine, U.S.A.: Details of polyphase orogenic processes
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Silurian-Devonian tectonic evolution of mid-coastal Maine, U.S.A.: Details of polyphase orogenic processes
David P. West, Emily M. Peterman, Jessica Chen
American Journal of Science Apr 2021, 321 (4) 458-489; DOI: 10.2475/04.2021.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Silurian-Devonian tectonic evolution of mid-coastal Maine, U.S.A.: Details of polyphase orogenic processes
David P. West, Emily M. Peterman, Jessica Chen
American Journal of Science Apr 2021, 321 (4) 458-489; DOI: 10.2475/04.2021.03
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • REGIONAL GEOLOGIC SETTING
    • ANALYTICAL TECHNIQUES
    • RESULTS OF DETAILED GEOLOGIC MAPPING
    • EDGECOMB GNEISS DESCRIPTION, GEOCHRONOLOGY AND GEOCHEMISTRY
    • DEFORMATIONAL HISTORY
    • METAMORPHIC HISTORY
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset
  • The PATCH Lab v1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction
  • Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau
Show more Article

Similar Articles

Keywords

  • Appalachians
  • Salinic orogeny
  • Acadian Orogeny
  • Ganderia
  • Structural geology
  • Tectonics
  • metamorphism
  • igneous geochemistry
  • U-Pb geochronology

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire