Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticle

Carbon cycle evolution before and after the Great Oxidation of the atmosphere

Don E. Canfield
American Journal of Science March 2021, 321 (3) 297-331; DOI: https://doi.org/10.2475/03.2021.01
Don E. Canfield
Department of Biology Nordcee and DIAS (Danish Institute for Advanced Studies), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dec@biology.sdu.dk
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Agirrezabala L. M.,
    2. Permanyer A.,
    3. Suárez-Ruiz I.,
    4. Dorronsoro C.
    , 2014, Contact metamorphism of organic-rich mudstones and carbon release around a magmatic sill in the Basque-Cantabrian Basin, western Pyrenees: Organic Geochemistry, v. 69, p. 26–35, doi:https://doi.org/10.1016/j.orggeochem.2014.01.014
    OpenUrlCrossRefGeoRef
  2. ↵
    1. Alcott L. J.,
    2. Mills B. J. W.,
    3. Poulton S. W.
    , 2019, Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling: Science (New York, N.Y.), v. 366, n. 6471, p. 1333–1337, doi:https://doi.org/10.1126/science.aax6459
    OpenUrlCrossRef
  3. ↵
    1. Anbar A. D.,
    2. Duan Y.,
    3. Lyons T. W.,
    4. Arnold G. L.,
    5. Kendall B.,
    6. Creaser R. A.,
    7. Kaufman A. J.,
    8. Gordon G. W.,
    9. Scott C.,
    10. Garvin J.,
    11. Buick R.
    , 2007, A whiff of oxygen before the Great Oxidation Event?: Science (New York, N.Y.), v. 317, n. 5846, p. 1903–1906, doi:https://doi.org/10.1126/science.1140325
    OpenUrlCrossRef
  4. ↵
    1. Armstrong R. L.
    , 1981, Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth: Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, v. 301, n. 1461, p. 443–472., doi:https://doi.org/10.1098/rsta.1981.0122
    OpenUrlCrossRef
  5. ↵
    1. Bachan A.,
    2. Kump L. R.
    , 2015, The rise of oxygen and siderite oxidation during the Lomagundi Event: Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 21, p. 6562–6567, doi:https://doi.org/10.1073/pnas.1422319112
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Bao R.,
    2. Zhao M.,
    3. McNichol A.,
    4. Wu Y.,
    5. Guo X.,
    6. Haghipour N.,
    7. Eglinton T. I.
    , 2019, On the origin of aged sedimentary organic matter along a river‐shelf‐deep ocean transect: Journal of Geophysical Research: Biogeosciences, v. 124, n. 8, p. 2582–2594, doi:https://doi.org/10.1029/2019JG005107
    OpenUrlCrossRef
  7. ↵
    1. Baturin G. N.
    , 2007, of the relationship between primary productivity of organic carbon in ocean and phosphate accumulation (Holocene-Late Jurassic: Lithology and Mineral Resources, Issue): 42, p. 318–348, doi:https://doi.org/10.1134/S0024490207040025
    OpenUrlCrossRef
  8. ↵
    1. Bekker A.,
    2. Holland H. D.
    , 2012, Oxygen overshoot and recovery during the early Paleoproterozoic: Earth and Planetary Science Letters, v. 317–318, p. 295–304, doi:https://doi.org/10.1016/j.epsl.2011.12.012
    OpenUrlCrossRef
  9. ↵
    1. Bekker A.,
    2. Holland H. D.,
    3. Wang P.-L.,
    4. Rumble D. III.,
    5. Stein H. J.,
    6. Hannah J. L.,
    7. Coetzee L. L.,
    8. Beukes N. J.
    , 2004, Dating the rise of atmospheric oxygen: Nature, : Nature, v. 427, p. 117–120, doi:https://doi.org/10.1038/nature02260
    OpenUrlCrossRef
  10. ↵
    1. Bekker A.,
    2. Karhu J. A.,
    3. Kaufman A. J.
    , 2006, Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America: Precambrian Research, v. 148, n. 1–2, p. 145–180, doi:https://doi.org/10.1016/j.precamres.2006.03.008
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Bell E. A.,
    2. Boehnke P.,
    3. Harrison T. M.,
    4. Mao W. L.
    , 2015, Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon: Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 47, p. 14518–14521, doi:https://doi.org/10.1073/pnas.1517557112
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Berner R. A.
    , 1987, Models for carbon and sulfur cycles and atmospheric oxygen: Application to Paleozoic geologic history: American Journal of Science, p. 177–196, doi:https://doi.org/10.2475/ajs.287.3.177
    OpenUrlCrossRef
  13. ↵
    1. Berner R. A.,
    2. Canfield D. E.
    , 1989, A new model for atmospheric oxygen over Phanerozoic time: American journal of Science, p. 333–361, doi:https://doi.org/10.2475/ajs.289.4.333
    OpenUrlCrossRef
  14. ↵
    1. Schopf J. W.,
    2. Klein C.
    1. Beukes N. J.,
    2. Klein C.
    , 1992, Models for iron-formation deposition, in Schopf J. W., Klein C., editors, The Proterozoic Biosphere. A multidisciplinary study: Cambridge, England, Cambridge University Press, p. 147–151.
