Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

Constraints on surface temperature 3.4 billion years ago based on triple oxygen isotopes of cherts from the Barberton Greenstone Belt, South Africa, and the problem of sample selection

Donald R. Lowe, Daniel E. Ibarra, Nadja Drabon and C. Page Chamberlain
American Journal of Science November 2020, 320 (9) 790-814; DOI: https://doi.org/10.2475/11.2020.02
Donald R. Lowe
*Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: drlowe@stanford.edu
Daniel E. Ibarra
*Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
**Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nadja Drabon
*Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Page Chamberlain
*Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Allwood A. C.,
    2. Walter M. R.,
    3. Kamber B. S.,
    4. Marshall C. P.,
    5. Burch I. W.
    , 2006, Stromatolite reef from the Early Archaean era of Australia: Nature, v. 441, n. 7094, p. 714–718, doi:https://doi.org/10.1038/nature04764
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  2. ↵
    1. Baross J. A.,
    2. Hoffman S. E.
    , 1985, Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life: Origins of Life, v. 15, p. 327–345, doi:https://doi.org/10.1007/BF01808177
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Becker R. H.,
    2. Clayton R. N.
    , 1976, Oxygen isotope study of a Precambrian banded iron formation, Hamersley Range, Western-Australia: Geochimica et Cosmochimica Acta, v. 40, n. 10, p. 1153–1165, doi:https://doi.org/10.1016/0016-7037(76)90151-4
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Iijima A.,
    2. Garrison R.
    1. Behl R. J.,
    2. Garrison R. E.
    , 1994, The origin of chert in the Monterey Formation of California (USA), in Iijima A., Garrison R., editors, Siliceous, phosphatic and glauconitic sediments of the Tertiary and Mesozoic. Utrecht, The Netherlands, Proceedings of the 29th International Geological Congress Part C, VSP, p. 101–132.
  5. ↵
    1. Blake R. E.,
    2. Chang S. E.,
    3. Lepland A.
    , 2010, Phosphate isotopic evidence for a temperate and biologically active Archaean ocean: Nature, v. 464, p. 1029–1032, doi:https://doi.org/10.1038/nature08952
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  6. ↵
    1. Braunstein D.,
    2. Lowe D. R.
    , 2001, Relationship between spring and geyser activity and the deposition and morphology of high temperature (>73°C) siliceous sinter, Yellowstone National Park, Wyoming, USA: Journal of Sedimentary Research, v. 71, n. 5, p. 747–763, doi:https://doi.org/10.1306/2DC40965-0E47-11D7-8643000102C1865D
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Byerly G. R.,
    2. Kröner A.,
    3. Lowe D. R.,
    4. Todt W.,
    5. Walsh M. W.
    , 1996, Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: Evidence from the upper Onverwacht and Fig Tree Groups: Precambrian Research, v. 78, n. 1–3, p. 125–138, doi:https://doi.org/10.1016/0301-9268(95)00073-9
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Byerly G. R.,
    2. Lowe D. R.,
    3. Wooden J. L.,
    4. Xie X.
    , 2002, An Archean impact layer from the Pilbara and Kaapvaal Craton: Science, v. 297, n. 5585, p. 1325–1327, doi:https://doi.org/10.1126/science.1073934
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Cammack J. N.,
    2. Spicuzza M. J.,
    3. Cavosie A. J.,
    4. Van Kranendonk M. J.,
    5. Hickman A. H.,
    6. Kozdon R.,
    7. Orland I. J.,
    8. Kitajima K.,
    9. Valley J. W.
    , 2018, SIMS microanalysis of the Strelley Pool Formation cherts and the implications for the secular-temporal oxygen-isotope trend of cherts: Precambrian Research, v. 304, p. 125–139, doi:https://doi.org/10.1016/j.precamres.2017.11.005
    OpenUrlCrossRef
  10. ↵
    1. Dann J. C.
    , 2000, The 3.5 Ga Komati Formation, Barberton greenstone belt, South Africa, Part I: New mas and magmatic architecture: South African Journal of Geology, v. 103, n. 1, p. 47–68, doi:https://doi.org/10.2113/103.1.47
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. de Wit M. J.,
    2. Hart R.,
    3. Martin A.,
    4. Abbott P.
    , 1982, Archean abiogenic and probable biogenic structures associated with mineralized hydrothermal vent systems and regional metasomatism, with implications for greenstone belt studies: Economic Geology, v. 77, n. 8, p. 1783–1802, doi:https://doi.org/10.2113/gsecongeo.77.8.1783
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Degens E. T,
    2. Epstein S.
    , 1964, Oxygen and carbon isotope ratios in coexisting calcites and dolomites from recent and ancient sediments: Geochimica et Cosmochimica Acta, v. 28, n. 1, p. 23–44, doi:https://doi.org/10.1016/0016-7037(64)90053-5
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Drabon N.,
    2. Lowe D. R.,
    3. Heubeck C. E.
    , 2019, Evolution of an Archean fan delta and its implications for the initiation of uplift and deformation in the Barberton greenstone belt, South Africa: Journal of Sedimentary Research, v. 89, n. 9, p. 849–874, doi:https://doi.org/10.2110/jsr.2019.46
    OpenUrlCrossRef
  14. ↵
    1. Drieberg S. L.,
    2. Hagemann S. G.,
    3. Huston D. L.,
    4. Landis G.,
    5. Ryan C. G.,
    6. Van Achterbergh E.,
    7. Vennemann T.
    , 2013, The interplay of evolved seawater and magmatic-hydrothermal fluids in the 3.24 Ga Panorama volcanic-hosted massive sulfide hydrothermal system, North Pilbara Craton, Western Australia: Economic Geology, v. 108, n. 1, p. 79–110, doi:https://doi.org/10.2113/econgeo.108.1.79
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Galili N.,
    2. Shemesh A.,
    3. Yam R.,
    4. Brailovsky I.,
    5. Sela-Adler M.,
    6. Schuster E. M.,
    7. Collom C.,
    8. Bekker A.,
    9. Planavsky N.,
    10. Macdonald F. A.,
    11. Préat A.,
    12. Rudmin M.,
    13. Trela W.,
    14. Sturesson U.,
    15. Heikoop J. M.,
    16. Aurell M.,
    17. Ramajo J.,
    18. Halevy I.
    , 2019, The geologic history of seawater oxygen isotopes from marine iron oxides: Science, v. 365, n. 6452, p. 469–473, doi:https://doi.org/10.1126/science.aaw9247
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Noffke N.,
    2. Chafetz H.
    1. Gamper A.,
    2. Heubeck C.,
    3. Demskec D.,
    4. Hoehse M.
    , 2012, Composition and microfacies of Archean microbial mats (Moodies Group, ca. 3.22 Ga, South Africa), in Noffke N., Chafetz H., editors, Microbial Mats in Siliciclastic Depositional Systems Through Time: Society of Sedimentary Geology Special Publication 101, p. 65–74, doi:https://doi.org/10.2110/sepmsp.101.065
    OpenUrlCrossRef
  17. ↵
    1. Hayles J. A.,
    2. Yeung L. Y.,
    3. Homann M.,
    4. Banerjee A.,
    5. Jiang H.,
    6. Shen B.,
    7. Lee C.T.
    , 2019, Three billion year secular evolution of the triple oxygen isotope composition of marine chert: Earth and Planetary Science Letters, doi:https://doi.org/10.31223/OSF.IO/N2P5Q
    OpenUrlCrossRef
  18. ↵
    1. Hessler A. M.,
    2. Lowe D. R.
    , 2006, Weathering and sediment generation in the Archean: An integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa: Precambrian Research, v. 151, n. 3–4, p. 185–210, doi:https://doi.org/10.1016/j.precamres.2006.08.008
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Heubeck C.
    , 2009, An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, ca. 3.2 Ga): Geology, v. 37, n. 10, p. 931–934, doi:https://doi.org/10.1130/G30101A.1
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Kröner A.,
    2. Hofmann A.
    1. Heubeck C.
    2019, The Moodies Group - A high-resolution archive of Archaean surface processes and basin-forming processes, in Kröner A., Hofmann A., editors, The Archaean Geology of the Kaapvaal Craton, southern Africa: Regional Geology Reviews, v. 133, p. 133–169, doi:https://doi.org/10.1007/978-3-319-78652-0_6
    OpenUrlCrossRef
  21. ↵
    1. Lowe D. R.,
    2. Byerly G. R.
    1. Heubeck C.,
    2. Lowe D. R.
    , 1999, Sedimentary petrography and provenance of the Archean Moodies Group, Barberton Greenstone Belt, in Lowe D. R., Byerly G. R., editors, Geologic evolution of the Barberton Greenstone Belt, South Africa: GSA Special Paper 329, p. 259–286, doi:https://doi.org/10.1130/0-8137-2329-9.259
    OpenUrlCrossRef
  22. ↵
    1. Heubeck C.,
    2. Engelhardt J.,
    3. Byerly G. R.,
    4. Zeh A.,
    5. Sell B.,
    6. Luber T.,
    7. Lowe D. R.
    , 2013, Timing of deposition and deformation of the Moodies Group (Barberton Greenstone belt, South Africa): Very-high-resolution of Archaean surface processes: Precambrian Research, v. 231, p. 236–262, doi:https://doi.org/10.1016/j.precamres.2013.03.021
    OpenUrlCrossRef
  23. ↵
    1. Hofmann A.
    , 2005, The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton Greenstone Belt: Implications for tectonic, hydrothermal and surface processes during mid-Archean times: Precambrian Research, v. 143, n. 1–4, p. 23–49, doi:https://doi.org/10.1016/j.precamres.2005.09.005
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Hofmann A.,
    2. Bolhar R.
    , 2007, Carbonaceous cherts in the Barberton Greenstone Belt and their significance for the study of early life in the Archean record: Astrobiology, v. 7, n. 2, p. 355–388, doi:https://doi.org/10.1089/ast.2005.0288
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  25. ↵
    1. Hofmann A.,
    2. Harris C.
    , 2008, Silica alteration zones in the Barberton greenstone belt: a window into subseafloor processes 3.5-3.3 Ga ago: Chemical Geology, v. 257, n. 1–4, p. 221–239, doi:https://doi.org/10.1016/j.chemgeo.2008.09.015
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Homann M.,
    2. Heubeck C.,
    3. Airo A.,
    4. Tice M. M.
    , 2015, Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa): Precambrian Research, v. 266, p. 47–64, doi:https://doi.org/10.1016/j.precamres.2015.04.018
    OpenUrlCrossRefGeoRef
  27. ↵
    1. Hren M. T.,
    2. Tice M. M.,
    3. Chamberlain C. P.
    , 2009, Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago: Nature, v. 462, p. 205–208, doi:https://doi.org/10.1038/nature08518
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  28. ↵
    1. Jaffrés J. B. D.,
    2. Shields G. A.,
    3. Wallmann K.
    , 2007, The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years: Earth-Science Reviews, v. 83, n. 1–2, p. 83–122, doi:https://doi.org/10.1016/j.earscirev.2007.04.002
    OpenUrlCrossRefGeoRef
  29. ↵
    1. Johnson B. W.,
    2. Wing B. A.
    , 2020, Limited Archaean continental emergence reflected in an early Archaean 18O-enriched ocean: Nature Geoscience, v. 13, p. 243–248, doi:https://doi.org/10.1038/s41561-020-0538-9
    OpenUrlCrossRef
  30. ↵
    1. Jones B.,
    2. Renaut R. W.
    , 1996, Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperatures above 90°C: Evidence from Kenya and New Zealand: Canadian Journal of Earth Sciences, v. 33, p. 72–83, doi:https://doi.org/10.1139/e96-008
    OpenUrlAbstract
  31. ↵
    1. Jones B.,
    2. Renaut R. W.,
    3. Rosen M. R.
    , 1997, Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand: Journal of Sedimentary Research, v. 67, n. 1, p. 88–104, doi:https://doi.org/10.1306/D42684FF-2B26-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Kasting J. F.,
    2. Howard M. T.,
    3. Wallmann K.,
    4. Veizer J.,
    5. Shields G.,
    6. Jaffres J. B. D.
    , 2006, Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater: Earth and Planetary Science Letters, v. 252, n. 1–2, p. 82–93, doi:https://doi.org/10.1016/j.epsl.2006.09.029
    OpenUrlCrossRef
  33. ↵
    1. Katrinak K. A.
    , ms, 1987, Stable isotope studies of cherts from the Archean Swaziland Supergroup of South Africa: Phoenix, Arizona, Arizona State University, MS thesis, 100 p.
  34. ↵
    1. Kerrich R.,
    2. Fryer B. J.
    , 1979, Archaean precious-metal hydrothermal systems, Dome Mine, Abitibi Greenstone Belt. II. REE and oxygen isotope relations: Canadian Journal of Earth Sciences, v. 16, p. 440–458, doi:https://doi.org/10.1139/e79-041
    OpenUrlAbstract
  35. ↵
    1. Knauth L. P.
    , ms, 1973, Oxygen and hydrogen isotope ratios in cherts and related rocks: Pasadena, California, California Institute of Technology, Ph. D. Thesis, 369 p.
  36. ↵
    1. Knauth L. P.
    1979, A model for the origin of chert in limestone: Geology, v. 7, n. 6, p. 274–277, doi:https://doi.org/10.1130/0091-7613(1979)7<274:AMFTOO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Clauer N.,
    2. Chaudhuri S.
    1. Knauth L. P.
    1992, Origin and diagenesis of cherts: An isotopic perspective in isotopic signatures and sedimentary records, in Clauer N., Chaudhuri S., editors, Lecture Notes in Earth Sciences #43: Switzerland, Springer-Verlag, p. 123–152.
  38. ↵
    1. Knauth L. P.,
    2. Epstein S.
    , 1976, Hydrogen and oxygen isotope ratios in nodular and bedded cherts: Geochimica et Cosmochimica Acta, v. 40, n. 9, p. 1095–1108, doi:https://doi.org/10.1016/0016-7037(76)90051-X
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Knauth L. P.,
    2. Lowe D.R.
    , 1978, Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa with implications for secular variations in the isotopic compositions of cherts: Earth and Planetary Science Letters, v. 41, n. 2, p. 209–222, doi:https://doi.org/10.1016/0012-821X(78)90011-0
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Knauth L. P.,
    2. Lowe D.R.
    2003, High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa: GSA Bulletin, v. 115, n. 5, p. 566–580, doi:https://doi.org/10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Kolodny Y.,
