Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria

Thomas A. Griffiths, Gerlinde Habler and Rainer Abart
American Journal of Science November 2020, 320 (9) 753-789; DOI: https://doi.org/10.2475/11.2020.01
Thomas A. Griffiths
Department of Lithospheric Research, Center for Earth Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: th.griffiths@univie.ac.at
Gerlinde Habler
Department of Lithospheric Research, Center for Earth Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rainer Abart
Department of Lithospheric Research, Center for Earth Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Abràmoff M. D.,
    2. Magalhães P. J.,
    3. Ram S. J.
    , 2004, Image processing with imageJ: Biophotonics International, v. 11, n. 7, p. 36–41.
    OpenUrl
  2. ↵
    1. Ackerson M. R.,
    2. Watson E. B.,
    3. Tailby N. D.,
    4. Spear F. S.
    , 2017, Experimental investigation into the substitution mechanisms and solubility of Ti in garnet: American Mineralogist, v. 102, n. 1, p. 158–172, doi:https://doi.org/10.2138/am-2017-5632
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Ageeva O.,
    2. Habler G.,
    3. Topa D.,
    4. Waitz T.,
    5. Li C.,
    6. Pertsev A.,
    7. Griffiths T.,
    8. Zhilicheva O.,
    9. Abart R.
    , 2016, Plagioclase hosted Fe-Ti-oxide micro-inclusions in an oceanic gabbro-plagiogranite association from the Mid Atlantic ridge at 13°34' N: American Journal of Science, v. 316, n. 2, p. 85–109, doi:https://doi.org/10.2475/02.2016.01
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Ageeva O.,
    2. Bian G.,
    3. Habler G.,
    4. Pertsev A.,
    5. Abart R.
    , 2020, Crystallographic and shape orientations of magnetite micro-inclusions in plagioclase: Contributions to Mineralogy and Petrology, v. 175, p. 95–110, doi:https://doi.org/10.1007/s00410-020-01735-8
    OpenUrlCrossRef
  5. ↵
    1. Ague J. J.,
    2. Eckert J. O. Jr..
    , 2012, Precipitation of rutile and ilmenite needles in garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, U.S.A.: American Mineralogist, v. 97, n. 5–6, p. 840–855, doi:https://doi.org/10.2138/am.2012.4015
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Aitchison J.
    , 1986, The statistical analysis of composition data: New York, Methuen, 416 p.
  7. ↵
    1. Armstrong J. T.
    , 1995, CITZAF: A package of correction programs for the quantitative electron microbeam x-ray analysis of thick polished materials, thin films, and particles: Microbeam Analysis, v. 4, p. 177–200.
    OpenUrlWeb of Science
  8. ↵
    1. Axler J. A.,
    2. Ague J. J.
    , 2015, Exsolution of rutile or apatite precipitates surrounding ruptured inclusions in garnet from UHT and UHP rocks: Journal of Metamorphic Geology, v. 33, n. 8, p. 829–848, doi:https://doi.org/10.1111/jmg.12145
    OpenUrlCrossRefGeoRef
  9. ↵
    1. Bachmann F.,
    2. Hielscher R.,
    3. Schaeben H.
    , 2010, Texture analysis with MTEX- Free and open source software toolbox: Solid State Phenomena, v. 160, p. 63–68, doi:https://doi.org/10.4028/www.scientific.net/SSP.160.63
    OpenUrlCrossRef
  10. ↵
    1. Bestmann M.,
    2. Habler G.,
    3. Heidelbach F.,
    4. Thöni M.
    , 2008, Dynamic recrystallization of garnet and related diffusion processes: Journal of Structural Geology, v. 30, p. 777–790, doi:https://doi.org/10.1016/j.jsg.2008.02.007
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Boudeulle M.