  15. ↵
    1. Bjerrum C. J.,
    2. Canfield D. E.
    , 2004, New insights into the burial history of organic carbon on the early Earth: Geochemistry: Geophysics, Geosystems, v. 5, n. 8, p. Q08001, doi:https://doi.org/10.1029/2004GC000713
    OpenUrlCrossRef
  16. ↵
    1. Blanchet C. L.,
    2. Kasten S.,
    3. Vidal L.,
    4. Poulton S. W.,
    5. Ganeshram R.,
    6. Thouveny N.
    , 2012, Influence of diagenesis on the stable isotopic composition of biogenic carbonates from the Gulf of Tehuantepec oxygen minimum zone: Geochemistry, Geophysics, Geosystems: Geochemistry, Geophysics, Geosystems, doi:https://doi.org/10.1029/2011GC003800
    OpenUrlCrossRef
  17. ↵
    1. Blättler C.,
    2. Claire M. W.,
    3. Prave A. R.,
    4. Kirsimäe K.,
    5. Higgins J. A.,
    6. Medvedev P. V.,
    7. Romashkin A. E.,
    8. Rychanchik D. V.,
    9. Zerkle A. L.,
    10. Paiste K.,
    11. Kreitsmann T.,
    12. Millar I. L.,
    13. Hayles J. A.,
    14. Bao H.,
    15. Turchyn A. V.,
    16. Warke M. R.,
    17. Lepland A.
    , 2018, Two-billion-year-old evaporites capture Earth's great oxidation: Science (New York, N.Y.), v. 360, n. 6386, p. 320–323, doi:https://doi.org/10.1126/science.aar2687
    OpenUrlCrossRef
  18. ↵
    1. Blattmann T. M.,
    2. Liu Z.,
    3. Zhang Y.,
    4. Zhao Y.,
    5. Haghipour N.,
    6. Montluçon D. B.,
    7. Plötze M.,
    8. Eglinton T. I.
    , 2019, Mineralogical control on the fate of continentally derived organic matter in the ocean: Science (New York, N.Y.), v. 366, n. 6466, p. 742–745, doi:https://doi.org/10.1126/science.aax5345
    OpenUrlCrossRef
  19. ↵
    1. Bolton E. W.,
    2. Berner R. A.,
    3. Petsch S. T.
    , 2006, The weathering of sedimentary organic matter as a control on atmospheric O2: II: American Journal of Science, v. 306, n. 8, p. 575–615, doi:https://doi.org/10.2475/08.2006.01
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Buick I. S.,
    2. Uken R.,
    3. Gibson R. L.,
    4. Wallmach T.
    , 1998, High-δ13C Paleoproterozoic carbonates from the Transvaal Supergroup, South Africa: Geology, p. 875–878, doi:https://doi.org/10.1130/0091-7613(1998)026<0875:HCPCFT>2.3.CO;2
    OpenUrlCrossRef
  21. ↵
    1. Buseck P. R.,
    2. Huang B.-J.
    , 1985, Conversion of carbonaceous material to graphite during metamorphism: Geochimica et Cosmochimica Acta: Geochimica et Cosmochimica Acta, p. 2003–2016, doi:https://doi.org/10.1016/0016-7037(85)90059-6
    OpenUrlCrossRef
  22. ↵
    1. Canfield D. E.,
    2. Rosing M. T.,
    3. Bjerrum C.
    , 2006, Early anaerobic metabolisms: Philosophical transactions of the Royal Society of Londo Series B, Biological Sciences, p. 1819–1834, doi:https://doi.org/10.1098/rstb.2006.1906
    OpenUrlCrossRef
    1. Canfield D. E.,
    2. Ngombi-Pemba L.,
    3. Hammarlund E. U.,
    4. Bengtson S.,
    5. Chaussidon M.,
    6. Gauthier-Lafaye F.,
    7. Meunier A.,
    8. Riboulleau A.,
    9. Rollion-Bard C.,
    10. Rouxel O.,
    11. Asael D.,
    12. Pierson-Wickmann A. C.,
    13. El Albani A.
    , 2013, Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere: Proceedings of the National Academy of Sciences of the United States of America, v. 110, n. 42, p. 16736–16741, doi:https://doi.org/10.1073/pnas.1315570110
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Canfield D. E.,
    2. Zhang S.,
    3. Wang H.,
    4. Wang X.,
    5. Zhao W.,
    6. Su J.,
    7. Bjerrum C. J.,
    8. Haxen E. R.,
    9. Hammarlund E. U.
    , 2018, A Mesoproterozoic iron formation: Proceedings of the National Academy of Sciences, v. 115, n. 17, doi:https://doi.org/10.1073/pnas.1720529115
    OpenUrlCrossRef
  24. ↵
    1. Canfield D. E.,
    2. Knoll A. H.,
    3. Poulton S. W.,
    4. Narbonne G. M.,
    5. Dunning G. R.
    , 2020, Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle: American Journal of Science, v. 320, n. 2, p. 97–124, doi:https://doi.org/10.2475/02.2020.01
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Cawood P. A.,
    2. Hawkesworth C.,
    3. Dhuime B.
    , 2013, The continental record and the generation of continental crust: Geological Society of America Bulletin, v. 125, n. p. 1–2.14 p. –32, doi:https://doi.org/10.1130/B30722.1
    OpenUrlCrossRef
  26. ↵
    1. Chang S.,
    2. Berner R. A.
    , 1999, Coal weathering and the geochemical carbon cycle: Geochimica et Cosmochimica Acta, v. 63, n. 19–20, p. 3301–3310, doi:https://doi.org/10.1016/S0016-7037(99)00252-5
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Clayton J. L.,
    2. Bostick N. H.
    , 1986, Temperature effects on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous dike: Organic Geochemistry, v. 10 n. 1–3, p. 135–143, doi:https://doi.org/10.1016/0146-6380(86)90017-3
    OpenUrlCrossRefGeoRef
  28. ↵
    1. Cloud P. E. Jr..
    , 1972, A working model of the primitive Earth: American Journal of Science, v. 272, n. 6, p. 537–548, doi:https://doi.org/10.2475/ajs.272.6.537
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Condie K. C.,
    2. Des M. D. J.,
    3. Abbott D.
    , 2001, Precambrian superplumes and supercontinents: A record in black shales, carbon isotopes, and paleoclimates?: Precambrian Research, v. 106, n. 3–4, p. 239–260, doi:https://doi.org/10.1016/S0301-9268(00)00097-8