    2. Epstein S.
    , 1976, Stable isotope geochemistry of deep sea cherts: Geochimica et Cosmochimica Acta, v. 40, n. 10, p. 1195–1209, doi:https://doi.org/10.1016/0016-7037(76)90155-1
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Kröner A.,
    2. Byerly G. R.,
    3. Lowe D. R.
    , 1991, Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation: Earth and Planetary Science Letters, v. 103, n. 1–4, p. 41–54, doi:https://doi.org/10.1016/0012-821X(91)90148-B
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Kröner A.,
    2. Hegner E.,
    3. Wendt J. I.,
    4. Byerly G. R.
    , 1996, The oldest part of the Barberton granitoid-greenstone terrain, South Africa: Evidence for crust formation between 3.5 and 3.7 Ga: Precambrian Research, v. 78, n. 1–3, p. 105–124, doi:https://doi.org/10.1016/0301-9268(95)00072-0
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Van Kranendonk M. J.,
    2. Bennett V. C.,
    3. Hoffmann J. E.
    1. Ledevin M.
    , 2019, Archean cherts: Formation processes and paleoenvironments, in Van Kranendonk M. J., Bennett V. C., Hoffmann J. E., editors, Earth's Oldest Rocks: Amsterdam, Elsevier, p. 913–944, doi:https://doi.org/10.1016/B978-0-444-63901-1.00037-X
    OpenUrlCrossRef
  45. ↵
    1. Levin N. E.,
    2. Raub T. D.,
    3. Dauphas N.,
    4. Eiler J. M.
    , 2014, Triple oxygen isotope variations in sedimentary rocks: Geochimica et Cosmochimica Acta, v. 139, p. 173–189, doi:https://doi.org/10.1016/j.gca.2014.04.034
    OpenUrlCrossRefGeoRef
  46. ↵
    1. Liljestrand F. L.
    , ms, 2019, The application of silica Δ'17O and δ18O towards paleo-environmental reconstructions: Cambridge, Massachusetts, Harvard University, Ph. D. dissertation, 189 p.
  47. ↵
    1. Liljestrand F. L.,
    2. Knoll A. H.,
    3. Tosca N. J.,
    4. Cohen P. A.,
    5. Macdonald F. A.,
    6. Peng Y.,
    7. Johnston D. T.
    , 2020, The triple oxygen isotope composition of Precambrian chert: Earth and Planetary Science Letters, v. 537, doi:https://doi.org/10.1016/j.epsl.2020.116167
    OpenUrlCrossRef
  48. ↵
    1. Lowe D. R.
    , 1983, Restricted shallow-water sedimentation of early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia: Precambrian Research, v. 19, n. 3, p. 239–283, doi:https://doi.org/10.1016/0301-9268(83)90016-5
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Lowe D. R.,
    2. Byerly G. R.
    1. Lowe D. R.
    1999, Petrology and sedimentology of cherts and related silicified sedimentary rocks in the Swaziland Supergroup, in Lowe D. R., Byerly G. R., editors, Geologic evolution of the Barberton Greenstone Belt, South Africa: GSA Special Paper 329, p. 83–114, doi:https://doi.org/10.1130/0-8137-2329-9.83
    OpenUrlCrossRef
  50. ↵
    1. Lowe D. R.
    2013, Crustal fracturing and chert dike formation triggered by large meteorite impacts, ca. 3.260 Ga, Barberton greenstone belt, South Africa: GSA Bulletin, v. 125, p. 894–912, doi:https://doi.org/10.1130/B30782.1
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Lowe D. R.,
    2. Braunstein D.
    , 2003, Microstructure of high-temperature (>73°C) siliceous sinter deposited around hot springs and geysers, Yellowstone National Park: The role of biological and abiological processes in sedimentation: Canadian Journal of Earth Sciences, v. 40, n. 11, p. 1611–1642, doi:https://doi.org/10.1139/e03-066
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Lowe D. R.,
    2. Byerly G. R.
    1. Lowe D. R.,
    2. Byerly G. R.
    , 1999, Stratigraphy of the west-central part of the Barberton Greenstone Belt, South Africa, in Lowe D. R., Byerly G. R., editors, Geologic Evolution of the Barberton Greenstone Belt, South Africa: GSA Special Paper 329, p. 1–36, doi:https://doi.org/10.1130/0-8137-2329-9.1
    OpenUrlCrossRef
  53. ↵
    1. Lowe D. R.,
    2. Byerly G. R.
    , 2007, Ironstone bodies of the Barberton greenstone belt, South Africa: Products of a Cenozoic hydrological system, not Archean hydrothermal vents!: GSA Bulletin, v. 119, p. 65–87, doi:https://doi.org/10.1130/B25997.1
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Lowe D. R.,
    2. Byerly G. R.
    1. Lowe D. R.,
    2. Fisher-Worrell G.
    , 1999, Sedimentology, mineralogy, and implications of silicified evaporites in the Kromberg Formation, Barberton Greenstone Belt, South Africa, in Lowe D. R., Byerly G. R., editors, Geologic evolution of the Barberton Greenstone Belt, South Africa: GSA Special Paper 329, p. 167–188, doi:https://doi.org/10.1130/0-8137-2329-9.167
    OpenUrlCrossRef
  55. ↵
    1. Lowe D. R.,
    2. Knauth L. P.
    , 1977, Sedimentology of the Onverwacht Group (3.4 billion years), Transvaal, South Africa, and its bearing on the characteristics and evolution of the early earth: The Journal of Geology, v. 85, n. 6, p. 699–723, doi:https://doi.org/10.1086/628358
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Lowe D. R.,
    2. Byerly G.R.
    1. Lowe D. R.,
    2. Nocita B. W
    , 1999, Foreland basin sedimentation in the Mapepe Formation, southern-facies Fig Tree Group, in Lowe D. R., Byerly G.R., editors, Geologic Evolution of the Barberton Greenstone Belt, South Africa: GSA Special Paper 329, p. 233–258, doi:https://doi.org/10.1130/0-8137-2329-9.233
    OpenUrlCrossRef
  57. ↵
    1. Lowe D. R.,
    2. Tice M. M.
    , 2007, Tectonic controls on atmospheric, climatic, and biological evolution 3.5–2.4 Ga: Precambrian Research, v. 158, n. 3–4, p. 177–197, doi:https://doi.org/10.1016/j.precamres.2007.04.008
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. Reysenbach,
    2. Voytek M.,
    3. Mancinelli R.
    1. Lowe D. R.,
    2. Anderson K. S.,
    3. Braunstein D.
    , 2001, The zonation and structuring of siliceous sinter around hot springs, Yellowstone National Park, and the role of thermophilic bacteria in its deposition, in Reysenbach, Voytek M., Mancinelli R., editors, Thermophiles: Biodiversity, Ecology, and Evolution: New York, Kluwer Academic/Plenum, p. 143–166, doi:https://doi.org/10.1007/978-1-4615-1197-7_11
    OpenUrlCrossRef
  59. ↵
    1. Lowe D. R.,
    2. Byerly G. R.,
    3. Heubeck C.
    , 2012, Geologic Map of the West-Central Barberton Greenstone belt, South Africa: Geological Society of America Map and Chart Series MCS103.
  60. ↵
    1. Marin J.,
    2. Chaussidon M.,
    3. Robert F.
    , 2010, Microscale oxygen isotope variations in 1.9 Ga Gunflint cherts: Assessments of diagenesis effects and implications for oceanic paleotemperature reconstructions: Geochimica et Cosmochimica Acta, v. 74, n. 1, p. 116–130, doi:https://doi.org/10.1016/j.gca.2009.09.016
    OpenUrlCrossRefGeoRef
  61. ↵
    1. Marin-Carbonne J.,
    2. Chaussidon M.,
    3. Boiron M. -C.,
    4. Robert F.
    , 2011, A combined in situ oxygen, silicon isotopic and fluid inclusion study of a chert sample from Onverwacht Group (3.35 Ga, South Africa): New constraints on fluid circulation: Chemical Geology, v. 286, n. 3–4, p. 59–71, doi:https://doi.org/10.1016/j.chemgeo.2011.02.025
    OpenUrlCrossRefGeoRef
  62. ↵
    1. Marin-Carbonne J.,
    2. Chaussidon M.,
    3. Robert F.
    , 2012, Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions: Geochimica et Cosmochimica Acta, v. 92, p. 129–147, doi:https://doi.org/10.1016/j.gca.2012.05.040
    OpenUrlCrossRefGeoRef
  63. ↵
    1. McBride E. F.,
    2. Abdel-Wahab A.,
    3. El-Younsy A. R. M.
    , 1999, Origin of spheroidal chert nodules, Drunka Formation (Lower Eocene), Egypt: Sedimentology, v. 46, n. 4, p. 733–755, doi:https://doi.org/10.1046/j.1365-3091.1999.00253.x
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Mix H. T.,
    2. Ibarra D. E.,
    3. Mulch A.,
    4. Graham S. A.,
    5. Chamberlain C. P.
    , 2016, A hot and high Eocene Sierra Nevada: GSA Bulletin, v. 128, n. 3–4, p. 531–542, doi:https://doi.org/10.1130/B31294.1
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Muehlenbachs K.
    , 1998, The oxygen isotopic composition of the oceans, sediments and the seafloor: Chemical Geology, v. 145, n. 3–4, p. 263–273, doi:https://doi.org/10.1016/S0009-2541(97)00147-2
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    1. Muehlenbachs K.,
    2. Clayton R.N.
    , 1976, Oxygen isotope composition of the oceanic crust and its bearing on seawater: Journal of Geophysical Research, v. 81, n. 23, p. 4365–4369, doi:https://doi.org/10.1029/JB081i023p04365
    OpenUrlCrossRefGeoRef
  67. ↵
    1. Pack A.,
    2. Herwartz D.
    , 2014, The triple oxygen isotope composition of the Earth mantle and understanding Δ17O variations in terrestrial rocks and minerals: Earth and Planetary Science Letters, v. 390, p. 138–145, doi:https://doi.org/10.1016/j.epsl.2014.01.017
    OpenUrlCrossRefGeoRef
  68. ↵
    1. Paris I.,
    2. Stanistreet I. G.,
    3. Hughes M. J.
    , 1985, Cherts of the Barberton greenstone belt as products of submarine exhalative activity: The Journal of Geology, v. 93, n. 2, p. 111–129, doi:https://doi.org/10.1086/628935
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Perry E. C. Jr..
    , 1967, The oxygen isotope chemistry of ancient cherts: Earth and Planetary Science Letters, v. 3, p. 62–66, doi:https://doi.org/10.1016/0012-821X(67)90012-X
    OpenUrlCrossRefGeoRefWeb of Science
    1. Perry E. C. Jr..,
    2. Tan F. C.
    , 1972, Significance of oxygen and carbon isotopic variations in early Precambrian cherts and carbonate rocks of South Africa: GSA Bulletin, v. 83, n. 3, p. 647–664, doi:https://doi.org/10.1130/0016-7606(1972)83[647:SOOACI]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Perry E. C. Jr..,
    2. Ahmad S. N.,
    3. Swulius T. M.
    , 1978, The oxygen isotope composition of 3,800 m.y. old metamorphosed chert and iron formation from Isukasia, West Greenland: The Journal of Geology, v. 86, n. 2, p. 223–239, doi:https://doi.org/10.1086/649676
    OpenUrlCrossRefWeb of Science
  71. ↵
    1. Peters S. T. M.,
    2. Szilas K.,
    3. Sengupta S.,
    4. Kirkland C. L.,
    5. Garbe-Schönberg D.,
    6. Pack A.
    , 2020, > 2.7 Ga metamorphic peridotites from southeast Greenland record the oxygen isotope composition of Archean seawater: Earth and Planetary Science Letters, v. 544, 116331, p. 13, doi:https://doi.org/10.1016/j.epsl.2020.116331
    OpenUrlCrossRef
  72. ↵
    1. Sengupta S.,
    2. Pack A.
    , 2018, Triple oxygen isotope mass balance for the Earth's oceans with application to Archean cherts: Chemical Geology, v. 495, p. 18–26, doi:https://doi.org/10.1016/j.chemgeo.2018.07.012
    OpenUrlCrossRef
  73. ↵
    1. Sengupta S.,
    2. Peters S. T. M.,
    3. Reitner J.,
    4. Duda J.-P.,
    5. Pack A.
    , 2020, Triple oxygen isotopes of cherts through time: Chemical Geology, v. 554, 119789, doi:https://doi.org/10.1016/j.chemgeo.2020.119789
    OpenUrlCrossRef
  74. ↵
    1. Sharp Z. D.
    , 1990, A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides: Geochimica et Cosmochimica Acta, v. 54, n. 5, p. 1353–1357, doi:https://doi.org/10.1016/0016-7037(90)90160-M
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Sharp Z. D.,
    2. Gibbons J. A.,
    3. Maltsev O.,
    4. Atudorei V.,
    5. Pack A.,
    6. Sengupta S.,
    7. Shock E. L.,
    8. Knauth L. P.
    , 2016, A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples: Geochimica et Cosmochimica Acta, v. 186, p. 105–119, doi:https://doi.org/10.1016/j.gca.2016.04.047
    OpenUrlCrossRef
  76. ↵
    1. Sharp Z. D.,
    2. Wostbrock J. A. G.,
    3. Pack A.
    , 2018, Mass-dependent triple oxygen isotope variations in terrestrial materials: Geochemical Perspective Letters, v. 7, p. 27–31, doi:https://doi.org/10.7185/geochemlet.1815
    OpenUrlCrossRef
  77. ↵
    1. Sleep N. H.,
    2. Hessler A. M.
    , 2006, Weathering of quartz as an Archean climatic indicator: Earth and Planetary Science Letters, v. 241, n. 3–4, p. 594–602, doi:https://doi.org/10.1016/j.epsl.2005.11.020
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Sleep N. H.,
    2. Zahnle K.
    , 2001, Carbon dioxide cycling and implications for climate on ancient Earth: Journal of Geophysical Research-Planets, v. 106, n. E1, p. 1373–1399, doi:https://doi.org/10.1029/2000JE001247
    OpenUrlCrossRef
  79. ↵
    1. Snyder W. S.
    , 1978, Manganese deposited by submarine hot springs in chert-greenstone complexes, western United States: Geology, v. 6, n. 12, p. 741–745, doi:https://doi.org/10.1130/0091-7613(1978)6<741:MDBSHS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Stefurak E. J. T.,
    2. Lowe D. R.,
    3. Zentner D.,
    4. Fischer W. W.
    , 2015a, Sedimentology and geochemistry of Archean siica granules: GSA Bulletin, v. 127, n. 7–8, p. 1090–1107, doi:https://doi.org/10.1130/B31181.1
    OpenUrlAbstract/FREE Full Text
  81. ↵
    1. Stefurak E. J. T.,
    2. Fischer W. W.,
    3. Lowe D. R.
    , 2015b, Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater: Geochemica et Cosmochimica Acta, v. 150, p. 26–52, doi:https://doi.org/10.1016/j.gca.2014.11.014
    OpenUrlCrossRef
  82. ↵
    1. Tartese R.,
    2. Chaussidon A.,
    3. Gurenko A.,
    4. Delarue F.,
    5. Robert F.
    , 2017, Warm Archean oceans reconstructed from oxygen isotope composition of early-life remnants: Geochemical Perspective Letters, v. 3, n. 1, p. 55–65, doi:https://doi.org/10.7185/geochemlet.1706
    OpenUrlCrossRef
  83. ↵
    1. Tice M. M.
    , ms, 2005, Life and evolution in the early Archean - New data from the 3416 Ma Buck Reef Chert, Barberton Greenstone Belt, South Africa: Stanford, California, Stanford University, Ph. D. Dissertation, 122 p.
  84. ↵
    1. Tice M. M.,
    2. Lowe D. R.
    , 2004, Photosynthetic microbial mats in the 3,416-Myr-old ocean: Nature, v. 431, p. 549–552, doi:https://doi.org/10.1038/nature02888
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  85. ↵
    1. Tice M. M.,
    2. Lowe D. R.
    2006, The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert: Earth Science Reviews, v. 76, n. 3–4, p. 259–300, doi:https://doi.org/10.1016/j.earscirev.2006.03.003
    OpenUrlCrossRef
  86. ↵
    1. Tice M. M.,
    2. Bostick B. C.,
    3. Lowe D. R.
    , 2004, Thermal history of the 3.5–3.2 Ga Onverwacht and Fig Tree Groups, Barberton Greenstone Belt, South Africa: Geology, v. 32, n. 1, p. 37–40, doi:https://doi.org/10.1130/G19915.1
    OpenUrlAbstract/FREE Full Text
    1. Valley J. W.,
    2. Kitchen N.,
    3. Kohn M. J.,
    4. Niendorf C. R.,
    5. Spicuzza M. J.
    , 1995, UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating: Geochimica et Cosmochimica Acta, v. 59, n. 24, p. 5223–5231, doi:https://doi.org/10.1016/0016-7037(95)00386-X
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Yanchilina A. G.,
    2. Yam R.,
    3. Kolodny Y.,
    4. Shemesh A.
    , 2019, From diatom opal-A δ18O to chert δ18O in deep sea sediments: Geochemica et Cosmochemica Acta, v. 268, p. 368–382, doi:https://doi.org/10.1016/j.gca.2019.10.018
    OpenUrlCrossRef
  88. ↵
    1. Verard C.,
    2. Veizer J.
    , 2019, On plate tectonics and ocean temperatures: Geology, v. 47, n. 9, p. 881–885, doi:https://doi.org/10.1130/G46376.1
    OpenUrlCrossRef
  89. ↵
    1. Viljoen M. J.,
    2. Viljoen R. P.
    , 1969, The geological and geochemical significance of the upper formations of the Onverwacht Group: Geological Society of South Africa Special Publication 2, p. 55–85.
    OpenUrl
  90. ↵
    1. Wallman K.
    , 2001, The geological water cycle and the evolution of δ18O values: Geochimica et Cosmochimica Acta, v. 65, n. 15, p. 2469–2485, doi:https://doi.org/10.1016/S0016-7037(01)00603-2
    OpenUrlCrossRefGeoRefWeb of Science
  91. ↵
    1. Westall F.,
    2. de Wit M. J.,
    3. Dann J.,
    4. van der Gaast S.,
    5. de Ronde C. E. J.,
    6. Gerneke D.
    , 2001, Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton Greenstone Belt, South Africa: Precambrian Research, v. 106, n. 1–2, p. 93–116, doi:https://doi.org/10.1016/S0301-9268(00)00127-3
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    1. Westall F.,
    2. Campbell K. A.,
    3. Bréhéret J. G.,
    4. Foucher F.,
    5. Gautret P.,
    6. Hubert A.,
    7. Sorieul S.,
    8. Grassineau N.,
    9. Guido D. M.
    , 2015, Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context: Geology, v. 43, n. 7, p. 615–618, doi:https://doi.org/10.1130/G36646.1
    OpenUrlAbstract/FREE Full Text
  93. ↵
    1. Williams L. A.,
    2. Crerar D. A.
    , 1985, Silica diagenesis, II. General mechanisms: Journal of Sedimentary Petrology, v. 55, n. 3, p. 312–321, doi:https://doi.org/10.1306/212F86B1-2B24-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Wostbrock J. A. G.,
    2. Sharp Z. D.,
    3. Sanchez-Yanez C.,
    4. Reich M.,
    5. van den Heuvel D. B.,
    6. Benning L. G.
    , 2018, Calibration and application of silica-water triple oxygen isotope thermometry to geothermal systems in Iceland and Chile: Geochimica et Cosmochimica Acta, v. 234, p. 84–97, doi:https://doi.org/10.1016/j.gca.2018.05.007
    OpenUrlCrossRef
  95. ↵
    1. Wostbrock J. A. G.,
    2. Cano E. J.,
    3. Sharp Z. D.
    , 2020, An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2: Chemical Geology, v. 533, article number 119432, doi:https://doi.org/10.1016/j.chemgeo.2019.119432
    OpenUrlCrossRef
  96. ↵
    1. Xie X.,
    2. Byerly G. R.,
    3. Ferrell R. E. Jr..
    , 1997, IIb trioctahedral chlorite from the Barberton Greenstone Belt: Crystal structure and rock composition constraints with implications to geothermometry: Contributions to Mineralogy and Petrology, v. 126, p. 275–291, doi:https://doi.org/10.1007/s004100050250
    OpenUrlCrossRefGeoRefWeb of Science
  97. ↵
    1. Yapp C.
    , 2001, Rusty relics of earth history: Iron (III) oxides, isotopes, and surficial environments: Annual Review of Earth and Planetary Sciences, v. 29, p. 165–199, doi:https://doi.org/10.1146/annurev.earth.29.1.165
    OpenUrlCrossRefWeb of Science
  98. ↵
    1. Yeung L. Y.,
    2. Hayles J. A.,
    3. Hu H.,
    4. Ash J. L.,
    5. Sun T.
    , 2018, Scale distortion from pressure baselines as a source of inaccuracy in triple-isotope measurements: Rapid Communications in Mass Spectrometry, v. 32, n. 20, p. 1811–1821, doi:https://doi.org/10.1002/rcm.8247
    OpenUrlCrossRef
  99. ↵
    1. Zakharov D. O.,
    2. Bindeman I. N.
    , 2019, Triple oxygen and hydrogen isotopic study of hydrothermally altered rocks from the 2.43–2.41 Ga Vetreny belt, Russia: An insight into the early Paleoproterozoic seawater: Geochimica et Cosmochimica Acta, v. 248, p. 185–209, doi:https://doi.org/10.1016/j.gca.2019.01.014
    OpenUrlCrossRef
  100. ↵
    1. Zakharov D. O.,
    2. Bindeman I. N.,
    3. Tanaka R.,
    4. Friðleifsson G. Ó.,
    5. Reed M. H.,
    6. Hampton R. L.
    , 2019, Triple oxygen isotope systematics as a tracer of fluids in the crust: A study from modern geothermal systems of Iceland: Chemical Geology, v. 530, 119312, doi:https://doi.org/10.1016/j.chemgeo.2019.119312
    OpenUrlCrossRef
Previous
Back to top

In this issue

American Journal of Science: 320 (9)
American Journal of Science
Vol. 320, Issue 9
1 Nov 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Constraints on surface temperature 3.4 billion years ago based on triple oxygen isotopes of cherts from the Barberton Greenstone Belt, South Africa, and the problem of sample selection
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
9 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Constraints on surface temperature 3.4 billion years ago based on triple oxygen isotopes of cherts from the Barberton Greenstone Belt, South Africa, and the problem of sample selection
Donald R. Lowe, Daniel E. Ibarra, Nadja Drabon, C. Page Chamberlain
American Journal of Science Nov 2020, 320 (9) 790-814; DOI: 10.2475/11.2020.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Constraints on surface temperature 3.4 billion years ago based on triple oxygen isotopes of cherts from the Barberton Greenstone Belt, South Africa, and the problem of sample selection
Donald R. Lowe, Daniel E. Ibarra, Nadja Drabon, C. Page Chamberlain
American Journal of Science Nov 2020, 320 (9) 790-814; DOI: 10.2475/11.2020.02
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • ABSTRACT
    • INTRODUCTION
    • GEOLOGIC SETTING OF SAMPLES
    • METHODOLOGY
    • RESULTS
    • DISCUSSION
    • SELECTING ARCHEAN CHERTS FOR PALEOTEMPERATURE ESTIMATES
    • CONCLUSIONS
    • AUTHOR CONTRIBUTIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Reconstruction of the original extent of the Tertiary pre-volcanic gravels in the northern Sierra Nevada (CA): Implications for the range's Paleotopography
  • Zn2+-Pb2+-doped calcite shrub fabrics: Abiotic morphogenesis of travertine-like dripstone encrustation at the Jersey Zinc Mine, southeastern British Columbia
  • Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
Show more Articles

Similar Articles

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2021 American Journal of Science

Powered by HighWire