    , 1994, Disproportionation in mineral solid solutions: Symmetry constraints on precipitate orientation and morphology. Implications for the study of oriented intergrowths: Journal of Applied Crystallography, v. 27, p. 567–573, doi:https://doi.org/10.1107/S0021889894000750
    OpenUrlCrossRefWeb of Science
  12. ↵
    1. Brearley A. J.,
    2. Champness P. E.
    , 1986, Magnetite exsolution in almandine garnet: Mineralogical Magazine, v. 50, n. 358, p. 621–633, doi:https://doi.org/10.1180/minmag.1986.050.358.07
    OpenUrlCrossRefWeb of Science
  13. ↵
    1. Breiter K.,
    2. Novák M.,
    3. Koller F.,
    4. Cempírek J.
    , 2005, Phosphorus–an omnipresent minor element in garnet of diverse textural types from leucocratic granitic rocks: Mineralogy and Petrology, v. 85, p. 205–221, doi:https://doi.org/10.1007/s00710-005-0086-4
    OpenUrlCrossRefWeb of Science
  14. ↵
    1. Burton K. W.
    , 1986, Garnet-quartz intergrowths in graphitic pelites: The role of the fluid phase: Mineralogical Magazine, v. 50, n. 358, p. 611–620, doi:https://doi.org/10.1180/minmag.1986.050.358.06
    OpenUrlCrossRefWeb of Science
  15. ↵
    1. Cerny P.,
    2. Chapman R.,
    3. Masau M.
    , 2000, Two-stage exsolution of a titanian (Sc, Fe3+)(Nb, Ta)O4 Phase in niobian rutile from southern Norway: Canadian Mineralogist, v. 38, p. 907–913, doi:https://doi.org/10.2113/gscanmin.38.4.907
    OpenUrlCrossRef
  16. ↵
    1. Černý P.,
    2. London D.,
    3. Novák M.
    , 2012, Granitic Pegmatites as Reflections of Their Sources: Elements, v. 8, n. 4, p. 289–294, doi:https://doi.org/10.2113/gselements.8.4.289
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Chen J.,
    2. Shen P.
    , 1997, On the rotation of nonepitaxy Ni1−xO particles within zirconia grain: Scripta Materialia, v. 37, n. 9, p. 1287–1294, doi:https://doi.org/10.1016/S1359-6462(97)00261-3
    OpenUrlCrossRefWeb of Science
  18. ↵
    1. Colombo F.,
    2. Sfragulla J.,
    3. del Tánago J. G.
    , 2012, The Garnet–Phosphate Buffer in Peraluminous Granitic Magmas: A Case Study from Pegmatites in the Pocho District, Córdoba, Argentina: The Canadian Mineralogist, v. 50, n. 6, p. 1555–1571, doi:https://doi.org/10.3749/canmin.50.6.1555
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Drouin D.,
    2. Couture A. R.,
    3. Joly D.,
    4. Tastet X.,
    5. Aimez V.,
    6. Gauvin R.
    , 2007, CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users: Scanning, v. 29, n. 3, p. 92–101, doi:https://doi.org/10.1002/sca.20000
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Force E. R.,
    2. Richards R. P.,
    3. Scott K. M.,
    4. Valentine P. C.,
    5. Fishman N. S.
    , 1996, Mineral intergrowths replaced by “elbow-twinned” rutile in altered rocks: The Canadian Mineralogist, v. 34, n. 3, p. 605–614.
    OpenUrlFREE Full Text
  21. ↵
    1. Glassley W. E.,
    2. Korstgård J. A.,
    3. Sorensen K.,
    4. Platou S. W.
    , 2014, A new UHP metamorphic complex in the ∼1.8 Ga Nagssugtoqidian Orogen of west Greenland: American Mineralogist, v. 99, n. 7, p. 1315–1334, doi:https://doi.org/10.2138/am.2014.4726
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Green H. W. II.,
    2. Dobrzhinetskaya L.,
    3. Riggs E. M.,
    4. Jin Z.-M.
    , 1997, Alpe Arami: A peridotite massif from the mantle transition zone?: Tectonophysics, v. 279, n. 1–4, p. 1–21, doi:https://doi.org/10.1016/S0040-1951(97)00127-3
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    1. Gregurek D.,
    2. Abart R.,
    3. Hoinkes G.
    , 1997, Contrasting Eoalpine P-T evolutions in the southern Koralpe, Eastern Alps: Mineralogy and Petrology, v. 60, p. 61–80, doi:https://doi.org/10.1007/BF01163135
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Griffiths T. A.,
    2. Habler G.,
    3. Rhede D.,
    4. Wirth R.,
    5. Ram F.,
    6. Abart R.
    , 2014, Localization of submicron inclusion re-equilibration at healed fractures in host garnet: Contributions to Mineralogy and Petrology, v. 168, article number 1077, doi:https://doi.org/10.1007/s00410-014-1077-4
    OpenUrlCrossRef
  25. ↵
    1. Griffiths T. A.,
    2. Habler G.,
    3. Abart R.
    , 2016, Crystallographic orientation relationships in host–inclusion systems: New insights from large EBSD data sets: American Mineralogist, v. 101, n. 3, p. 690–705, doi:https://doi.org/10.2138/am-2016-5442
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Heinrich R.,
    2. Abart A.
    1. Habler G.,
    2. Griffiths T. A.
    , 2017, Crystallographic orientation relationships, in Heinrich R., Abart A., editors, Mineral reaction kinetics: Microstructures, textures, chemical and isotopic signatures: EMU Notes in Mineralogy, v. 16, chapter 15, p. 541–585, doi:https://doi.org/10.1180/EMU-notes.16.15
    OpenUrlCrossRef
  27. ↵
    1. Habler G.,
    2. Thöni M.
    , 2001, Preservation of Permo–Triassic low-pressure assemblages in the Cretaceous high-pressure metamorphic Saualpe crystalline basement (Eastern Alps, Austria): Journal of Metamorphic Geology, v. 19, n. 6, p. 679–697, doi:https://doi.org/10.1046/j.0263-4929.2001.00338.x
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Habler G.,
    2. Thöni M.,
    3. Miller C.
    , 2007, Major and trace element chemistry and Sm-Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism: Chemical Geology, v. 241, n. 1–2, p. 4–22, doi:https://doi.org/10.1016/j.chemgeo.2007.01.026
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Harlov D. E.,
    2. Förster H.-J.,
    3. Nijland T. G.
    , 2002, Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite: American Mineralogist, v. 87, n. 2–3, p. 245–261, doi:https://doi.org/10.2138/am-2002-2-306
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Hatert F.,
    2. Baijot M.,
    3. Philippo S.,
    4. Wouters J.
    , 2010, Qingheiite-(Fe2+), Na2Fe2+MgAl(PO 4)3, a new phosphate mineral from the Sebastião Cristino pegmatite, Minas Gerais, Brazil: European Journal of Mineralogy, v. 22, p. 459–467, doi:https://doi.org/10.1127/0935-1221/2010/0022-2030
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Hwang S. L.,
    2. Shen P.,
    3. Chu H. T.,
    4. Yui T. F.,
    5. Iizuka Y.
    , 2013, A TEM study of the oriented orthopyroxene and forsterite inclusions in garnet from Otrøy garnet peridotite, WGR, Norway: New insights on crystallographic characteristics and growth energetics of exsolved pyroxene in relict majoritic garnet: Journal of Metamorphic Geology, v. 31, n. 2, p. 113–130, doi:https://doi.org/10.1111/jmg.12002
    OpenUrlCrossRefGeoRef
  32. ↵
    1. Hwang S.-L.,
    2. Shen P.,
    3. Chu H.-T.,
    4. Yui T.-F.,
    5. Iizuka Y.
    , 2015, Origin of rutile needles in star garnet and implications for interpretation of inclusion textures in ultrahigh-pressure metamorphic rocks: Journal of Metamorphic Geology, v. 33, n. 3, p. 249–272, doi:https://doi.org/10.1111/jmg.12119
    OpenUrlCrossRefGeoRef
  33. ↵
    1. Hwang S.-L.,
    2. Shen P.,
    3. Chu H.-T.,
    4. Yui T.-F.
    , 2016, On the forbidden and the optimum crystallographic variant of rutile in garnet: Journal of Applied Crystallography, v. 49, p. 1922–1940, doi:https://doi.org/10.1107/S1600576716014151
    OpenUrlCrossRef
  34. ↵
    1. Hwang S.-L.,
    2. Shen P.,
    3. Chu H.-T.,
    4. Yui T.-F.,
    5. Iizuka Y.,
    6. Schertl H.-P.
    , 2019, Rutile inclusions in garnet from a dissolution-reprecipitation mechanism: Journal of Metamorphic Geology, v. 37, n. 8, p. 1079–1098, doi:https://doi.org/10.1111/jmg.12502
    OpenUrlCrossRef
  35. ↵
    1. Keller D. S.,
    2. Ague J. J.
    , 2019, Crystallographic and textural evidence for precipitation of rutile, ilmenite, corundum, and apatite lamellae from garnet: American Mineralogist, v. 104, n. 7, p. 980–995, doi:https://doi.org/10.2138/am-2019-6849
    OpenUrlCrossRef
  36. ↵
    1. Keller D. S.,
    2. Ague J. J.
    2020, Quartz, mica, and amphibole exsolution from majoritic garnet reveals ultra-deep sediment subduction, Appalachian orogen: Science Advances, v. 6, p. eaay5178, doi:https://doi.org/10.1126/sciadv.aay5178
    OpenUrlFREE Full Text
  37. ↵
    1. Klapper H.
    , 2000, Generation and propagation of dislocations during crystal growth: Materials Chemistry and Physics, v. 66, n. 2–3, p. 101–109, doi:https://doi.org/10.1016/S0254-0584(00)00342-4
    OpenUrlCrossRef
  38. ↵
    1. Knoll T.,
    2. Schuster R.,
    3. Huet B.,
    4. Mali H.,
    5. Onuk P.,
    6. Horschinegg M.,
    7. Ertl A.,
    8. Giester G.
    , 2018, Spodumene pegmatites and related leucogranites from the AustroAlpine Unit (Eastern Alps, Central Europe): Field relations, petrography, geochemistry, and geochronology: The Canadian Mineralogist, v. 56, n. 4, p. 489–528, doi:https://doi.org/10.3749/canmin.1700092
    OpenUrlCrossRef
  39. ↵
    1. Kouchi A.,
    2. Sugawara Y.,
    3. Kashima K.,
    4. Sunagawa I.
    , 1983, Laboratory growth of sector zoned clinopyroxenes in the system CaMgSi2O6-CaTiAl2O6: Contributions to Mineralogy and Petrology, v. 83, p. 177–184, doi:https://doi.org/10.1007/BF00373091
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. London D.
    , 2014, A petrologic assessment of internal zonation in granitic pegmatites: Lithos, v. 184–187, p. 74–104, doi:https://doi.org/10.1016/j.lithos.2013.10.025
    OpenUrlCrossRef
  41. ↵
    1. London D.,
    2. Wolf M. B.,
    3. Morgan G. B.,
    4. Garrido M. G.
    , 1999, Experimental Silicate–Phosphate Equilibria in Peraluminous Granitic Magmas, with a Case Study of the Alburquerque Batholith at Tres Arroyos, Badajoz, Spain: Journal of Petrology, v. 40, p. 215–240.
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Meagher E. P.
    , 1982, Silicate garnets: Reviews in Mineralogy, v. 5, p. 25–66, doi:https://doi.org/10.1515/9781501508622-007
    OpenUrlCrossRef
  43. ↵
    1. Miller C.,
    2. Thöni M.
    , 1997, Eo-Alpine eclogitisation of Permian MORB-type gabbros in the Koralpe (Eastern Alps, Austria): New geochronological, geochemical and petrological data: Chemical Geology, v. 137, n. 3–4, p. 283–310, doi:https://doi.org/10.1016/S0009-2541(96)00165-9
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Miller C.,
    2. Thöni M.,
    3. Konzett J.,
    4. Kurz W.,
    5. Schuster R.
    , 2005, Eclogites from the Koralpe and Saualpe type-localities, eastern Alps, Austria: Mitteilungen der Österreichischen Mineralogischen Gesellschaft, p. 227–263,
  45. ↵
    1. Miller C.,
    2. Zanetti A.,
    3. Thöni M.,
    4. Konzett J.
    , 2007, Eclogitisation of gabbroic rocks: Redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone (Eastern Alps): Chemical Geology, v. 239, n. 1–2, p. 96–123, doi:https://doi.org/10.1016/j.chemgeo.2007.01.001
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Mizuta T.,
    2. Scott S. D.
    , 1997, Kinetics of iron depletion near pyrrhotite and chalcopyrite inclusions in sphalerite; the sphalerite speedometer: Economic Geology, v. 92, n. 7–8, p. 772–783, doi:https://doi.org/10.2113/gsecongeo.92.7-8.772
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Moore P. B.,
    2. lto J.
    , 1979, Alluaudites, wyllieites, arrojadites: Crystal chemistry and nomenclature: Mineralogical Magazine, v. 43, n. 326, p. 227–235, doi:https://doi.org/10.1180/minmag.1979.043.326.04
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Mposkos E. D.,
    2. Kostopoulos D. K.
    , 2001, Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: A new ultrahigh-pressure metamorphic province established: Earth and Planetary Science Letters, v. 192, n. 4, p. 497–506, doi:https://doi.org/10.1016/S0012-821X(01)00478-2
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Palke A. C.,
    2. Breeding C. M.
    , 2017, The origin of needle-like rutile inclusions in natural gem corundum: A combined EPMA, LA-ICP-MS, and nanoSIMS investigation: American Mineralogist, v. 102, n. 7, p. 1451–1461, doi:https://doi.org/10.2138/am-2017-5965
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Perchuk A. L.
    , 2008, Unusual inclusions in garnet from the diamond-bearing gneiss of the Erzgebirge, Germany: Geochemistry International, v. 46, p. 296–303, doi:https://doi.org/10.1134/S0016702908030063
    OpenUrlCrossRefGeoRef
  51. ↵
    1. Popov V. A.,
    2. Popova V. I.,
    3. Polyakov V. O.
    , 2007, Regular intergrowths of minerals in pegmatites from the Il'meny mountains: Geology of Ore Deposits, v. 49, p. 573–582, doi:https://doi.org/10.1134/S1075701507070136
    OpenUrlCrossRef
  52. ↵
    1. Proyer A.,
    2. Krenn K.,
    3. Hoinkes G.
    , 2009, Oriented precipitates of quartz and amphibole in clinopyroxene of metabasites from the Greek Rhodope: A product of open system precipitation during eclogite-granulite-amphibolite transition: Journal of Metamorphic Geology, v. 27, n. 9, p. 639–654, doi:https://doi.org/10.1111/j.1525-1314.2009.00844.x
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Proyer A.,
    2. Habler G.,
    3. Abart R.,
    4. Wirth R.,
    5. Krenn K.,
    6. Hoinkes G.
    , 2013, TiO2 exsolution from garnet by open-system precipitation: Evidence from crystallographic and shape preferred orientation of rutile inclusions: Contributions to Mineralogy and Petrology, v. 166, p. 211–234, doi:https://doi.org/10.1007/s00410-013-0872-7
    OpenUrlCrossRefGeoRefWeb of Science
  54. ↵
    1. Rohrer G. S.
    , 2011, Grain boundary energy anisotropy: A review: Journal of Materials Science, v. 46, p. 5881–5895, doi:https://doi.org/10.1007/s10853-011-5677-3
    OpenUrlCrossRef
  55. ↵
    1. Rollinson H. R.
    , 1992, Another look at the constant sum problem in geochemistry: Mineralogical Magazine, v. 56, n. 385, p. 469–475, doi:https://doi.org/10.1180/minmag.1992.056.385.03
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Ruiz-Cruz M. D.,
    2. Sanz de Galdeano C.
    , 2013, Coesite and diamond inclusions, exsolution microstructures and chemical patterns in ultrahigh pressure garnet from Ceuta (Northern Rif, Spain): Lithos, v. 177, p. 184–206, doi:https://doi.org/10.1016/j.lithos.2013.06.004
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Schiavi F.,
    2. Walte N.,
    3. Keppler H.
    , 2009, First in situ observation of crystallization processes in a basaltic-andesitic melt with the moissanite cell: Geology, v. 37, n. 11, p. 963–966, doi:https://doi.org/10.1130/G30087A.1
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Schmid S. M.,
    2. Fügenschuh B.,
    3. Kissling E.,
    4. Schuster R.
    , 2004, Tectonic map and overall architecture of the Alpine orogen: Eclogae Geologicae Helvetiae, v. 97, p. 93–117, doi:https://doi.org/10.1007/s00015-004-1113-x
    OpenUrlCrossRefGeoRefWeb of Science
  59. ↵
    1. Schuster R.,
    2. Stüwe K.
    , 2008, Permian metamorphic event in the Alps: Geology, v. 36, n. 8, p. 603–606, doi:https://doi.org/10.1130/G24703A.1[doi:10.1130/G24703A.1]
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Sutton A. P.,
    2. Balluffi R. W.
    , 1995, Interfaces in crystalline materials: Oxford, England, Clarendon Press, 862 p.
  61. ↵
    1. Tenczer V.,
    2. Stüwe K.
    , 2003, The metamorphic field gradient in the eclogite type locality, Koralpe region, Eastern Alps: Journal of Metamorphic Geology, v. 21, n. 4, p. 377–393, doi:https://doi.org/10.1046/j.1525-1314.2003.00448.x
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Tenczer V.,
    2. Powell R.,
    3. Stüwe K.
    , 2006, Evolution of H2O content in a polymetamorphic terrane: The Plattengneiss Shear Zone (Koralpe, Austria): Journal of Metamorphic Geology, v. 24, n. 4, p. 281–295, doi:https://doi.org/10.1111/j.1525-1314.2006.00637.x
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Teng H. H.
    , 2013, How ions and molecules organize to form crystals: Elements, v. 9, n. 3, p. 189–194, doi:https://doi.org/10.2113/gselements.9.3.189
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Thöni M.
    , 2006, Dating eclogite-facies metamorphism in the Eastern Alps - Approaches, results, interpretations: A review: Mineralogy and Petrology, v. 88, p. 123–148, doi:https://doi.org/10.1007/s00710-006-0153-5
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Thöni M.,
    2. Jagoutz E.
    , 1992, Some new aspects of dating eclogites in orogenic belts: Sm-Nd, Rb-Sr, and Pb-Pb isotopic results from the Austroalpine Saualpe and Koralpe type-locality (Carinthia/Styria, southeastern Austria): Geochimica et Cosmochimica Acta, v. 56, n. 1, p. 347–368, doi:https://doi.org/10.1016/0016-7037(92)90138-9
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    1. Thöni M.,
    2. Miller C.
    , 2000, Permo-triassic pegmatites in the eo-alpine eclogite-facies Koralpe complex, Austria: Age and magma source constraints from mineral chemical, Rb-Sr and Sm-Nd isotope data: Schweizerische Mineralogische und Petrographische Mitteilungen, v. 80, p. 169–186.
    OpenUrlGeoRefWeb of Science
  67. ↵
    1. Thöni M.,
    2. Miller C.
    2009, The “Permian event” in the Eastern European Alps: Sm–Nd and P–T data recorded by multi-stage garnet from the Plankogel unit: Chemical Geology, v. 260, n. 1–2, p. 20–36, doi:https://doi.org/10.1016/j.chemgeo.2008.11.017
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    1. Thöni M.,
    2. Miller C.,
    3. Zanetti A.,
    4. Habler G.,
    5. Goessler W.
    , 2008, Sm-Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps: Chemical Geology, v. 254, n. 3–4, p. 216–237, doi:https://doi.org/10.1016/j.chemgeo.2008.03.008
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Van Roermund H. L. M.,
    2. Drury M. R.,
    3. Barnhoorn A.,
    4. De Ronde A. A.
    , 2000, Super-silicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-deep (>6 GPa) origin: Journal of Metamorphic Geology, v. 18, n. 2, p. 135–147, doi:https://doi.org/10.1046/j.1525-1314.2000.00251.x
    OpenUrlCrossRefGeoRefWeb of Science
  70. ↵
    1. Watson E. B.,
    2. Liang Y.
    , 1995, A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks: American Mineralogist, v. 80, n. 11–12, p. 1179–1187, doi:https://doi.org/10.2138/am-1995-11-1209
    OpenUrlAbstract
  71. ↵
    1. Xu H. J.,
    2. Wu Y.
    , 2017, Oriented inclusions of pyroxene, amphibole and rutile in garnet from the Lüliangshan garnet peridotite massif, North Qaidam UHPM belt, NW China: An electron backscatter diffraction study: Journal of Metamorphic Geology, v. 35, n. 1, p. 1–17, doi:https://doi.org/10.1111/jmg.12208
    OpenUrlCrossRef
  72. ↵
    1. Xu H.,
    2. Zhang J.,
    3. Yu T.,
    4. Rivers M.,
    5. Wang Y.,
    6. Zhao S.
    , 2015a, Crystallographic evidence for simultaneous growth in graphic granite: Gondwana Research, v. 27, n. 4, p. 1550–1559, doi:https://doi.org/10.1016/j.gr.2014.01.013
    OpenUrlCrossRefGeoRef
  73. ↵
    1. Xu H.,
    2. Zhang J.,
    3. Zong K.,
    4. Liu L.
    , 2015b, Quartz exsolution topotaxy in clinopyroxene from the UHP eclogite of Weihai, China: Lithos, v. 226, p. 17–30, doi:https://doi.org/10.1016/j.lithos.2015.02.010
    OpenUrlCrossRefGeoRef
  74. ↵
    1. Ye K.,
    2. Cong B.,
    3. Ye D.
    , 2000, The possible subduction of continental material to depths greater than 200 km: Nature, v. 407, p. 734–736, doi:https://doi.org/10.1038/35037566
    OpenUrlCrossRefPubMedWeb of Science
  75. ↵
    1. Zhang J. F.,
    2. Xu H. J.,
    3. Liu Q.,
    4. Green H. W. II.,
    5. Dobrzhinetskaya L. F.
    , 2011, Pyroxene exsolution topotaxy in majoritic garnet from 250 to 300 km depth: Journal of Metamorphic Geology, v. 29, n. 7, p. 741–751, doi:https://doi.org/10.1111/j.1525-1314.2011.00939.x
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Zhang R. Y.,
    2. Liou J. G.
    , 2003, Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: Origin and evolution of garnet exsolution in clinopyroxene: American Mineralogist, v. 88, n. 10, p. 1591–1600, doi:https://doi.org/10.2138/am-2003-1022
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 320 (9)
American Journal of Science
Vol. 320, Issue 9
1 Nov 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
Thomas A. Griffiths, Gerlinde Habler, Rainer Abart
American Journal of Science Nov 2020, 320 (9) 753-789; DOI: 10.2475/11.2020.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
Thomas A. Griffiths, Gerlinde Habler, Rainer Abart
American Journal of Science Nov 2020, 320 (9) 753-789; DOI: 10.2475/11.2020.01
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • ABSTRACT
    • INTRODUCTION
    • SAMPLE LOCATIONS AND GEOLOGICAL SETTING
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDICES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Reconstruction of the original extent of the Tertiary pre-volcanic gravels in the northern Sierra Nevada (CA): Implications for the range's Paleotopography
  • Zn2+-Pb2+-doped calcite shrub fabrics: Abiotic morphogenesis of travertine-like dripstone encrustation at the Jersey Zinc Mine, southeastern British Columbia
Show more Articles

Similar Articles

Keywords

  • inclusions
  • electron backscatter diffraction
  • crystallographic orientation relationships
  • garnet
  • rutile
  • pegmatite
  • exsolution
  • heterogeneous nucleation

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2021 American Journal of Science

Powered by HighWire