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Crockford P. W.,
    2. Kunzmann M.,
    3. Bekker A.,
    4. Hayles J.,
    5. Bao H.,
    6. Halverson G. P.,
    7. Peng Y.,
    8. Bui T. H.,
    9. Cox G. M.,
    10. Gibson T. M.,
    11. Wörndle S.,
    12. Rainbird R.,
    13. Lepland A.,
    14. Swanson-Hysell N. L.,
    15. Master S.,
    16. Sreenivas B.,
    17. Kuznetsov A.,
    18. Krupenik V.,
    19. Wing B. A.
    , 2019, Claypool continued: Extending the isotopic record of sedimentary sulfate: Chemical Geology, v. 513, p. 200–225, doi:https://doi.org/10.1016/j.chemgeo.2019.02.030
    OpenUrlCrossRefPubMed
  31. ↵
    1. Crowe S. A.,
    2. Dossing L. N.,
    3. Beukes N. J.,
    4. Bau M.,
    5. Kruger S. J.,
    6. Frei R.,
    7. Canfield D. E.
    , 2013, Atmospheric oxygenation three billion years ago: Nature, v. 501, p. 535–538, doi:https://doi.org/10.1038/nature12426
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  32. ↵
    1. Daines S. J.,
    2. Mills B. J. W.,
    3. Lenton T. M.
    , 2017, Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon: Nature Communications, v. 8, p. 14379, doi:https://doi.org/10.1038/ncomms14379
    OpenUrlCrossRef
  33. ↵
    1. Deines P.
    , 1980, The carbon isotopic composition of diamonds: Relationship to diamond shape, color, occurrence and vapor composition: Geochimica et Cosmochimica Acta, v. 44, n. 7, p. 943–961, doi:https://doi.org/10.1016/0016-7037(80)90284-7
    OpenUrlCrossRefGeoRefWeb of Science
    1. DeLucia M. S.,
    2. Guenthner W. R.,
    3. Marshak S.,
    4. Thomson S. N.,
    5. Ault A. K.
    , 2017, Thermochronology links denudation of the Great Unconformity surface to the supercontinent cycle and snowball Earth: Geology, v. 46, n. 2, p. 167–170, doi:https://doi.org/10.1130/G39525.1
    OpenUrlCrossRef
  34. ↵
    1. Des Marais D. J.,
    2. Strauss H.,
    3. Summons R. E.,
    4. Hayes J. M.
    , 1992, Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment: Nature, v. 359, p. 605–609, doi:https://doi.org/10.1038/359605a0
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  35. ↵
    1. Dhuime B.,
    2. Hawkesworth C. J.,
    3. Cawood P. A.,
    4. Storey C. D.
    , 2012, A change in the geodynamics of continental growth 3 billion years ago: Science (New York, N.Y.), v. 335, n. 6074, p. 1334–1336, doi:https://doi.org/10.1126/science.1216066
    OpenUrlCrossRef
  36. ↵
    1. Dickens A. F.,
    2. Gélinas Y.,
    3. Hedges J. I.
    , 2004a, Physical separation of combustion and rock sources of graphitic black carbon in sediments: Marine Chemistry, v. 92, n. 1–4, p. 215–223, doi:https://doi.org/10.1016/j.marchem.2004.06.027
    OpenUrlCrossRefGeoRef
  37. ↵
    1. Dickens A. F.,
    2. Gélinas Y.,
    3. Masiello C. A.,
    4. Wakeham S.,
    5. Hedges J. I.
    , 2004b, Reburial of fossil organic carbon in marine sediments: Nature, v. 427, p. 336–339, doi:https://doi.org/10.1038/nature02299
    OpenUrlCrossRefPubMedWeb of Science
  38. ↵
    1. Fakhraee M.,
    2. Planavsky N. J.,
    3. Reinhard C. T.
    , 2020, The role of environmental factors in the long-term evolution of the marine biological pump: Nature Geoscience, v. 13, p. 812–816, doi:https://doi.org/10.1038/s41561-020-00660-6
    OpenUrlCrossRef
  39. ↵
    1. Farquhar J.,
    2. Bao H. M.,
    3. Thiemens M.
    , 2000, Atmospheric influence of Earth's earliest sulfur cycle: Science (New York, N.Y.), v. 289, n. 5480, p. 756–758, doi:https://doi.org/10.1126/science.289.5480.756
    OpenUrlCrossRef
  40. ↵
    1. Farquhar J.,
    2. Peters M.,
    3. Johnston D. T.,
    4. Strauss H.,
    5. Masterson A.,
    6. Wiechert U.,
    7. Kaufman A. J.
    , 2007, Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry: Nature, v. 449, p. 706–709, doi:https://doi.org/10.1038/nature06202
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  41. ↵
    1. Fischer W. W.,
    2. Schroeder S.,
    3. Lacassie J. P.,
    4. Beukes N. J.,
    5. Goldberg T.,
    6. Strauss H.,
    7. Horstmann U. E.,
    8. Schrag D. P.,
    9. Knoll A. H.
    , 2009, Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa: Precambrian Research, v. 169, n. 1–4, p. 15–27, doi:https://doi.org/10.1016/j.precamres.2008.10.010
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Galy V.,
    2. Beyssac O.,
    3. France-Lanord C.,
    4. Eglinton T.
    , 2008, Recycling of graphite during Himalayan erosion: A geological stabilization of carbon in the crust: Science (New York, N.Y.), v. 322, n. 5903, p. 943–945, doi:https://doi.org/10.1126/science.1161408
    OpenUrlCrossRef
  43. ↵
    1. Galy V.,
    2. Peucker-Ehrenbrink B.,
    3. Eglinton T.
    , 2015, Global carbon export from the terrestrial biosphere controlled by erosion: Nature, v. 521, p. 204–207, doi:https://doi.org/10.1038/nature14400
    OpenUrlCrossRefGeoRefPubMed
  44. ↵
    1. Geyman E. C.,
    2. Maloof A. C.
    , 2019, A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen: Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 49, p. 24433–24439, doi:https://doi.org/10.1073/pnas.1908783116
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. González-Álvarez I.,
    2. Kerrich R.
    , 2012, Weathering intensity in the Mesoproterozoic and modern large-river systems: A comparative study in the Belt-Purcell Supergroup: Precambrian Research, v. 208, p. 174–196, doi:https://doi.org/10.1016/j.precamres.2012.04.008
    OpenUrlCrossRef
  46. ↵
    1. Haberstroh P. R.,
    2. Brandes J. A.,
    3. Gélinas Y.,
    4. Dickens A. F.,
    5. Wirick S.,
    6. Cody G.
    , 2006, Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales using carbon X-ray spectromicroscopy: Geochimica et Cosmochimica Acta, v. 70, n. 6, p. 1483–1494, doi:https://doi.org/10.1016/j.gca.2005.12.001
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Halverson G. P.,
    2. Hoffman P. F.,
    3. Schrag D. P.,
    4. Maloof A. C.,
    5. Rice A. H. N.
    , 2005, Toward a Neoproterozoic composite carbon isotope record: GSA: Geological Society of America Bulletin, v. 117 n. 9–10, p. 1181–1207, doi:https://doi.org/10.1130/B25630.1
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Hao J.,
    2. Knoll A. H.,
    3. Huang F.,
    4. Schieber J.,
    5. Hazen R. M.,
    6. Daniel I.
    , 2020, Cycling phosphorus on the Archean Earth: Part II. Phosphorus limitation on primary production in Archean ecosystems: Geochemica: Geochimica et Cosmochimica Acta, v. 280, p. 360–377, doi:https://doi.org/10.1016/j.gca.2020.04.005
    OpenUrlCrossRef
  49. ↵
    1. Hardisty D. S.,
    2. Lu Z. L.,
    3. Planavsky N. J.,
    4. Bekker A.,
    5. Philippot P.,
    6. Zhou X. L.,
    7. Lyons T. W.
    , 2014, An iodine record of Paleoproterozoic surface ocean oxygenation: Geology, v. 42, n. 7, p. 619–622, doi:https://doi.org/10.1130/G35439.1
    OpenUrlAbstract/FREE Full Text
    1. Harrison T. M.
    , 2020, Hadean Earth: Cham, Switzerland, Springer, p. 291
  50. ↵
    1. Hay W. W.,
    2. Sloan I. I. J. L.,
    3. Wold C. N.
    , 1988, Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction: Journal of Geophysical Research: Solid Earth, v. 12, p. 14933–14940, doi:https://doi.org/10.1029/JB093iB12p14933
    OpenUrlCrossRef
  51. ↵
    1. Hayes J. M.,
    2. Waldbauer J. R.
    , 2006, The carbon cycle and associated redox processes through time: Philosophical transactions of the Royal Society of Londo n. Series B, Biological Sciences, p. 931–950, doi:https://doi.org/10.1098/rstb.2006.1840
    OpenUrlCrossRef
  52. ↵
    1. Hayes J. M.,
    2. Strauss H.,
    3. Kaufman A. J.
    , 1999, The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma: Chemical Geology: Chemical Geology, v. 161, n. 1–3, p. 103–125, doi:https://doi.org/10.1016/S0009-2541(99)00083-2
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Herman F.,
    2. Seward D.,
    3. Valla P. G.,
    4. Carter A.,
    5. Kohn B.,
    6. Willett S. D.,
    7. Ehlers T. A.
    , 2013, Worldwide acceleration of mountain erosion under a cooling climate: Nature, v. 504, p. 423–426, doi:https://doi.org/10.1038/nature12877
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  54. ↵
    1. Hilting A. K.,
    2. Kump L. R.,
    3. Bralower T. J.
    , 2008, Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene‐Eocene biological pump: Paleoceanography and Paleoceanography, v. 23, n. 3, doi:https://doi.org/10.1029/2007PA001458
    OpenUrlCrossRef
  55. ↵
    1. Hoffman P. F.,
    2. Lamothe K. G.
    , 2019, Seawater-buffered diagenesis, destruction of carbon isotope excursions, and the composition of DIC in Neoproterozoic oceans: Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 38, p. 18874–18879, doi:https://doi.org/10.1073/pnas.1909570116
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Holland H. D.
    (1978). The Chemistry of the Atmosphere and Oceans: New York, John Wiley and Sons, p. 351
  57. ↵
    1. Bengston S.
    1. Holland H. D.
    (1994). Early Proterozoic atmospheric change, in Bengston S., editor, Early Life on Earth: New York, Columbia University Press, p. 237–244.
  58. ↵
    1. Holland H. D.
    , 1999, When did the Earth's atmosphere become oxic? : A reply: The Geochemical News, v. 100, p. 20–22.
    OpenUrl
  59. ↵
    1. Gregor C. B.,
    2. Garrels R. M., M., F. T.,
    3. Maynard J. B.
    1. Holser W. T.,
    2. Schidlowski M.,
    3. Mackenzie F. T.,
    4. Maynard J. B.
    , 1988, Geochemical cycles of carbon and sulfur, in Gregor C. B., Garrels R. M., M., F. T., Maynard J. B. editors, Chemical Cycles in the Evolution of the Earth: New York, John Wiley and Sons, p. 105–173.
  60. ↵
    1. Husson J. M.,
    2. Peters S. E.
    , 2017, Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir: Earth and Planetary Science Letters, v. 460, p. 68–75, doi:https://doi.org/10.1016/j.epsl.2016.12.012
    OpenUrlCrossRef
  61. ↵
    1. Trendall A. F.,
    2. Morris R. C.
    1. James H. L.
    (1983). Distribution of banded iron-formation in space and time, in Trendall A. F., Morris R. C., editors, Iron-formation: Facts and Problems: Amsterdam, Elseviers Science Publishers B.V., Developments in Precambrian Geology, v. 6, p. 471–490.
    OpenUrl
  62. ↵
    1. Johnson A. C.,
    2. Romaniello S. J.,
    3. Reinhard C. T.,
    4. Gregory D. D.,
    5. Garcia-Robledo E.,
    6. Revsbech N. P.,
    7. Canfield D. E.,
    8. Lyons T. W.,
    9. Anbar A. D.
    , 2019, Experimental determination of pyrite and molybdenite oxidation kinetics at nanomolar oxygen concentrations: Geochimica et Cosmochimica Acta, v. 249, p. 160–172, doi:https://doi.org/10.1016/j.gca.2019.01.022
    OpenUrlCrossRef
  63. ↵
    1. Karhu J. A.,
    2. Holland H. D.
    , 1996, Carbon isotopes and the rise of atmospheric oxygen: Geology, v. 24, n. 10, p. 867–870., doi:https://doi.org/10.1130/0091-7613(1996)024<0867:CIATRO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Kasting J. F.,
    2. Zahnle K. J.,
    3. Walker J. C. G.
    , 1983, Photochemistry of methane in the Earth's early atmosphere: Precambrian Research, v. 20, n. 2–4, p. 121–148, doi:https://doi.org/10.1016/0301-9268(83)90069-4
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Kirschvink J. L.,
    2. Kopp R. E.
    , 2008, Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: The case for a late origin of photosystem II: Philosophical Transactions of the Royal Society B: Biological Sciences, v. 363, n. 1504, p. 2755–2765, doi:https://doi.org/10.1098/rstb.2008.0024
    OpenUrlCrossRefGeoRefPubMed
  66. ↵
    1. Konhauser K. O.,
    2. Hamade T.,
    3. Raiswell R.,
    4. Morris R. C.,
    5. Ferris F. G.,
    6. Southam G.,
    7. Canfield D. E.
    , 2002, Could bacteria have formed the Precambrian banded iron formations?: Geology, v. 30, n. 12, p. 1079–1082., doi:https://doi.org/10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Konhauser K. O.,
    2. Planavsky N. J.,
    3. Hardisty D. S.,
    4. Robbins L. J.,
    5. Warchola T. J.,
    6. Haugaard R.,
    7. Lalonde S. V.,
    8. Partin C. A.,
    9. Oonk P. B. H.,
    10. Tsikos H.,
    11. Lyons T. W.,
    12. Bekker A.,
    13. Johnson C. M.
    , 2017, Iron formations: A global record of Neoarchaean to Paleoproterozoic environmental history: Earth-Science Reviews, v. 172, p. 140–177, doi:https://doi.org/10.1016/j.earscirev.2017.06.012
    OpenUrlCrossRef
  68. ↵
    1. Korenaga J.
    , 2018, Estimating the formation age distribution of continental crust by unmixing zircon ages: Earth and Planetary Science Letters, v. 482, p. 388–395, doi:https://doi.org/10.1016/j.epsl.2017.11.039
    OpenUrlCrossRef
  69. ↵
    1. Krissansen-Totton J.,
    2. Buick R.,
    3. Catling D. C.
    , 2015, A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen: American Journal of Science, p. 275–316, doi:https://doi.org/10.2475/04.2015.01
    OpenUrlCrossRef
  70. ↵
    1. Lajoinie M. F.,
    2. Lanfranchini M. E.,
    3. Recio C.,
    4. Sial A. N.,
    5. Cingolani C. A.,
    6. Ballivián Justiniano C. B.,
    7. Etcheverry R. O.
    , 2019, The Lomagundi-Jatuli carbon isotopic event recorded in the marble of the Tandilia System basement, Río de la Plata Craton, Argentina: Precambrian Research, v. 326, p. 447–461, doi:https://doi.org/10.1016/j.precamres.2018.03.012
    OpenUrlCrossRef
  71. ↵
    1. Li Z.,
    2. Peterse F.,
    3. Wu Y.,
    4. Bao H.,
    5. Eglinton T. I.,
    6. Zhang J.
    , 2015, Sources of organic matter in Changjiang (Yangtze River) bed sediments: Preliminary insights from organic geochemical proxies: Organic Geochemistry, v. 85, p. 11–21, doi:https://doi.org/10.1016/j.orggeochem.2015.04.006
    OpenUrlCrossRefGeoRef
  72. ↵
    1. Logan G. A.,
    2. Hayes J. M.,
    3. Hieshima G. B.,
    4. Summons R. E.
    , 1995, Terminal Proterozoic reorganization of biogeochemical cycles: Nature, v. 376, p. 53–56, doi:https://doi.org/10.1038/376053a0
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  73. ↵
    1. James N. P.,
    2. Choquette P. W.
    1. Lohmann K. C.
    , 1988, Goechemical patterns of meteoric diagenetic systems and their application to studies of paleokarst, in James N. P., Choquette P. W., editors, Paleokarst: New York, Springer-Verlag New York, Inc., p. 58–80.
  74. ↵
    1. Laakso T. A.,
    2. Schrag D. P.
    , 2019, A small marine biosphere in the Proterozoic: Geobiology, v. 17, n. 2, p. 161–171, doi:https://doi.org/10.1111/gbi.12323
    OpenUrlCrossRef
  75. ↵
    1. Mackenzie F. T.,
    2. Morse J. W.
    , 1992, Sedimentary carbonates through Phanerozoic time: Geochimica et Cosmochimica Acta, v. 56, p. 3281–3295, doi:https://doi.org/10.1016/0016-7037(92)90305-3
    OpenUrlCrossRefGeoRefWeb of Science
  76. ↵
    1. Magnabosco C.,
    2. Moore K. R.,
    3. Wolfe J. M.,
    4. Fournier G. P.
    , 2018, Dating phototrophic microbial lineages with reticulate gene histories: Geobiology, v. 16, n. 2, p. 179–189, doi:https://doi.org/10.1111/gbi.12273
    OpenUrlCrossRefPubMed
  77. ↵
    1. Maheshwari A.,
    2. Sial A. N.,
    3. Gaucher C.,
    4. Bossi J.,
    5. Bekker A.,
    6. Ferreira V. P.,
    7. Romano A. W.
    , 2010, Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: A review of occurrences in Brazil, India, and Uruguay: Precambrian Research, p. 274–299, doi:https://doi.org/10.1016/j.precamres.2010.06.017
    OpenUrlCrossRef
  78. ↵
    1. Martin W. F.,
    2. Bryant D. A.,
    3. Beatty J. T.
    , 2018, A physiological perspective on the origin and evolution of photosynthesis: FEMS Microbiology Reviews, v. 42, n. 2, p. 205–231, doi:https://doi.org/10.1093/femsre/fux056
    OpenUrlCrossRefPubMed
  79. ↵
    1. Mason E.,
    2. Edmonds M.,
    3. Turchyn A. V.
    , 2017, Remobilization of crustal carbon may dominate volcanic arc emissions: Science (New York, N.Y.), v. 357, n. 6348, p. 290–294, doi:https://doi.org/10.1126/science.aan5049
    OpenUrlCrossRef
  80. ↵
    1. McLennan S. M.
    , 1988, Recycling of the continental crust: Pure and Applied Geophysics Pageoph, v. 128, p. 683–724, doi:https://doi.org/10.1007/BF00874553
    OpenUrlCrossRef
  81. ↵
    1. Melezhik V. A.,
    2. Fallick A. E.,
    3. Filippov M. M.,
    4. Larsen O.
    , 1999a, Karelian shungite-an indication of 2.0-Ga-old metamorphosed oil-shale and generation of petroleum: Geology, lithology and geochemistry: Earth-Science Reviews, : v. 47, n. 1–2, p. 1, –40, doi:https://doi.org/10.1016/S0012-8252(99)00027-6
    OpenUrlCrossRefGeoRef
  82. ↵
    1. Melezhik V. A.,
    2. Fallick A. E.,
    3. Medvedev P. V.,
    4. Makarikhin V. V.
    , 1999b, Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-"red beds" association in a global context: A case for the world-wide signal enhanced by a local environment: Earth-Science Reviews, v. 48, n. 1–2, p. 71–120, doi:https://doi.org/10.1016/S0012-8252(99)00044-6
    OpenUrlCrossRefGeoRef
  83. ↵
    1. Melezhik V. A.,
    2. Filippov M. M.,
    3. Romashkin A. E.
    , 2004, A giant Palaeoproterozoic deposit of shungite in NW Russia: Genesis and practical applications: Ore Geology Reviews, v. 24 n. 1–2, p. 135–154, doi:https://doi.org/10.1016/j.oregeorev.2003.08.003
    OpenUrlCrossRefGeoRef
  84. ↵
    1. Melezhik V. A.,
    2. Fallick A. E.,
    3. Hanski E. J.,
    4. Kump L. R.,
    5. Lepland A.,
    6. Prave A. R.,
    7. Strauss H.
    , 2005, Emergence of the aerobic biosphere during the Archean-Proterozoic transition: Challenges of future research: GSA Today, v. 15, n, 11, p. 4–11., doi:https://doi.org/10.1130/1052-5173(2005)015[4:EOAABD]2.0.CO;2
    OpenUrlCrossRefGeoRef
  85. ↵
    1. Milliman J. D.,
    2. Farnsworth K. L.
    , 2013, River discharge to the coastal ocean: A global synthesis: Cambridge, England, Cambridge University Press, 394 p., doi:https://doi.org/10.1017/CBO9780511781247
    OpenUrlCrossRef
  86. ↵
    1. Miyazaki Y.,
    2. Planavsky N. J.,
    3. Bolton E. W.,
    4. Reinhard C. T.
    , 2018, Making sense of massive carbon isotope excursions with an inverse carbon cycle model: Journal of Geophysical Research: Biogeosciences, v. 123, n. 8, p. 2485–2496, doi:https://doi.org/10.1029/2018JG004416
    OpenUrlCrossRef
  87. ↵
    1. Mojzsis S. J.,
    2. Harrison T. M.,
    3. Pidgeon R. T.
    , 2001, Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago: Nature, v. 409, p. 178–181, doi:https://doi.org/10.1038/35051557
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  88. ↵
    1. Partin C. A.,
    2. Bekker A.,
    3. Planavsky N. J.,
    4. Scott C. T.,
    5. Gill B. C.,
    6. Li C.,
    7. Podkovyrov V.,
    8. Maslov A.,
    9. Konhauser K. O.,
    10. Lalonde S. V.,
    11. Love G. D.,
    12. Poulton S. W.,
    13. Lyons T. W.
    , 2013, Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales: Earth and Planetary Science Letters, v. 369–370, p. 284–293, doi:https://doi.org/10.1016/j.epsl.2013.03.031
    OpenUrlCrossRef
  89. ↵
    1. Pavlov A. A.,
    2. Kasting J. F.
    , 2002, Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere: Astrobiology, v. 2, n. 1, p. 27–41, doi:https://doi.org/10.1089/153110702753621321
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  90. ↵
    1. Petsch S.
    , 2014, Weathering of organic carbon: Treatise on Geochemistry (second edition), v. 12, p. 217–238, doi:https://doi.org/10.1016/B978-0-08-095975-7.01013-5
    OpenUrlCrossRef
  91. ↵
    1. Petsch S. T.,
    2. Berner R. A.,
    3. Eglinton T. I.
    , 2000, A field study of the chemical weathering of ancient sedimentary organic matter: Organic Geochemistry, v. 31, n. 5, p. 475–487, doi:https://doi.org/10.1016/S0146-6380(00)00014-0
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    1. Raiswell R.,
    2. Berner R. A.
    , 1987, Organic carbon losses during burial and thermal maturation of normal marine shales: Geology, v. 15, n. 9, p. 853–857., doi:https://doi.org/10.1130/0091-7613(1987)15<853:OCLDBA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  93. ↵
    1. Ronov A. B.
    , 1976, Global carbon geochemistry, volcanism, carbonate accumulation, and life: Translated from Geokhimiya, v, v. 8, p. 1252–1277.
    OpenUrl
  94. ↵
    1. Ronov A. B.,
    2. Khain V. E.,
    3. Balukhovsky A. N.,
    4. Seslavinsky K. K.
    , 1980, Quantitative analysis of Phanerozoic sedimentation: Sedimentary Geology: Sedimentary Geology, p. 311–325, doi:https://doi.org/10.1016/0037-0738(80)90067-6
    OpenUrlCrossRef
  95. ↵
    1. Rosas J. C.,
    2. Korenaga J.
    , 2018, Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics: Earth and Planetary Science Letters, v. 494, p. 42–49, doi:https://doi.org/10.1016/j.epsl.2018.04.051
    OpenUrlCrossRef
  96. ↵
    1. Rosing M. T.
    , 1999, 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland: Science (New York, N.Y.), v. 283, n. 5402, p. 674–676, doi:https://doi.org/10.1126/science.283.5402.674
    OpenUrlCrossRef
  97. ↵
    1. Saltzman M. R.,
    2. Thomas E.
    , 2012, Carbon isotope stratigraphy: The Geologic Time Scale, p. 207–232, doi:https://doi.org/10.1016/B978-0-444-59425-9.00011-1
    OpenUrlCrossRef
  98. ↵
    1. Sánchez-García L.,
    2. de Andrés J. R.,
    3. Gélinas Y.,
    4. Schmidt M. W. I.,
    5. Louchouarn P.
    , 2013, Different pools of black carbon in sediments from the Gulf of Cádiz (SW Spain): Method comparison and spatial distribution: Marine Chemistry, v. 151, p. 13–22, doi:https://doi.org/10.1016/j.marchem.2013.02.006
    OpenUrlCrossRefGeoRef
  99. ↵
    1. Schopf J. W.
    1. Schidlowski M.,
    2. Hayes J. M.,
    3. Kaplan I. R.
    (1983). Isotopic inferences of ancient biogeochemistries: carbon, sulfur, hydrogen, and nitrogen, in Schopf J. W., editor, Earth's Earliest Biosphere: It's Origin and Evolution: Princeton, New Jersey, Princeton University Press, p. 149–186.
  100. ↵
    1. Schrag D. P.,
    2. Higgins J. A.,
    3. Macdonald F. A.,
    4. Johnston D. T.
    , 2013, Authigenic carbonate and the history of the global carbon cycle: Science (New York, N.Y.), v. 339, n. 6119, p. 540–543, doi:https://doi.org/10.1126/science.1229578
    OpenUrlCrossRef
  101. ↵
    1. Schröder S.,
    2. Bekker A.,
    3. Beukes N. J.,
    4. Strauss H.,
    5. Van Niekerk H. S.
    , 2008, Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: Evidence from sulphate evaporites in the ∼2.2–2.1 Gyr shallow‐marine Lucknow Formation, South Africa: Terra Nova, v. 20, n. 2, p. 108–117, doi:https://doi.org/10.1111/j.1365-3121.2008.00795.x
    OpenUrlCrossRefGeoRefWeb of Science
  102. ↵
    1. Shih P. M.,
    2. Hemp J.,
    3. Ward L. M.,
    4. Matzke N. J.,
    5. Fischer W. W.
    , 2017, Crown group Oxyphotobacteria postdate the rise of oxygen: Geobiology, v. 15, n. 1, p. 19–29, doi:https://doi.org/10.1111/gbi.12200
    OpenUrlCrossRefPubMed
  103. ↵
    1. Sleep N. H.,
    2. Zahnle K.
    , 2001, Carbon dioxide cycling and implications for climate on ancient: Journal of Geophysical Research: Planets, p. 1373–1399, doi:https://doi.org/10.1029/2000JE001247
    OpenUrlCrossRef
  104. ↵
    1. Emiliani C.
    1. Southam J. R.,
    2. Hay W. W.
    , 1981, Global sedimentary mass balance and sea level changes, in Emiliani C., editor: The Sea: New York, Wiley, The Oceanic Lithosphere, v. 7, p. 1617–1683.
    OpenUrl
  105. ↵
    1. Sparkes R. B.,
    2. Hovius N.,
    3. Galy A.,
    4. Liu J. T.
    , 2020, Survival of graphitized petrogenic organic carbon through multiple erosional cycles: Earth and Planetary Science Letters, v. 531, p. 115992, doi:https://doi.org/10.1016/j.epsl.2019.115992
    OpenUrlCrossRef
  106. ↵
    1. Swart P. K.
    , 2015, The geochemistry of carbonate diagenesis: The past, present and future: Sedimentology, v. 62, n. 5, p. 1233–1304, doi:https://doi.org/10.1111/sed.12205
    OpenUrlCrossRefGeoRef
  107. ↵
    1. Tice M. M.,
    2. Lowe D. R.
    , 2004, Photosynthetic microbial mats in the 3,416-Myr-old ocean: Nature, v. 431, p. 549–552, doi:https://doi.org/10.1038/nature02888
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  108. ↵
    1. Tice M. M.,
    2. Lowe D. R.
    2006a, Hydrogen-based carbon fixation in the earliest known photosynthetic organisms: Geology, v. 34, n. 1, p. 37–40, doi:https://doi.org/10.1130/G22012.1
    OpenUrlAbstract/FREE Full Text
  109. ↵
    1. Tice M. M.,
    2. Lowe D. R.
    2006b, The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert: Earth-Science Reviews, v. 76, n. 3–4, p. 259–300, doi:https://doi.org/10.1016/j.earscirev.2006.03.003
    OpenUrlCrossRefGeoRef
  110. ↵
    1. Tissot B. P.,
    2. Welte D. H.
    (1984). Petroleum formation and occurrence: New York, Springer-Verlag, p. 702
  111. ↵
    1. Ueno Y.,
    2. Yoshioka H.,
    3. Maruyama S.,
    4. Isozaki Y.
    , 2004, Carbon isotopes and petrography of kerogens in∼ 3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia: Geochimica et Cosmochimica Acta, v. 68, n. 3, p. 573–589, doi:https://doi.org/10.1016/S0016-7037(03)00462-9
    OpenUrlCrossRefGeoRefWeb of Science
  112. ↵
    1. Ueno Y.,
    2. Yamada K.,
    3. Yoshida N.,
    4. Maruyama S.,
    5. Isozaki Y.
    , 2006, Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era: Nature, v. 440, p. 516–519, doi:https://doi.org/10.1038/nature04584
    OpenUrlCrossRefGeoRefPubMed
  113. ↵
    1. Veizer J.,
    2. Jansen S. L.
    , 1985, Basement and sedimentary recycling-2: Time dimension to global tectonics: The Journal of Geology, v. 93, n. 6, p. 625–643, doi:https://doi.org/10.1086/628992
    OpenUrlCrossRefGeoRefWeb of Science
  114. ↵
    1. Ward L. M.,
    2. Shih P. M.
    , 2019, The evolution and productivity of carbon fixation pathways in response to changes in oxygen concentration over geological time: Free Radical Biology and Medicine, v. 140, p. 188–199, doi:https://doi.org/10.1016/j.freeradbiomed.2019.01.049
    OpenUrlCrossRef
  115. ↵
    1. Ward L. M.,
    2. Kirschvink J. L.,
    3. Fischer W. W.
    , 2016, Timescales of Oxygenation following the evolution of oxygenic photosynthesis: Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life, v. 46, p. 51–65, doi:https://doi.org/10.1007/s11084-015-9460-3
    OpenUrlCrossRef
  116. ↵
    1. Warke M. R.,
    2. Di Rocco T.,
    3. Zerkle A. L.,
    4. Lepland A.,
    5. Prave A. R.,
    6. Martin A. P.,
    7. Ueno Y.,
    8. Condon D. J.,
    9. Claire M. W.
    , 2020, The Great Oxidation Event preceded a Paleoproterozoic: Proceedings of the National Academy of Sciences of the United States of America, Snowball Earth, v. 117, n. 24, p. 13314–13320, doi:https://doi.org/10.1073/pnas.2003090117
    OpenUrlCrossRef
  117. ↵
    1. Wilde S. A.,
    2. Valley J. W.,
    3. Peck W. H.,
    4. Graham C. M.
    , 2001, Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago: Nature, v. 409, p. 175–178, doi:https://doi.org/10.1038/35051550
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  118. ↵
    1. Wilkinson B. H.,
    2. Walker J. C. G.
    , 1989, Phanerozoic cycling of sedimentary carbonate: American Journal of Science, v. 289, n. 4, p. 525–548, doi:https://doi.org/10.2475/ajs.289.4.525
    OpenUrlAbstract/FREE Full Text
  119. ↵
    1. Wille M.,
    2. Kramers J. D.,
    3. Nagler T. F.,
    4. Beukes N. J.,
    5. Schroder S.,
    6. Meisel T.,
    7. Lacassie J. P.,
    8. Voegelin A. R.
    , 2007, Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales: Geochimica et Cosmochimica Acta, v. 71, n. 10, p. 2417–2435, doi:https://doi.org/10.1016/j.gca.2007.02.019
    OpenUrlCrossRefGeoRefWeb of Science
  120. ↵
    1. Wittmann H.,
    2. Oelze M.,
    3. Gaillardet J.,
    4. Garzanti E.,
    5. von Blanckenburg F.
    , 2020, A global rate of denudation from cosmogenic nuclides in the Earth's largest rivers: Earth-Science Reviews, v. 204, p. 103147, doi:https://doi.org/10.1016/j.earscirev.2020.103147
    OpenUrlCrossRef
  121. ↵
    1. Zahnle K.,
    2. Claire M.,
    3. Catling D.
    , 2006, The loss of mass‐independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane: Geobiology, v. 4, n. 4, p. 271–283, doi:https://doi.org/10.1111/j.1472-4669.2006.00085.x
    OpenUrlCrossRefGeoRefWeb of Science
  122. ↵
    1. Zhang S. C.,
    2. Wang X. M.,
    3. Wang H. J.,
    4. Bjerrum C. J.,
    5. Hammarlund E. U.,
    6. Costa M. M.,
    7. Connelly J. N.,
    8. Zhang B. M.,
    9. Su J.,
    10. Canfield D. E.
    , 2016, Sufficient oxygen for animal respiration 1,400 million years ago: Proceedings of the National Academy of Sciences, v. 113, n. 7, p. 1731–1736, doi:https://doi.org/10.1073/pnas.1523449113
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (3)
American Journal of Science
Vol. 321, Issue 3
1 Mar 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Carbon cycle evolution before and after the Great Oxidation of the atmosphere
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Carbon cycle evolution before and after the Great Oxidation of the atmosphere
Don E. Canfield
American Journal of Science Mar 2021, 321 (3) 297-331; DOI: 10.2475/03.2021.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Carbon cycle evolution before and after the Great Oxidation of the atmosphere
Don E. Canfield
American Journal of Science Mar 2021, 321 (3) 297-331; DOI: 10.2475/03.2021.01
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MODEL RESULTS AND DISCUSSION
    • THE GOE AND LOMAGUNDI ISOTOPE EVENT
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian
  • The petrogenesis and tectonic setting of the New Hampshire Plutonic Suite: Towards a more comprehensive model for the magmatism of the Acadian Orogeny
  • On carbon burial and net primary production through Earth's history
Show more Article

Similar Articles

Keywords

  • carbon isotope
  • Archean
  • Proterozoic
  • GOE
  • Lomagundi
  • evolution
  • oxygen
  • cyanobacteria
  • Carbon burial
  • Carbon cycle
  • model
  • rock cycle

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire