Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

The complexities of Mesoarchean to late Paleoproterozoic magmatism and metamorphism in the Qixia area, eastern North China Craton: Geology, geochemistry and SHRIMP U-Pb zircon dating

Yusheng Wan, Shoujie Liu, Zhiyong Song, Simon A. Wilde, Laiming Wang, Chunyan Dong, Hangqiang Xie, Shiwen Xie, Jianhua Hou, Wenqian Bai and Dunyi Liu
American Journal of Science January 2021, 321 (1-2) 1-82; DOI: https://doi.org/10.2475/01.2021.01
Yusheng Wan
* Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wanyusheng@bjshrimp.cn
Shoujie Liu
* Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhiyong Song
** Shandong Geological Survey Institute, Jinan 250013, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simon A. Wilde
*** School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth 6845, WA, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laiming Wang
** Shandong Geological Survey Institute, Jinan 250013, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chunyan Dong
* Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hangqiang Xie
* Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shiwen Xie
* Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianhua Hou
** Shandong Geological Survey Institute, Jinan 250013, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenqian Bai
* Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dunyi Liu
* Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Bai W. Q.,
    2. Dong C. Y.,
    3. Nutman A. P.,
    4. Xie H. Q.,
    5. Liu D. Y.,
    6. Wan Y. S.
    , 2019, Timing of late Neoarchean to late Paleoproterozoic events in the North China Craton: SHRIMP U–Pb dating and LA-ICP-MS Hf isotope analysis of zircons from magmatic and metamorphic rocks in the Santunying area, eastern Hebei: Gondwana Research, v. 76, p. 348–372, doi:https://doi.org/10.1016/j.gr.2019.06.005
    OpenUrlCrossRef
  2. ↵
    1. Barker F.
    1. Barker F.
    , 1979, Trondhjemite: Definition, environment and hypothese of origin, in Barker F., editor, Trondhjemites, Dacites, and Related Rocks: Amsterdam, The Netherlands, Elsevier, Developments in Petrology, v. 6, p. 1–12, doi:https://doi.org/10.1016/B978-0-444-41765-7.50006-X
    OpenUrlCrossRef
  3. ↵
    1. Black L. P.,
    2. Kamo S. L.,
    3. Allen C. M.,
    4. Aleinikoff J. K.,
    5. Davis D. W.,
    6. Korsch R. J.,
    7. Foudoulis C.
    , 2003, TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology: Chemical Geology, v. 200, n. 1–2, p. 155–170, doi:https://doi.org/10.1016/S0009-2541(03)00165-7
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Black L. P.,
    2. Kamo S. L.,
    3. Allen C. M.,
    4. Davis D. W.,
    5. Aleinikoff J. N.,
    6. Valley J. W.,
    7. Mundil R.,
    8. Campbell I. H.,
    9. Korsch R. J.,
    10. Williams I. S.,
    11. Foudoulis C.
    , 2004, Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards: Chemical Geology, v. 205, n. 1–2, p. 115–140, doi:https://doi.org/10.1016/j.chemgeo.2004.01.003
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Blichert-Toft J.
    , 2008, The Hf isotopic composition of zircon reference material 91500: Chemical Geology, v. 253, n. 3–4, p. 252–257, doi:https://doi.org/10.1016/j.chemgeo.2008.05.014
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Blichert-Toft J.,
    2. Albarede F.
    , 1997, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system: Earth and Planetary Science Letters, v. 148, n. 1–2, p. 243–258, doi:https://doi.org/10.1016/S0012-821X(97)00040-X
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Cumming G. L.,
    2. Richards J. R.
    , 1975, Ore lead isotope ratios in a continuously changing earth: Earth and Planetary Science Letters, v. 28, n. 2, p. 155–171, doi:https://doi.org/10.1016/0012-821X(75)90223-X
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. DePaolo D. J.
    , 1988, Age dependence of the composition of continental crust: Evidence from Nd isotopic variations in granitic rocks: Earth and Planetary Science Letters, v. 90, n. 3, p. 263–271, doi:https://doi.org/10.1016/0012-821X(88)90130-6
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Dong C. Y.,
    2. Wan Y. S.,
    3. Wilde S. A.,
    4. Xu Z. Y.,
    5. Ma M. Z.,
    6. Xie H. Q.,
    7. Liu D. Y.
    , 2014, Early Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the Khondalite Belt: Contraints on craton evolution: Gondwana Research, v. 25, n. 4, p. 1535–1553, doi:https://doi.org/10.1016/j.gr.2013.05.021
    OpenUrlCrossRefGeoRef
  10. ↵
    1. Dong C. Y.,
    2. Wan Y. S,
    3. Xie H. Q.,
    4. Nutman A. P.,
    5. Xie S. W.,
    6. Liu S. J.,
    7. Ma M. Z.,
    8. Liu D. Y.
    , 2017a, The Mesoarchean Tiejiashan-Gongchangling potassic granite in the Anshan-Benxi area, North China Craton: Origin by recycling of Paleo- to Eoarchean crust from U-Pb-Nd-Hf-O isotopic studies: Lithos, v. 290–291, p. 116–135, doi:https://doi.org/10.1016/j.lithos.2017.08.009
    OpenUrlCrossRef
  11. ↵
    1. Dong C. Y.,
    2. Xie H. Q.,
    3. Kröner A.,
    4. Wang S. J.,
    5. Liu S. J.,
    6. Xie S. W.,
    7. Song Z. Y.,
    8. Ma M. Z.,
    9. Liu D. Y.,
    10. Wan Y. S.
    , 2017b, The complexities of zircon crystallization and overprinting during metamorphism and anatexis: An example from the late Archean TTG terrane of western Shandong Province, China: Precambrian Research, v. 300, p. 181–200, doi:https://doi.org/10.1016/j.precamres.2017.07.034
    OpenUrlCrossRef
  12. ↵
    1. Foley S. F.,
    2. Barth M. G.,
    3. Jenner G. A.
    , 2000, Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas: Geochimica et Cosmochimica Acta, v. 64, n. 5, p. 933–938, doi:https://doi.org/10.1016/S0016-7037(99)00355-5
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Foley S. F.,
    2. Tiepolo M.,
    3. Vannici R.
    , 2002, Growth of early continental crust controlled by melting of amphibolite in subduction zones: Nature, v. 417, p. 837–840, doi:https://doi.org/10.1038/nature00799
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  14. ↵
    1. Geng J. Z.,
    2. Li H. K.,
    3. Zhang J.,
    4. Zhou H. Y.,
    5. Li H. M.
    , 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS: Geological Bulletin of China, v. 30, p. 1508–1513 (in Chinese with English abstract).
    OpenUrl
  15. ↵
    1. Griffin W. L.,
    2. Wang X.,
    3. Jackson S. E.,
    4. Pearson N. J.,
    5. O'Reilly S. Y.,
    6. Xu X.,
    7. Zhou X.
    , 2002, Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes: Lithos, v. 61, n. 3–4, p. 237–269, doi:https://doi.org/10.1016/S0024-4937(02)00082-8
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Hildreth W.,
    2. Moorbath S.
    , 1988, Crustal contributions to arc magmatism in the Andes of Central Chile: Contributions to Mineralogy and Petrology, v. 98, p. 455–489, doi:https://doi.org/10.1007/BF00372365
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Hou K. J.,
    2. Li Y. H.,
    3. Zou T. R.,
    4. Qu X. M.,
    5. Shi Y. R.,
    6. Xie G. Q.
    , 2007, Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications: Acta Petrologica Sinica, v. 23, p. 2595–2604 (in Chinese with English abstract).
    OpenUrl
  18. ↵
    1. Hu Z. C.,
    2. Liu Y. S.,
    3. Gao S.,
    4. Liu W. G.,
    5. Yang L.,
    6. Zhang W.,
    7. Tong X. R.,
    8. Lin L.,
    9. Zong K. Q.,
    10. Li M.,
    11. Chen H. H.,
    12. Zhou L.,
    13. Yang L.
    , 2012, Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS: Journal of Analytical Atomic Spectrometry, v. 27, n. 9, p. 1391–1399, doi:https://doi.org/10.1039/c2ja30078h
    OpenUrlCrossRefWeb of Science
  19. ↵
    1. Ickert R. B.,
    2. Hiess J.,
    3. Williams I. S.,
    4. Holden P.,
    5. Ireland T. R.,
    6. Lanc P.,
    7. Schram N.,
    8. Foster J. J.,
    9. Clement S. W.
    , 2008, Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites: Chemical Geology, v. 257, n. 1–2, p. 114–128, doi:https://doi.org/10.1016/j.chemgeo.2008.08.024
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Jahn B. M.,
    2. Glikson A. Y.,
    3. Peucat J. J.,
    4. Hickman A. H.
    , 1981, REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara Block, western Australia: Implications for the early crustal evolution: Geochimica et Cosmochimica Acta, v. 45, n. 9, p. 1633–1652, doi:https://doi.org/10.1016/S0016-7037(81)80002-6
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Jahn B. M.,
    2. Zhou X. H.,
    3. Li J. L.
    , 1990, Formation and tectonic evolution of Southeastern China and Taiwan: Isotopic and geochemical constraints: Tectonophysics, v. 183, n. 1–4, p. 145–160, doi:https://doi.org/10.1016/0040-1951(90)90413-3
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Jahn B. M.,
    2. Liu D. Y.,
    3. Wan Y. S.,
    4. Song B.,
    5. Wu J. S.
    , 2008, Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry: American Journal of Science, v. 308, n. 3, p. 232–269, doi:https://doi.org/10.2475/03.2008.03
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Jian P.,
    2. Kröner A.,
    3. Windley B. F.,
    4. Zhang Q.,
    5. Zhang W.,
    6. Zhang L. Q.
    , 2012, Episodic mantle melting-crustal reworking in the late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan Block: Precambrian Reseach, v. 222–223, p. 230–254, doi:https://doi.org/10.1016/j.precamres.2012.03.002
    OpenUrlCrossRef
  24. ↵
    1. Kröner A.,
    2. Kovach V.,
    3. Belousova E.,
    4. Hegner E.,
    5. Armstrong R.,
    6. Dolgopolova A.,
    7. Seltmann R.,
    8. Alexeiev D. V.,
    9. Hoffmann J. E.,
    10. Wong J.,
    11. Sun M.,
    12. Cai K.,
    13. Wang T.,
    14. Tong Y.,
    15. Wilde S. A.,
    16. Degtyarev K. E.,
    17. Rytsk E.
    , 2014, Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt: Gondwana Research, v. 25, n. 1, p. 103–125, doi:https://doi.org/10.1016/j.gr.2012.12.023
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Li X. P.,
    2. Guo J. H.,
    3. Zhao G. C.,
    4. Li H. K.,
    5. Song Z. J.
    , 2011, Formation of the Paleoproterozoic calc-silicate and high-pressure mafic granulite in the Jiaobei terrane, eastern Shandong, China: Acta Petrologica Sinica, v. 27, p. 961–968 (in Chinese with English abstract).
    OpenUrl
  26. ↵
    1. Liu D. Y.,
    2. Wilde S. A.,
    3. Wan Y. S.,
    4. Wang S. Y.,
    5. Valley J. W.,
    6. Kita N.,
    7. Dong C. Y.,
    8. Xie H. Q.,
    9. Yang C. X.,
    10. Zhang Y. X.,
    11. Gao L. Z.
    , 2009, Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean: Chemical Geology, v. 261, n. 1–2, p. 140–154, doi:https://doi.org/10.1016/j.chemgeo.2008.10.041
    OpenUrlCrossRef
  27. ↵
    1. Liu P. H.,
    2. Liu F. L.,
    3. Wang F.,
    4. Liu J. H.
    , 2010, Genetic mineralogy and metamorphic evolution of mafic high-pressure (HP) granulites from the Shangdong Peninsula, China: Acta Petrologica Sinica, v. 26, p. 2039–2056 (in Chinese with English abstract).
    OpenUrlGeoRef
  28. ↵
    1. Liu P. H.,
    2. Liu F. L.,
    3. Wang F.,
    4. Liu J. H.
    , 2011a, In-situ U-Pb dating of zircons from high-pressure granulites in Shandong Peninsula, eastern China and its geological significance: Earth Science Frontiers, v. 18, p. 33–54 (in Chinese with English abstract).
    OpenUrlGeoRef
  29. ↵
    1. Liu J. H.,
    2. Liu F. L.,
    3. Liu P. H.,
    4. Wang F.,
    5. Ding Z. J.
    , 2011b, Polyphase magmatic and metamorphic events from early Precambrian metamorphic basement in Jiaobei area: evidence from the Zircon U-Pb dating of TTG and granitic gneisses: Acta Petrologica Sinica, v. 27, p. 943–960 (in Chinese with English abstract).
    OpenUrl
  30. ↵
    1. Liu J. H.,
    2. Liu F. L.,
    3. Ding Z. J.,
    4. Liu C. H.,
    5. Yang H.,
    6. Liu P. H.,
    7. Wang F.,
    8. Meng E.
    , 2013, The growth, reworking and metamorphism of early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses: Precambrian Research, v. 224, p. 287–303, doi:https://doi.org/10.1016/j.precamres.2012.10.003
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Liu S. J.,
    2. Jahn B. M.,
    3. Wan Y. S.,
    4. Xie H. Q.,
    5. Wang S. J.,
    6. Xie S. W.,
    7. Dong C. Y.,
    8. Ma M. Z.,
    9. Liu D. Y.
    , 2015, Neoarchean to Paleoproterozoic high-pressure mafic granulite from the Jiaodong Terrain, North China Craton: Petrology, zircon age determination and geological implications: Gondwana Research, v. 28, n. 2, p. 493–508, doi:https://doi.org/10.1016/j.gr.2014.07.006
    OpenUrlCrossRef
  32. ↵
    1. Liu S. W.,
    2. Wang M. J.,
    3. Wan Y. S.,
    4. Guo R. R.,
    5. Wang W.,
    6. Wang K.,
    7. Guo B. R.,
    8. Fu J. H.,
    9. Hu F. Y.
    , 2017, A reworked ∼3.45 Ga continental micro-block of the North China Craton: Constraints from zircon U-Pb-Lu-Hf systematics of the Archean Benxi-Waitoushan migmatite-syenogranite complex: Precambrian Research, v. 303, p. 332–354, doi:https://doi.org/10.1016/j.precamres.2017.04.003
    OpenUrlCrossRef
  33. ↵
    1. Ludwig K. R.
    , 2001, Squid 1.02: A User's Manual: Berkeley Geochronology Centre, Special Publication 2, p. 1–19.
    OpenUrl
  34. ↵
    1. Ludwig K. R.
    2003, User's Manual for Isoplot 3.00, A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology Center, p. 1–70.
  35. ↵
    1. Ma M. Z.,
    2. Wan Y. S.,
    3. Santosh M.,
    4. Xu Z. Y.,
    5. Xie H. Q.,
    6. Dong C. Y.,
    7. Liu D. Y.,
    8. Guo C.
    , 2012, Decoding multiple tectono-thermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the late Neoarchean rocks of Daqingshan, North China Craton: Gondwana Research, v. 22, n. 3–4, p. 810–827, doi:https://doi.org/10.1016/j.gr.2012.02.020
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Maniar P. D.,
    2. Piccoli P. M.
    , 1989, Tectonic discrimination of granitoids: GSA Bulletin, v. 101, n. 5, p. 635–643, doi:https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Masuda A.
    , 1975, Abundances of monoisotopic REE, consistent with the Leedey chondrite values: Geochemical Journal, v. 9, n. 3, p. 183–184, doi:https://doi.org/10.2343/geochemj.9.183
    OpenUrlCrossRefGeoRef
  38. ↵
    1. Morel M. L. A.,
    2. Nebel O.,
    3. Nebel-Jacobsen Y. J.,
    4. Miller J. S.,
    5. Vroon P. Z.
    , 2008, Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS: Chemical Geology, v. 255, n. 1–2, p. 231–235, doi:https://doi.org/10.1016/j.chemgeo.2008.06.040
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Moyen J. F.
    , 2011. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth: Lithos, v. 123, n. 1–4, p. 21–36, doi:https://doi.org/10.1016/j.lithos.2010.09.015
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Moyen J. F.,
    2. Martin H.
    , 2012, Forty years of TTG research: Lithos, v. 148, p. 312–336, doi:https://doi.org/10.1016/j.lithos.2012.06.010
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Nasdala L.,
    2. Hofmeister W.,
    3. Norberg N.,
    4. Martinson J. M.,
    5. Corfu F.,
    6. Dörr W.,
    7. Kamo S. L.,
    8. Kennedy A. K.,
    9. Kronz A.,
    10. Reiners P. W.,
    11. Frei D.,
    12. Kosler J.,
    13. Wan Y. S.,
    14. Götze J.,
    15. Häger T.,
    16. Kröner A.,
    17. Valley J. W.
    , 2008, Zircon M257- a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon: Geostandards and Geoanalytical Reseach, v. 32, n. 3, p. 247–265, doi:https://doi.org/10.1111/j.1751-908X.2008.00914.x
    OpenUrlCrossRef
  42. ↵
    1. Nowell G. M.,
    2. Kempton P. D.,
    3. Noble S. R.,
    4. Fitton J. G.,
    5. Saunders A. D.,
    6. Mahoney J. J.,
    7. Taylor R. N.
    , 1998, High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle: Chemical Geology, v. 149, n. 3–4, p. 211–233, doi:https://doi.org/10.1016/S0009-2541(98)00036-9
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V.
    1. Nutman A. P.,
    2. Bennett V. C.
    , 2019, The 3.9-3.6 Ga Itsaq Gneiss Complex of Greenland, in Van Kranendonk M. J., Smithies R. H., Bennett V., editors: Elsevier, Earth's Oldest Rocks (second edition), p. 375–399, doi:https://doi.org/10.1016/B978-0-444-63901-1.00017-4
    OpenUrlCrossRef
  44. ↵
    1. Hawkesworth C. J.,
    2. Norry M. J.
    1. Pearce J. A.
    , 1983, Role of the sub-continental lithosphere in magma genesis at active continental margins, in Hawkesworth C. J., Norry M. J., editors, Continental Basalts and Mantle Xenoliths: Nantwich, United Kingdom, Shiva Publishing Ltd., p. 230–249.
  45. ↵
    1. Van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V.
    1. Reimink J. R.,
    2. Bauer A. M.,
    3. Chacko T
    , 2019, The Acasta Gneiss Complex, in Van Kranendonk M. J., Smithies R. H., Bennett V., editors: Elsevier, Earth's Oldest Rocks (second edition), p. 329–348, doi:https://doi.org/10.1016/B978-0-444-63901-1.00015-0
    OpenUrlCrossRef
  46. ↵
    1. Ren P.,
    2. Xie H. Q.,
    3. Wang S. J.,
    4. Nutman A. P.,
    5. Dong C. Y.,
    6. Liu S. J.,
    7. Xie S. W.,
    8. Che X. C.,
    9. Song Z. Y.,
    10. Ma M. Z.,
    11. Liu D. Y.,
    12. Wan Y. S.
    , 2016, Ca. 2.6 Ga tectono-thermal event in western Shandong Province, North China Craton: Evidence from SHRIMP zircon U-Pb dating and O isotope analysis: Precambrian Research, v. 281, p. 236–252, doi:https://doi.org/10.1016/j.precamres.2016.05.016
    OpenUrlCrossRef
  47. ↵
    1. Shan H. X.,
    2. Zhai M. G.,
    3. Wang F.,
    4. Zhang H. F.
    , 2013, Geochemical characteristics and petrogenesis of two types of Neoarchean gneisses from the Jiaobei terrane: Acta Petrologica Sinica, v. 29, p. 2295–2312 (in Chinese with English abstract).
    OpenUrl
  48. ↵
    1. Shen Q. H.,
    2. Geng Y. S.,
    3. Song B.,
    4. Wan Y. S.
    , 2005, New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze Blocks, and Qinling-Dabie Orogenic Belt: Acta Geologica Sinica, v. 79, p. 616–627 (in Chinese with English abstract).
    OpenUrl
  49. ↵
    1. Scherer E.,
    2. Münker C.,
    3. Mezger K.
    , 2001, Calibration of the Lutetium Hafnium clock: Science, v. 293, n. 5530, p. 683–687, doi:https://doi.org/10.1126/science.1061372
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Tam P. Y.,
    2. Zhao G. C.,
    3. Liu F. L.,
    4. Zhou X. W.,
    5. Sun M.,
    6. Li S. Z.
    , 2011, Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: new SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton: Gondwana Research, v. 19, n. 1, p. 150–162, doi:https://doi.org/10.1016/j.gr.2010.05.007
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Tam P. Y.,
    2. Zhao G. C.,
    3. Sun M.,
    4. Li S. Z.,
    5. Iizuka Y.,
    6. Ma G. S. K. I.,
    7. Yin C. Q.,
    8. He Y. H.,
    9. Wu M. L.
    , 2012a: Metamorphic P-T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton: Precambrian Research, v. 220–221, p. 177–191, doi:https://doi.org/10.1016/j.precamres.2012.08.008
    OpenUrlCrossRef
  52. ↵
    1. Tam P. Y.,
    2. Zhao G. C.,
    3. Sun M.,
    4. Li S. Z.,
    5. Wu M. L.,
    6. Yin C. Q.
    , 2012b, Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton: Lithos, v. 155, p. 94–109, doi:https://doi.org/10.1016/j.lithos.2012.08.018
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Tam P. Y.,
    2. Zhao G. C.,
    3. Zhou X. W.,
    4. Sun M.,
    5. Guo J. H.,
    6. Li S. Z.,
    7. Yin C. Q.,
    8. Wu M. L.,
    9. He Y. H.
    , 2012c, Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton: Gondwana Research, v. 22, n. 1, p. 104–117, doi:https://doi.org/10.1016/j.gr.2011.09.006
    OpenUrlCrossRefGeoRefWeb of Science
  54. ↵
    1. Valley J. W.,
    2. Lackey J. S.,
    3. Cavosie A. J.,
    4. Clechenko C. C.,
    5. Spicuzza M. J.,
    6. Basei M. A. S.,
    7. Bindeman I. N.,
    8. Ferreira V. P.,
    9. Sial A. N.,
    10. King E. M.,
    11. Peck W. H.,
    12. Sinha A. K.,
    13. Wei C. S.
    , 2005, 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon: Contributions to Mineralogy and Petrology, v. 150, p. 561–580, doi:https://doi.org/10.1007/s00410-005-0025-8
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Vervoort J. D.,
    2. Blichert-Toft J.
    , 1999, Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time: Geochimica et Cosmochimica Acta, v. 63, n. 3–4, p. 533–556, doi:https://doi.org/10.1016/S0016-7037(98)00274-9
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Vervoort J. D.,
    2. Kemp A. I. S.
    , 2016, Clarifying the zircon Hf isotope record of crust-mantle evolution: Chemical Geology, v. 425, p. 65–75, doi:https://doi.org/10.1016/j.chemgeo.2016.01.023
    OpenUrlCrossRefGeoRef
  57. ↵
    1. Wan Y. S.,
    2. Liu D. Y.,
    3. Wang S. J.,
    4. Dong C. Y.,
    5. Yang E. X.,
    6. Wang W.,
    7. Zhou H. Y.,
    8. Ning Z. G.,
    9. Du L. L.,
    10. Yin X. Y.,
    11. Xie H. Q.,
    12. Ma M. Z.
    , 2010, Juvenile magmatism and crustal recycling at the end of the Neoarchean in Western Shandong Province, North China Craton: Evidence from SHRIMP zircon dating: American Journal of Science, v. 310, n. 10, p. 1503–1552, doi:https://doi.org/10.2475/10.2010.11
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Wan Y. S.,
    2. Liu D. Y.,
    3. Dong C. Y.,
    4. Liu S. J.,
    5. Wang S. J.,
    6. Yang E. X.
    , 2011, U-Th-Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircon dating of meta-diorite near Qixia, eastern Shandong: Geoscience Frontiers, v. 2, n. 2, p. 137–146, doi:https://doi.org/10.1016/j.gsf.2011.02.004
    OpenUrlCrossRef
  59. ↵
    1. Wan Y. S.,
    2. Zhang Y. H.,
    3. Williams I. S.,
    4. Liu D. Y.,
    5. Dong C. Y.,
    6. Fan R. L.,
    7. Shi Y. R.,
    8. Ma M. Z.
    , 2013, Extreme zircon O isotopic compositions from 3.8 to 2.5 Ga magmatic rocks from the Anshan area, North China Craton: Chemical Geology, v. 352, p. 108–124, doi:https://doi.org/10.1016/j.chemgeo.2013.06.009
    OpenUrlCrossRefGeoRef
  60. ↵
    1. Zhai M. G.
    1. Wan Y. S.,
    2. Liu D. Y.,
    3. Dong C. Y.,
    4. Xie H. Q.,
    5. Kröner A.,
    6. Ma M. Z.,
    7. Liu S. J.,
    8. Xie S. W.,
    9. Ren P.
    , 2015, Formation and evolution of Archean continental crust of the North China Craton, in Zhai M. G., editor, Precambrian Geology of China: Berlin, Germany, Springer, p. 59–136, doi:https://doi.org/10.1007/978-3-662-47885-1_2
    OpenUrlCrossRef
  61. ↵
    1. Wan Y. S.,
    2. Song Z. Y.,
    3. Wang L. M.,
    4. Xie H. Q.,
    5. Liu S. J.,
    6. Hou J. H.,
    7. Dong C. Y.,
    8. Xie S. W.,
    9. Bai W. Q.,
    10. Liu D. Y.
    , 2017, Early Precambrian evolution of the Qixia area, eastern North China Craton: Evidence from geological mapping and SHRIMP U-Pb zircon dating: Geological Bulletin of China, v. 36, p. 1927–1941.
    OpenUrl
  62. ↵
    1. Van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V.
    1. Wan Y. S.,
    2. Xie H. Q.,
    3. Dong C. Y.,
    4. Kröner A.,
    5. Wilde S. A.,
    6. Bai W. Q.,
    7. Liu S. J.,
    8. Xie S. W.,
    9. Ma M. Z.,
    10. Li Y.,
    11. Liu D. Y.
    , 2019a, Hadean to Paleoarchean rocks and zircons in China, in Van Kranendonk M. J., Smithies R. H., Bennett V., editors, Earth's Oldest Rocks (second edition): Berlin, Germany, Elsevier, p. 293–327, doi:https://doi.org/10.1016/B978-0-444-63901-1.00014-9
    OpenUrlCrossRef
  63. ↵
    1. Wan Y. S.,
    2. Guo R. P.,
    3. Tian J. X.,
    4. Song Z. Y.,
    5. Xie S. W.,
    6. Dong C. Y.,
    7. Bai W. Q.
    , 2019b, Discovery of Mesoarchean-early Neoarchean TTG rocks in the Laizhou area, eastern Shandong, North China Craton: SHRIMP U-Pb zircon dating: Shandong Land and Resources, v. 35, p. 1–16 (in Chinese with English abstract).
    OpenUrl
  64. ↵
    1. Wang F.,
    2. Liu F. L.,
    3. Liu P. H.,
    4. Liu J. H.
    , 2010, Metamorphic evolution of early Precambrian khondalite series in North Shandong Province: Acta Petrologica Sinica, v. 26, p. 2057–2072 (in Chinese with English abstract).
    OpenUrlGeoRef
  65. ↵
    1. Wang L. M.
    , 1989, Geological map of Qixia County sheet (1:50000): China, Geological Publishing House (in Chinese).
  66. ↵
    1. Wang M. J.,
    2. Liu S. W.,
    3. Wang W.,
    4. Wang K.,
    5. Yan M.,
    6. Guo B. R.,
    7. Bai X.,
    8. Guo R. R.
    , 2016, Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China Craton, North China: Journal of Asian Earth Science, v. 131, p. 12–39, doi:https://doi.org/10.1016/j.jseaes.2016.09.012
    OpenUrlCrossRef
  67. ↵
    1. Wang W.,
    2. Zhai M. G.,
    3. Li T. S.,
    4. Santosh M.,
    5. Zhao L.,
    6. Wang H. Z.
    , 2014, Archean-Paleoproterozoic crustal evolution in the eastern North China Craton: Zircon U-Th-Pb and Lu-Hf evidence from the Jiaobei terrane: Precambrian Research, v. 241, p. 146–160, doi:https://doi.org/10.1016/j.precamres.2013.11.011
    OpenUrlCrossRefGeoRef
  68. ↵
    1. Wang W.,
    2. Liu S. W.,
    3. Santosh M.,
    4. Wang G. H.,
    5. Bai X.,
    6. Guo R. R.
    , 2015, Neoarchean intra-oceanic arc system in the Western Liaoning Province: Implications for Early Precambrian crustal evolution in the Eastern Block of the North China Craton: Earth-Science Reviews, v. 150, p. 329–364, doi:https://doi.org/10.1016/j.earscirev.2015.08.002
    OpenUrlCrossRefGeoRef
  69. ↵
    1. Wei C. J.
    , 2018, Neoarchean granulite facies metamorphism and its tectonic implications for the East Hebei Terrane: Acta Petrologica Sinica, v. 34, p. 895–912 (in Chinese with English abstract).
    OpenUrl
  70. ↵
    1. McKibben M. A.,
    2. Shanks W. C.,
    3. Ridley W. I.
    1. Williams I. S.
    , 1997, U-Th-Pb geochronology by ion microprobe, in McKibben M. A., Shanks W. C., Ridley W. I., editors, Applications of microanalytical techniques to understanding mineralizing processes: Reviews in Economic Geology, v. 7, p. 1–35, doi:https://doi.org/10.5382/Rev.07.01
    OpenUrlCrossRef
  71. ↵
    1. Woodhead J.,
    2. Hergt J.,
    3. Shelley M.,
    4. Eggins S.,
    5. Kemp R.
    , 2004, Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation: Chemical Geology, v. 209, n. 1–2, p. 121–135, doi:https://doi.org/10.1016/j.chemgeo.2004.04.026
    OpenUrlCrossRefGeoRefWeb of Science
  72. ↵
    1. Wu F. Y.,
    2. Zhao G. C.,
    3. Wilde S. A.,
    4. Sun D. Y.
    , 2005, Nd isotopic constraints on crustal formation in the North China Craton: Journal of Asian Earth Sciences, v. 24, n. 5, p. 523–545, doi:https://doi.org/10.1016/j.jseaes.2003.10.011
    OpenUrlCrossRefGeoRefWeb of Science
  73. ↵
    1. Wu F. Y.,
    2. Yang Y. H.,
    3. Xie L. W.,
    4. Yang J. H.,
    5. Xu P.
    , 2006, Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology: Chemical Geology, v. 234, n. 1–2, p. 105–126, doi:https://doi.org/10.1016/j.chemgeo.2006.05.003
    OpenUrlCrossRefGeoRefWeb of Science
  74. ↵
    1. Wu M. L.,
    2. Zhao G. C.,
    3. Sun M.,
    4. Li S. Z.,
    5. Bao Z. A.,
    6. Yuk T. P.,
    7. Eizenhöefer P. R.,
    8. He Y. H.
    , 2014a, Zircon U-Pb geochronology and Hf isotopes of major lithologies from the Jiaodong Terrane: implications for the crustal evolution of the Eastern Block ofthe North China Craton: Lithos, v. 190–191, p. 71–84, doi:https://doi.org/10.1016/j.lithos.2013.12.004
    OpenUrlCrossRef
  75. ↵
    1. Wu M. L.,
    2. Zhao G. C.,
    3. Sun M.,
    4. Li S. Z.
    , 2014b, A synthesis of geochemistry and Sm–Nd isotopes of Archean granitoid gneisses in the Jiaodong Terrane: Constraints on petrogenesis and tectonic evolution of the Eastern Block, North China Craton: Precambrian Research, v. 255, Part 3, p. 885–899, doi:https://doi.org/10.1016/j.precamres.2014.10.012
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Wu M. L.,
    2. Lin S. F.,
    3. Wan Y. S.,
    4. Gao J. F.
    , 2016, Crustal evolution of the Eastern Block in the North China Craton: Constraints from zircon U-Pb geochronology and Lu-Hf isotopes of the Northern Liaoning Complex: Precambrian Research, v. 275, p. 35–47, doi:https://doi.org/10.1016/j.precamres.2015.12.013
    OpenUrlCrossRef
  77. ↵
    1. Xie H. Q.,
    2. Wan Y. S.,
    3. Wang S. J.,
    4. Liu D. Y.,
    5. Xie S. W.,
    6. Liu S. J.,
    7. Dong C. Y.,
    8. Ma M. Z.
    , 2013, Geology and zircon dating of trondhjemitic gneiss and amphibolite in theTangezhuang area, eastern Shandong: Acta Petrologica Sinica, v. 29, p. 619–629 (in Chinese with English abstract).
    OpenUrlGeoRef
  78. ↵
    1. Xie S. W.,
    2. Xie H. Q.,
    3. Wang S. J.,
    4. Kröner A.,
    5. Liu S. J.,
    6. Zhou H. Y.,
    7. Ma M. Z.,
    8. Dong C. Y.,
    9. Liu D. Y.,
    10. Wan Y. S.
    , 2014, Ca. 2.9 Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry: Precambrian Research, v. 255, Part 2, p. 538–562, doi:https://doi.org/10.1016/j.precamres.2014.09.006
    OpenUrlCrossRefGeoRef
  79. ↵
    1. Xie S. W.,
    2. Wang S. J.,
    3. Xie H. Q.,
    4. Liu S. J.,
    5. Dong C. Y.,
    6. Ma M. Z.,
    7. Ren P.,
    8. Liu D. Y.
    , 2015, Petrogenesis of ca. 2.7 Ga TTG rocks in the Jiaodong terrane, North China Craton and its geological implications: Acta Petrologica Sinica, v. 31, p. 2974–2990 (in Chinese with English abstract).
    OpenUrl
  80. ↵
    1. Zhai M. G.,
    2. Santosh M.
    , 2011, The early Precambrian odyssey of the North China Craton: A synoptic overview: Gondwana Research, v. 20, n. 1, p. 6–25, doi:https://doi.org/10.1016/j.gr.2011.02.005
    OpenUrlCrossRefGeoRefWeb of Science
  81. ↵
    1. Zhai M. G.,
    2. Zhu X. Y.,
    3. Zhou Y. Y.,
    4. Zhao L.,
    5. Zhou L. G.
    , 2019, Continental crustal evolution and synchronous metallogeny through time in the North China Craton: Journal of Asian Earth Sciences, doi:https://doi.org/10.1016/j.jseaes.2019.104169
    OpenUrlCrossRef
  82. ↵
    1. Zhang J. H.,
    2. Tian H.,
    3. Wang H. C.,
    4. Shi J. R.,
    5. Ren Y. W.,
    6. Chu H.,
    7. Chang Q. S.,
    8. Zhong Y.,
    9. Zhang K.,
    10. Xiang Z. Q.
    , 2019, Re-definition of the two-stage early Precambrian meta-supracrustal rocks in the Huai'an Complex, North China Craton: Evidence from petrology and zircon U-Pb geochronology: Earth Science, v. 44, n. 1, p. 1–22, doi:https://doi.org/10.3799/dqkx.2018.259
    OpenUrlCrossRef
  83. ↵
    1. Zhang Z. Q.,
    2. Ye X. J.
    , 1987, Mass-spectrometric isotope dilution analysis of REE and precise measurement of 143Nd/144Nd ratios: Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, v. 1, p. 108–128 (in Chinese with English abstract).
    OpenUrl
  84. ↵
    1. Zhao G. C.,
    2. Zhai M. G.
    , 2013, Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications: Gondwana Research, v. 23, n. 4, p. 1207–1240, doi:https://doi.org/10.1016/j.gr.2012.08.016
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Zhao G. C.,
    2. Sun M.,
    3. Wilde S. A.,
    4. Li S. Z.
    , 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited: Precambrian Research, v. 136, n. 2, p. 177–202, doi:https://doi.org/10.1016/j.precamres.2004.10.002
    OpenUrlCrossRefGeoRefWeb of Science
  86. ↵
    1. Zhou X. W.,
    2. Zhao G. C.,
    3. Wei C. J.,
    4. Geng Y. S.,
    5. Sun M.
    , 2008, EPMA, U–Th–Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton: American Journal of Science, v. 308, n. 3, p. 328–350, doi:https://doi.org/10.2475/03.2008.06
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 321 (1-2)
American Journal of Science
Vol. 321, Issue 1-2
1 Jan 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The complexities of Mesoarchean to late Paleoproterozoic magmatism and metamorphism in the Qixia area, eastern North China Craton: Geology, geochemistry and SHRIMP U-Pb zircon dating
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 10 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The complexities of Mesoarchean to late Paleoproterozoic magmatism and metamorphism in the Qixia area, eastern North China Craton: Geology, geochemistry and SHRIMP U-Pb zircon dating
Yusheng Wan, Shoujie Liu, Zhiyong Song, Simon A. Wilde, Laiming Wang, Chunyan Dong, Hangqiang Xie, Shiwen Xie, Jianhua Hou, Wenqian Bai, Dunyi Liu
American Journal of Science Jan 2021, 321 (1-2) 1-82; DOI: 10.2475/01.2021.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The complexities of Mesoarchean to late Paleoproterozoic magmatism and metamorphism in the Qixia area, eastern North China Craton: Geology, geochemistry and SHRIMP U-Pb zircon dating
Yusheng Wan, Shoujie Liu, Zhiyong Song, Simon A. Wilde, Laiming Wang, Chunyan Dong, Hangqiang Xie, Shiwen Xie, Jianhua Hou, Wenqian Bai, Dunyi Liu
American Journal of Science Jan 2021, 321 (1-2) 1-82; DOI: 10.2475/01.2021.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL OVERVIEW
    • ANALYTICAL METHODS
    • ZIRCON DATING
    • WHOLE ROCK GEOCHEMISTRY
    • Nd-Hf-O ISOTOPES
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Appendix
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Eastern Shandong
  • TTG
  • Archean
  • SHRIMP U-Pb zircon dating
  • Nd-Hf-O isotopes

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire