Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

40Ar/39Ar and LA-ICP-MS U–Pb geochronology for the New England portion of the Early Cretaceous New England-Quebec igneous province: Implications for the postrift evolution of the eastern North American Margin

Jennifer R. Cooper Boemmels, Jean M. Crespi, Laura E. Webb and Julie C. Fosdick
American Journal of Science March 2021, 321 (3) 365-391; DOI: https://doi.org/10.2475/03.2021.03
Jennifer R. Cooper Boemmels
*Department of Earth Science, Southern Connecticut State University, New Haven, Connecticut 06515–1355
**Department of Geosciences, University of Connecticut, Storrs, Connecticut 06269–1045
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cooperj1@southernct.edu
Jean M. Crespi
**Department of Geosciences, University of Connecticut, Storrs, Connecticut 06269–1045
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laura E. Webb
***Department of Geology, University of Vermont, Burlington, Vermont 05405–1758
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julie C. Fosdick
**Department of Geosciences, University of Connecticut, Storrs, Connecticut 06269–1045
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Amidon W. H.,
    2. Roden-Tice M.,
    3. Anderson A. J.,
    4. McKeon R. E.,
    5. Shuster D. L.
    , 2016, Late Cretaceous unroofing of the White Mountains, New Hampshire, USA: An episode of passive margin rejuvenation?: Geology, v. 44, n. 6, p. 415–418, doi:https://doi.org/10.1130/G37429.1
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Armstrong R. L.,
    2. Stump E.
    , 1971, Additional K–Ar dates, White Mountain Magma Series, New England: American Journal of Science, v. 270, n. 5, p. 331–333, doi:https://doi.org/10.2475/ajs.270.5.331
    OpenUrlAbstract
  3. ↵
    1. Bailey D. G.,
    2. Lupulescu M. V.
    , 2015, Spatial, temporal, mineralogical, and compositional variations in Mesozoic kimberlitic magmatism in New York State: Lithos, v. 212–215, p. 298–310, doi:http://dx.doi.org/10.1016/j.lithos.2014.11.022
    OpenUrlCrossRef
  4. ↵
    1. Bailey D. G.,
    2. Lupulescu M.,
    3. Chiarenzelli J.,
    4. Taylor J. P.
    , 2017, Age and origin of the Cannon Point syenite, Essex County, New York: Southernmost expression of the Monteregian Hills magmatism?: Canadian Journal of Earth Sciences, v. 54, n. 4, p. 379–392, doi:https://doi.org/10.1139/cjes-2016-0144
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Blackburn T. J.,
    2. Olsen P. E.,
    3. Bowring S. A.,
    4. McLean N. M.,
    5. Kent D. V.,
    6. Puffer J.,
    7. McHone G.,
    8. Rasbury E. T.,
    9. Et-Touhami M.
    , 2013, Zircon U–Pb geochronology links the end-Triassic extinction with the central Atlantic magmatic province: Science, v. 384, n. 6135, p. 941–945, doi:https://doi.org/10.1126/science.1234204
    OpenUrlCrossRef
  6. ↵
    1. Chen W.,
    2. Simonetti A.
    , 2014, Evidence for the multi-stage petrogenetic history of the Oka carbonatite complex (Québec, Canada) as recorded by perovskite and apatite: Minerals, v. 4, n. 2, p. 437–476, doi:https://doi.org/10.3390/min4020437
    OpenUrlCrossRef
  7. ↵
    1. Crough S. T.
    , 1981, Mesozoic hotspot epeirogeny in eastern North America: Geology, v. 9, n. 1, p. 2–6, doi:https://doi.org/10.1130/0091-7613(1981)9<2:MHEIEN>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Dennison J. M.,
    2. Johnson R. W. Jr..
    , 1971, Tertiary intrusions and associated phenomena near the thirty-eighth parallel fracture zone in Virginia and West Virginia: GSA Bulletin, v. 82, n. 2, p. 501–508, doi:https://doi.org/10.1130/0016-7606(1971)82[501:TIAAPN]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Dong M. T.,
    2. Menke W. H.
    , 2017, Seismic high attenuation region observed beneath southern New England from teleseismic body wave spectra: Evidence for high asthenospheric temperature without melt: Geophysical Research Letters, v. 44, n. 21, p. 10,958–10,969, doi:https://doi.org/10.1002/2017GL074953
    OpenUrlCrossRef
  9. ↵
    1. Duncan R. A.
    , 1984, Age progressive volcanism of the New England seamounts and the opening of the central Atlantic Ocean: Journal of Geophysical Research-Solid Earth, v. 89, n. B 12, p. 9980–9990, doi:https://doi.org/10.1029/JB089iB12p09980
    OpenUrlCrossRef
  10. ↵
    1. Ebinger C. J.,
    2. Sleep N. H.
    , 1998, Cenozoic magmatism throughout east Africa resulting from impact of a single plume: Nature, v. 395, p. 788–791, doi:https://doi.org/10.1038/27417
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Eby G. N.
    , 1984a, Geochronology of the Monteregian Hills alkaline igneous province, Quebec: Geology, v. 12, n. 8, p. 468–470, doi:https://doi.org/10.1130/0091-7613(1984)12<468:GOTMHA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Eby G. N.
    1984b, Monteregian Hills I. Petrography, major and trace element geochemistry, and strontium isotopic chemistry of the western intrusions: Mounts Royal, St. Bruno, and Johnson: Journal of Petrology, v. 25, n. 2, p. 421–452, doi:https://doi.org/10.1093/petrology/25.2.421
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Eby G. N.
    1985a, Monteregian Hills II. Petrography, major and trace element geochemistry, and strontium isotopic chemistry of the eastern intrusions: Mounts Shefford, Brome, and Megantic: Journal of Petrology, v. 26, n. 2, p. 418–448, doi:https://doi.org/10.1093/petrology/26.2.418
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Eby G. N.
    1985b, Sr and Pb isotopes, U and Th chemistry of alkaline Monteregian and White Mountain igneous provinces, eastern North America: Geochimica et Cosmochimica Acta, v. 49, n. 5, p. 1143–1153, doi:https://doi.org/10.1016/0016-7037(85)90005-5
    OpenUrlCrossRefGeoRefWeb of Science
  15. ↵
    1. Eby G. N.
    1985c, Age relations, chemistry, and petrogenesis of mafic alkaline dikes from the Monteregian Hills and younger White Mountains igneous provinces: Canadian Journal of Earth Sciences, v. 22, n. 8, p. 1103–1111, doi:https://doi.org/10.1139/e85-112
    OpenUrlAbstract
  16. ↵
    1. Eby G. N.
    1987, The Monteregian Hills and White Mountain alkaline igneous provinces, eastern North America: Geological Society, London, Special Publications, v. 30, p. 433–447, doi:https://doi.org/10.1144/GSL.SP.1987.030.01.21
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Puffer J. H.,
    2. Ragland P.C.
    1. Eby G. N.,
    2. Krueger H. W.,
    3. Creasy J. W.
    , 1992, Geology, geochronology, and geochemistry of the White Mountain batholith, New Hampshire, in Puffer J. H., Ragland P.C., editors, Eastern North American Mesozoic Magmatism: Geological Society of America Special Paper 268, doi:https://doi.org/10.1130/SPE268-p379
    OpenUrlCrossRef
  18. ↵
    1. Faure S.,
    2. Tremblay A.,
    3. Angelier J.
    , 1996, State of intraplate stress and tectonism of northeastern America since Cretaceous times, with particular emphasis on the New England-Quebec igneous province: Tectonophysics, v. 255, n. 1–2, p. 111–134, doi:https://doi.org/10.1016/0040-1951(95)00113-1
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Foland K. A.,
    2. Faul H.
    , 1977, Ages of the White Mountain intrusives – New Hampshire, Vermont, and Maine, USA: American Journal of Science, v. 277, n. 7, p. 888–904, doi:https://doi.org/doi:10.2475/ajs.277.7.888
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Foland K. A.,
    2. Gilbert L. A.,
    3. Sebring C. A.,
    4. Jiang-Feng C.
    , 1986, 40Ar/39Ar ages for plutons of the Monteregian Hills, Quebec: Evidence for a single episode of Cretaceous magmatism: GSA Bulletin, v. 97, n. 8, p. 966–974, doi:https://doi.org/10.1130/0016-7606(1986)97<966:AAFPOT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Gehrels G. E.,
    2. Valencia V. A.,
    3. Ruiz J.
    , 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry: Geochemistry, Geophysics, Geosystems, v. 9, n. 3, doi:https://doi.org/10.1029/2007GC001805
    OpenUrlCrossRef
  22. ↵
    1. Gilbert L. A.,
    2. Foland K. A.
    , 1986, The Mont Saint Hilaire plutonic complex: Occurrence of excess 40Ar and short intrusion history: Canadian Journal of Earth Sciences, v. 23, n. 7, p. 948–958, doi:https://doi.org/10.1139/e86-096
    OpenUrlAbstract
  23. ↵
    1. Heaman L. M.,
    2. Kjarsgaard B. A.
    , 2000, Timing of eastern North American kimberlite magmatism: Continental extension of the Great Meteor hotspot track?: Earth and Planetary Science Letters, v. 178, n. 3–4, p. 253–268, doi:https://doi.org/10.1016/S0012-821X(00)00079-0
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Hibbard J. P.,
    2. van Staal C. R.,
    3. Rankin D. W.,
    4. Williams H.
    , 2006, Lithotectonic map of the Appalachian orogen, Canada-United States of America: Geological Survey of Canada, Map 2096A, 2 sheets, scale 1:1,500,000, doi:https://doi.org/10.4095/221912
    OpenUrlCrossRef
  25. ↵
    1. Jaffey A. H.,
    2. Flynn K. F.,
    3. Glendenin L. E.,
    4. Bentley W. C.,
    5. Essling A. M.
    , 1971, Precision measurement of half-lives and specific activities of 235U and 238U: Physical Review, C4, p. 1889–1906, doi:https://doi.org/10.1103/PhysRevC.4.1889
    OpenUrlCrossRef
  26. ↵
    1. Jordan B. T.,
    2. Grunder A. L.,
    3. Duncan R. A.,
    4. Deino A. L.
    , 2004, Geochronology of age-progressive volcanism of the Oregon High Lava Plains: Implications for the plume interpretation of Yellowstone: Journal of Geophysical Research-Solid Earth, v. 109, n. B10, p. B10202, doi:https://doi.org/10.1029/2003JB002776
    OpenUrlCrossRef
  27. ↵
    1. Kaislaniemi L.,
    2. van Hunen J.
    , 2014, Dynamics of lithospheric thinning and mantle melting by edge-driven convection: Application to Moroccan Atlas mountains: Geochemistry, Geophysics, Geosystems, v. 15, n. 8, p. 3175–3189, doi:https://doi.org/10.1002/2014GC005414
    OpenUrlCrossRefGeoRef
  28. ↵
    1. King S. D.
    , 2007, Hotspots and edge-driven convection: Geology, v. 35, n. 3, p. 223–226, doi:https://doi.org/10.1130/G23291A.1
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. King S. D.,
    2. Anderson D. L.
    , 1995, An alternative mechanism of flood basalt formation: Earth and Planetary Science Letters, v. 136, n. 3–4, p. 269–279, doi:https://doi.org/10.1016/0012-821X(95)00205-Q
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. King S. D.,
    2. Anderson D. L.
    1998, Edge-driven convection: Earth and Planetary Science Letters, v. 160, n. 3–4, p. 289–296, doi:https://doi.org/10.1016/S0012-821X(98)00089-2
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Kuiper K. F.,
    2. Deino A.,
    3. Hilgen F. J.,
    4. Krijgsman W.,
    5. Renne P. R.,
    6. Wijbrans A. J.
    , 2008, Synchronizing rock clocks of Earth history: Science, v. 320, n. 5875, p. 500–504, doi:https://doi.org/10.1126/science.1154339
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Laurent R.,
    2. Pierson T. C.
    , 1973, Petrology of alkaline rocks from Cuttingsville and the Shelburne Peninsula, Vermont: Canadian Journal of Earth Sciences, v. 10, n. 8, p. 1244–1256, doi:https://doi.org/10.1139/e73-110
    OpenUrlAbstract
  33. ↵
    1. Lee J. Y.,
    2. Marti K.,
    3. Severinghaus J. P.,
    4. Kawamura K.,
    5. Yoo H. S.,
    6. Lee J. B.,
    7. Kim J. S.
    , 2006, A redetermination of the isotopic abundances of atmospheric Ar: Geochimica et Cosmochimica Acta, v. 70, n. 17, p. 4507–4512, doi:https://doi.org/10.1016/j.gca.2006.06.1563
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Levin V.,
    2. Long M. D.,
    3. Skryzalin P.,
    4. Li Y.,
    5. López I.
    , 2018, Seismic evidence for a recently formed mantle upwelling beneath New England: Geology, v. 46, n. 1, p. 87–90, doi:https://doi.org/10.1130/G39641.1
    OpenUrlCrossRef
  35. ↵
    1. Li C.,
    2. Gao H.,
    3. Williams M. L.,
    4. Levin V.
    , 2018, Crustal thickness variation in the northern Appalachian mountains: Implications for the geometry of the 3-D tectonic boundaries within the crust: Geophysical Research Letters, v. 45, n. 12, p. 6061–6070, doi:https://doi.org/10.1029/2018GL078777
    OpenUrlCrossRef
  36. ↵
    1. Ludwig K. R.
    , 2003, Isoplot 3.00: A geochronological toolkit for Microsoft Excel: Berkeley, California, Berkeley Geochronology Center, 70 p.
    1. Matton G.,
    2. Jébrak M.
    , 2009, The Cretaceous Peri-Atlantic Alkaline Pulse (PAAP): Deep mantle plume origin or shallow lithospheric break-up?: Tectonophysics, v. 469, n. 1–4, p. 1–12, doi:https://doi.org/10.1016/j.tecto.2009.01.001
    OpenUrlCrossRefGeoRefWeb of Science
  37. ↵
    1. Mazza S. E.,
    2. Gazel E.,
    3. Johnson E. A.,
    4. Kunk M. J.,
    5. McAleer R.,
    6. Spotila J. A.,
    7. Bizimis M.,
    8. Coleman D. S.
    , 2014, Volcanoes of the passive margin: The youngest magmatic event in eastern North America: Geology, v. 42, n. 6, p. 483–486, doi:https://doi.org/10.1130/G35407.1
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Mazza S. E.,
    2. Gazel E.,
    3. Johnson E. A.,
    4. Bizimis M.,
    5. McAleer R.,
    6. Biryol C. B.
    , 2017, Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin: Geochemistry, Geophysics, Geosystems, v. 18, n. 1, p. 3–22, doi:https://doi.org/10.1002/2016GC006646
    OpenUrlCrossRef
  39. ↵
    1. McDougall I.,
    2. Harrison T. M.
    , 1999, Geochronology and Thermochronology by the 40Ar/39Ar Method: Oxford, England, Oxford University Press, 269 p.
  40. ↵
    1. McEnroe S. A.
    , 1996, North America during the Lower Cretaceous: New paleomagnetic constraints from intrusions in New England: Geophysical Journal International, v. 126, n. 2, p. 477–494, doi:https://doi.org/10.1111/j.1365-246X.1996.tb05304.x
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. McHone J. G.
    , 1978, Distribution, orientations, and ages of mafic dikes in central New England: GSA Bulletin, v. 89, n. 11, p. 1645–1655, doi:https://doi.org/10.1130/0016-7606(1978)89<1645:DOAAOM>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. McHone J. G.
    1984, Mesozoic igneous rocks of northern New England and adjacent Québec: Geological Society of America Map and Chart Series MC-49, scale 1:690,000, 1 sheet, 5 p. text.
  43. ↵
    1. McHone J. G.
    1996, Constraints on the mantle plume model for Mesozoic alkaline intrusions in northeastern North America: The Canadian Mineralogist, v. 34, p. 325–334.
    OpenUrlFREE Full Text
  44. ↵
    1. McHone J. G.,
    2. Butler J. R.
    , 1984, Mesozoic igneous provinces of New England and the opening of the North Atlantic Ocean: GSA Bulletin, v. 95, n. 7, p. 757–765, doi:https://doi.org/10.1130/0016-7606(1984)95<757:MIPONE>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. McHone J. G.,
    2. Corneille S. E.
    , 1980, Alkalic dikes of the Lake Champlain Valley: Vermont Geology, v. 1, p. 16–21.
    OpenUrlGeoRef
  46. ↵
    1. Menke W.,
    2. Skrylazin P.,
    3. Levin V.,
    4. Harper T.,
    5. Darbyshire F.,
    6. Dong T.
    , 2016, The Northern Appalachian Anomaly: A modern asthenospheric upwelling: Geophysical Research Letters, v. 43, n. 19, p. 10,173–10,179, doi:https://doi.org/10.1002/2016GL070918
    OpenUrlCrossRef
  47. ↵
    1. Menke W.,
    2. Lamoureux J.,
    3. Abbott D.,
    4. Hopper E.,
    5. Hutson D.,
    6. Marrero A.
    , 2018, Crustal heating and lithospheric erosion associated with asthenospheric upwelling beneath southern New England (USA): Journal of Geophysical Research–Solid Earth, v. 123, n. 10, p. 8995–9008, doi:https://doi.org/10.1029/2018JB015921
    OpenUrlCrossRef
  48. ↵
    1. Merle R. E.,
    2. Jourdan F.,
    3. Chiaradia M.,
    4. Olierook H. K. H.,
    5. Manatschal G.
    , 2019, Origin of widespread Cretaceous alkaline magmatism in the Central Atlantic: A single melting anomaly?: Lithos, v. 342–343, p. 480–498, doi:https://doi.org/10.1016/j.lithos.2019.06.002
    OpenUrlCrossRef
  49. ↵
    1. Min K.,
    2. Mundil R.,
    3. Renne P. R.,
    4. Ludwig K. R.
    , 2000, A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite: Geochimica et Cosmochimica Acta, v. 64, n. 1, p. 73–98, doi:https://doi.org/10.1016/S0016-7037(99)00204-5
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Morgan W. J.
    , 1972, Deep mantle convection plumes and plate motions: AAPG Bulletin, v. 56, n. 2, p. 203–213, doi:https://doi.org/10.1306/819A3E50-16C5-11D7-8645000102C1865D
    OpenUrlAbstract
  51. ↵
    1. Müller R. D.,
    2. Seton M.,
    3. Zahirovic S.,
    4. Williams S. E.,
    5. Matthews K. J.,
    6. Wright N. M.,
    7. Shephard G. E.,
    8. Maloney K. T.,
    9. Barnett-Moore N.,
    10. Hosseinpour M.,
    11. Bower D. J.,
    12. Cannon J.
    , 2016, Ocean basin evolution and global-scale plate reorganization events since Pangea breakup: Annual Review of Earth and Planetary Sciences, v. 44, p. 107–138, doi:https://doi.org/10.1146/annurev-earth-060115-012211
    OpenUrlCrossRef
  52. ↵
    1. Nebel O.,
    2. Scherer E. S.,
    3. Mezger K.
    , 2011, Evaluation of the 87Rb decay constant by age comparison against the U–Pb system: Earth and Planetary Science Letters, v. 301, n. 1–2, p. 1–8, doi:https://doi.org/10.1016/j.epsl.2010.11.004
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Philpotts A. R.
    , 1970, Mechanism of emplacement of the Monteregian intrusions: The Canadian Mineralogist, v. 10, n. 3, p. 395–410.
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Praeg D.,
    2. Stoker M. S.,
    3. Shannon P. M.,
    4. Ceramicola S.,
    5. Hjelstuen B.,
    6. Laber J. S.,
    7. Mathiesen A.
    , 2005, Episodic Cenozoic tectonism and the development of the NW “passive” continental margin: Marine and Petroleum Geology, v. 22, n. 9–10, p. 1007–1030, doi:https://doi.org/10.1016/j.marpetgeo.2005.03.014
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Ratcliffe N. M.,
    2. Stanley R. S.,
    3. Gale M. H.,
    4. Thompson P. J.,
    5. Walsh G. J.
    , 2011, Bedrock geologic map of Vermont: U.S. Geological Survey Scientific Investigations Map 3184, 3 sheets, scale 1:100,000, doi:https://doi.org/10.3133/sim3184
    OpenUrlCrossRef
  56. ↵
    1. Renne P. R.,
    2. Mundil R.,
    3. Balco G.,
    4. Min K.,
    5. Ludwig K. R.
    , 2010, Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology: Geochimica et Cosmochimica Acta, v. 74, n. 18, p. 5349–5367, doi:https://doi.org/10.1016/j.gca.2010.06.017
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  57. ↵
    1. Rondenay S.,
    2. Bostick M. G.,
    3. Hearn T. M.,
    4. White D. J.,
    5. Mareschal R. M.
    , 2000, Lithospheric assembly and modification of the SE Canadian Shield: Abitibi-Grenville Teleseismic Experiment: Journal of Geophysical Research-Solid Earth, v. 105, n. B6, p. 13,735–13,754, doi:https://doi.org/10.1029/2000JB900022
    OpenUrlCrossRef
  58. ↵
    1. Roulleau E.,
    2. Stevenson R.
    , 2013, Geochemical and isotopic (Nd–Sr–Hf–Pb) evidence for a lithospheric mantle source in the formation of the alkaline Monteregian province (Quebec): Canadian Journal of Earth Sciences, v. 50, n. 6, p. 650–666, doi:https://doi.org/10.1139/cjes-2012-0145
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Roulleau E.,
    2. Pinti D. L.,
    3. Stevenson R. K.,
    4. Takahata N.,
    5. Sano Y.,
    6. Pitre F.
    , 2012, N, Ar and Pb isotopic co-variations in magmatic minerals: Discriminating fractionation processes from magmatic sources in Monteregian Hills, Québec, Canada: Chemical Geology, v. 326–327, p. 123–131, doi:https://doi.org/10.1016/j.chemgeo.2012.07.016
    OpenUrlCrossRef
  60. ↵
    1. Rutte D.,
    2. Becker T. A.,
    3. Deino A. L.,
    4. Reese S. R.,
    5. Renne P. R.,
    6. Schlicker R. A.
    , 2018, The new CLOCIT irradiation facility for 40Ar/39Ar geochronology: Characterisation, comparison with CLICIT and implications for high-precision geochronology: Geostandards and Geoanalytical Research, v. 42, n. 3, p. 301–307, doi:https://doi.org/10.1111/ggr.12217
    OpenUrlCrossRef
  61. ↵
    1. Rychert C. A.,
    2. Fischer K. M.,
    3. Rondenay S.
    , 2005, A sharp lithosphere-asthenosphere boundary imaged beneath eastern North America: Nature, v. 436, p. 542–545, doi:https://doi.org/10.1038/nature03904
    OpenUrlCrossRefPubMedWeb of Science
  62. ↵
    1. Rychert C. A.,
    2. Rondenay S.,
    3. Fischer K. M.
    , 2007, P-to-S and S-to-P imaging of a sharp lithosphere-asthenosphere boundary beneath eastern North America: Journal of Geophysical Research-Solid Earth, v. 112, n. B8, p. B08314, doi:https://doi.org/10.1029/2006JB004619
    OpenUrlCrossRef
    1. Shafiqullah M.,
    2. Tupper W. M.,
    3. Cole T. J. S.
    , 1970, K–Ar age of the carbonatite complex, Oka, Quebec: The Canadian Mineralogist, v. 10, n. 3, p. 541–552.
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Shen W.,
    2. Ritzwoller M. H.
    , 2016, Crustal and uppermost mantle structure beneath the United States: Journal of Geophysical Research-Solid Earth, v. 121, n. 6, p. 4306–4342, doi:https://doi.org/10.1002/2016JB012887
    OpenUrlCrossRef
  64. ↵
    1. Sleep N. H.
    , 1990, Monteregian hotspot track: A long-lived mantle plume: Journal of Geophysical Research-Solid Earth, v. 95, n. B13, p. 21,983–21,990, doi:https://doi.org/10.1029/JB095iB13p21983
    OpenUrlCrossRef
  65. ↵
    1. Stoenner R. W.,
    2. Schaeffer O. A.,
    3. Katcoff S.
    , 1965, Half-lives of argon-37, argon-39, and argon-42: Science, v. 148, n. 3675, p. 1325–1328, doi:https://doi.org/10.1126/science.148.3675.1325
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Thompson R. N.,
    2. Gibson S. A.
    , 1991, Subcontinental mantle plumes, hotspots and pre-existing thin spots: Journal of the Geological Society, London, v. 148, n. 6, p. 973–977, doi:https://doi.org/10.1144/gsjgs.148.6.0973
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Wanless R. K.,
    2. Stevens R. D.,
    3. Lachance G. R.,
    4. Delabio R. N.
    , 1973, K–Ar isotopic ages, Report 11: Geological Survey of Canada Paper 73-2, p. 75–77.
  68. ↵
    1. Roberts D. G.,
    2. Bally A. W.
    1. Withjack M. O.,
    2. Schlische R. W.,
    3. Olsen P. E.
    , 2012, Development of the passive margin of eastern North America: Mesozoic rifting, igneous activity, and breakup, in Roberts D. G., Bally A. W., editors, Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins, p. 301–335, doi:https://doi.org/10.1016/B978-0-444-56356-9.00012-2
    OpenUrlCrossRef
  69. ↵
    1. Zartman R. E.,
    2. Brock M. R.,
    3. Heyl A. V.,
    4. Thomas H. H.
    , 1967, K–Ar and Rb–Sr ages of some alkalic intrusive rocks from central and eastern United States: American Journal of Science, v. 265, n. 10, p. 848–870, doi:https://doi.org/10.2475/ajs.265.10.848
    OpenUrlAbstract
  70. ↵
    1. Zen E-An
    , 1972, Some revisions in the interpretation of the Taconic allochthon in west-central Vermont: GSA Bulletin, v. 83, n. 9, p. 2573–2588, doi:https://doi.org/10.1130/0016-7606(1972)83[2573:SRITIO]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (3)
American Journal of Science
Vol. 321, Issue 3
1 Mar 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
40Ar/39Ar and LA-ICP-MS U–Pb geochronology for the New England portion of the Early Cretaceous New England-Quebec igneous province: Implications for the postrift evolution of the eastern North American Margin
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
40Ar/39Ar and LA-ICP-MS U–Pb geochronology for the New England portion of the Early Cretaceous New England-Quebec igneous province: Implications for the postrift evolution of the eastern North American Margin
Jennifer R. Cooper Boemmels, Jean M. Crespi, Laura E. Webb, Julie C. Fosdick
American Journal of Science Mar 2021, 321 (3) 365-391; DOI: 10.2475/03.2021.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
40Ar/39Ar and LA-ICP-MS U–Pb geochronology for the New England portion of the Early Cretaceous New England-Quebec igneous province: Implications for the postrift evolution of the eastern North American Margin
Jennifer R. Cooper Boemmels, Jean M. Crespi, Laura E. Webb, Julie C. Fosdick
American Journal of Science Mar 2021, 321 (3) 365-391; DOI: 10.2475/03.2021.03
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGIC BACKGROUND
    • METHODOLOGY
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian
  • The petrogenesis and tectonic setting of the New Hampshire Plutonic Suite: Towards a more comprehensive model for the magmatism of the Acadian Orogeny
  • On carbon burial and net primary production through Earth's history
Show more Article

Similar Articles

Keywords

  • passive margin
  • postrift magmatism
  • eastern North American margin
  • New England-Quebec igneous province
  • Great Meteor hotspot

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire