Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

Zircon U-Pb geochronology and Nd-Pb isotope geochemistry of Blue Ridge basement in the eastern Great Smoky Mountains, U.S.A.: Implications for the Proterozoic tectonic evolution of the southeastern Laurentian margin

D.P. Moecher, F.C. Harris, E.A. Larkin, R.J. Quinn, K.B. Walsh, D.F. Loughry, E.D. Anderson, S.D. Samson, A.M. Satkoski and E. Tohver
American Journal of Science October 2020, 320 (8) 677-729; DOI: https://doi.org/10.2475/10.2020.02
D.P. Moecher
*University of Kentucky, Department of Earth and Environmental Sciences, Lexington, Kentucky 40506, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.C. Harris
*University of Kentucky, Department of Earth and Environmental Sciences, Lexington, Kentucky 40506, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.A. Larkin
*University of Kentucky, Department of Earth and Environmental Sciences, Lexington, Kentucky 40506, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.J. Quinn
*University of Kentucky, Department of Earth and Environmental Sciences, Lexington, Kentucky 40506, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.B. Walsh
*University of Kentucky, Department of Earth and Environmental Sciences, Lexington, Kentucky 40506, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.F. Loughry Jr.
*University of Kentucky, Department of Earth and Environmental Sciences, Lexington, Kentucky 40506, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.D. Anderson
*University of Kentucky, Department of Earth and Environmental Sciences, Lexington, Kentucky 40506, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.D. Samson
**Syracuse University, Department of Earth Sciences, Syracuse, New York 13244, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.M. Satkoski
**Syracuse University, Department of Earth Sciences, Syracuse, New York 13244, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Tohver
***Instituto de Geosciências, Universidade de São Paolo, 05508-080, São Paolo, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Aleinikoff J. N.,
    2. Zartman R. E.,
    3. Walter M.,
    4. Rankin D. W.,
    5. Lyttle P. T.,
    6. Burton W. C.
    , 1995, U-Pb ages of metarhyolites of the Catoctin and Mount Rogers Formations, central and southern Appalachians: Evidence for two pulses of Iapetan rifting: American Journal of Science, v. 295, n. 4, p. 428–454, doi:https://doi.org/10.2475/ajs.295.4.428
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Aleinikoff J. N.,
    2. Southworth S.,
    3. Kunk M. J.
    , 2007, SHRIMP U-Pb geochronology of zircon and titanite and 40Ar/39Ar of hornblende and muscovite from Mesoproterozoic rocks of the western Blue Ridge, Great Smoky Mountains National Park area, TN and NC: Geological Society of America Abstracts with Programs, v. 39, n. 2, p. 78.
    OpenUrl
  3. ↵
    1. Aleinikoff J. N.,
    2. Southworth S.,
    3. Fanning C. M.,
    4. Mazdab F. K.
    , 2010, Evidence for late Neoproterozoic age of Ocoee Supergroup: SHRIMP U-Pb and trace elements analysis of diagenetic xenotime and monazite; Geological Society of America Abstracts with Programs, v. 41, n. 2, p. 59.
    OpenUrl
  4. ↵
    1. Aleinikoff J. N.,
    2. Ratcliffe N. M.,
    3. Walsh G. J.
    , 2011. Provisional zircon and monazite uranium-lead geochronology for selected rocks from Vermont: U.S. Geological Survey Open-File Report 2011-1309, 46 p, doi:https://doi.org/10.3133/ofr20111309
    OpenUrlCrossRef
  5. ↵
    1. Aleinikoff J. N.,
    2. Grauch R. I.,
    3. Mazdab F. K.,
    4. Kwak L.,
    5. Fanning C. M.,
    6. Kamo S. L.
    , 2012, Origin of an unusual monazite-xenotime gneiss, Hudson Highland, New York: SHRIMP U-Pb geochronology and trace element geochemistry: American Journal of Science, v. 312, n. 7, p. 723–765, doi:https://doi.org/10.2475/07.2012.02
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Aleinikoff J.N.,
    2. Southworth S.,
    3. Merschat A.J.
    , 2013, Implications for late Grenvillian (Rigolet phase) construction of Rodinia using new U-Pb data from the Mars Hill terrane, Tennessee and North Carolina, United States: Geology, v. 41, n. 10, p. 1087–1090, doi:https://doi.org/10.1130/G34779.1
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Anderson E. D.
    , ms, 2011, Petrologic, geochemical, and geochronologic constraints on the tectonic evolution of the southern Appalachian orogen, Blue Ridge Province of western North Carolina: Lexington, Kentucky, University of Kentucky, Ph. D. thesis, 279 p., https://uknowledge.uky.edu/gradschool_diss/820/
  8. ↵
    1. Anderson E. D.,
    2. Moecher D. P.
    , 2009, Formation of high-pressure metabasites in the southern Appalachian Blue Ridge via Taconic continental subduction beneath the Laurentian margin: Tectonics, v. 28, n. 5, doi:https://doi.org/10.1029/2008TC002319
    OpenUrlCrossRef
  9. ↵
    1. Becker T. P.,
    2. Thomas W. A.,
    3. Samson S. D.,
    4. Gehrels G. E.
    , 2005, Detrital zircon evidence of Laurentian crustal dominance in the lower Pennsylvanian deposits of the Alleghanian clastic wedge in eastern North America: Sedimentary Geology, v. 182, n. 1–4, p. 59–86, doi:https://doi.org/10.1016/j.sedgeo.2005.07.014
    OpenUrlCrossRefGeoRefWeb of Science
  10. ↵
    1. Berquist P. J.
    , ms, 2005, U-Pb zircon geochronology and geochemistry of southern Appalachian basement: Tectonic implications and constraints on age, extent, and origin: Nashville, Tennessee, Vanderbilt University, M. S. thesis, 69 p.
  11. ↵
    1. Bettencourt J. S.,
    2. Tosdal R. M.,
    3. Leite W. B. Jr..,
    4. Payolla B. L.
    , 1999, Mesoproterozoic rapakivi granites of the Rondônia Tin Province, southwestern border of the Amazonian craton, Brazil – I. Reconnaissance U-Pb geochronology and regional implications: Precambrian Research, v. 95, n. 1–2, p. 41–67, doi:https://doi.org/10.1016/S0301-9268(98)00126-0
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Bettencourt J. S.,
    2. Leite W. B. Jr..,
    3. Ruiz A. S.,
    4. Matos R.,
    5. Payolla B. L.,
    6. Tosdal R. M.
    , 2010, The Rondonian-San Ignacio province in the SW Amazonian craton: An overview: Journal of South American Earth Sciences, v. 29, n. 1, p. 28–46, doi:https://doi.org/10.1016/j.jsames.2009.08.006
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Bickford M. E.,
    2. Van Schmus W. R.,
    3. Karlstrom K. E.,
    4. Mueller P. A.,
    5. Kamenov G. D.
    , 2015, Mesoproterozoic-trans-Laurentian magmatism: A synthesis of continent-wide age distributions, new SIMS U-Pb ages, zircon saturation temperatures, and Hf and Nd isotope compositions: Precambrian Research, v. 265, p. 286–312, doi:https://doi.org/10.1016/j.precamres.2014.11.024
    OpenUrlCrossRefGeoRef
  14. ↵
    1. Boger S. D.,
    2. Raetz M.,
    3. Giles D.,
    4. Etchart E.,
    5. Fanning C. M.
    , 2005, U-Pb age date from the Sunsás region of eastern Bolivia, evidence for the allochthonous origin of the Paragua Block: Precambrian Research, v. 139, n. 3–4, p. 121–146, doi:https://doi.org/10.1016/j.precamres.2005.05.010
    OpenUrlCrossRefGeoRefWeb of Science
  15. ↵
    1. Tollo R. P.,
    2. Corriveau L.,
    3. McLelland J.,
    4. Bartholomew M. J.
    1. Bream B. R.,
    2. Hatcher R. D. Jr..,
    3. Miller C. F.,
    4. Fullagar P. D.
    , 2004, Detrital zircon ages and Nd isotopic data from the southern Appalachian crystalline core, Georgia, South Carolina, North Carolina, and Tennessee: New provenance constraints for part of the Laurentian margin, in Tollo R. P., Corriveau L., McLelland J., Bartholomew M. J., editors, Proterozoic Tectonic Evolution of the Grenville Orogen in North America: GSA Memoirs, v. 197, p. 459–475, doi:https://doi.org/10.1130/0-8137-1197-5.459
    OpenUrlCrossRef
  16. ↵
    1. Carrigan C. W.,
    2. Miller C. F.,
    3. Fullager P. D.,
    4. Bream B. R.,
    5. Hatcher R. D. Jr..,
    6. Coath C. D.
    , 2003, Ion microprobe age and geochemistry of southern Appalachian basement, with implications for Proterozoic and Paleozoic reconstructions: Precambrian Research, v. 120, n. 1–2, p. 1–36, doi:https://doi.org/10.1016/S0301-9268(02)00113-4
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Carter B. T.,
    2. Hibbard J. P.,
    3. Tubrett M.,
    4. Sylvester P.
    , 2006, Detrital zircon geochronology of the Smith River Allochthon and Lynchburg Group, southern Appalachians: Implications for Neopoterozoic-Early Cambrian paleogeography: Precambrian Research, v. 147, n. 3–4, p. 279–304, doi:https://doi.org/10.1016/j.precamres.2006.01.024
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Cawood P. A.,
    2. McCausland P. J. A.,
    3. Dunning G. R.
    , 2001, Opening Iapetus: Constraints from the Laurentian margin in Newfoundland: GSA Bulletin, v. 113, n. 4, p. 443–453, doi:https://doi.org/10.1130/0016-7606(2001)113<0443:OICFTL>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Cawood P. A.,
    2. Hawkesworth C. J.,
    3. Dhuime B.
    , 2013, The continental record and the generation of continental crust: GSA Bulletin, v. 125, n. 1–2, p. 14–32, doi:https://doi.org/10.1130/B30722.1
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Chakraborty S.
    , ms, 2010, Provenance of the Neoproterozoic Ocoee Supergroup, eastern Great Smoky Mountains: Lexington, Kentucky, University of Kentucky, Ph. D. thesis, 307 p.
  21. ↵
    1. Chakraborty S.,
    2. Moecher D. P.,
    3. Samson S. D.
    2012, Provenance of the lower Ocoee Supergroup, eastern Great Smoky Mountains: GSA Bulletin, v. 124, n. 7–8, p. 1278–1292, doi:https://doi.org/10.1130/B30578.1
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Clemons K. M.,
    2. Moecher D. P.
    , 2009, Reinterpretation of the Greenbrier fault, Great Smoky Mountains: New petrofabric constraints and implications for southern Appalachian tectonics: GSA Bulletin, v. 121, n. 7–8, p. 1108–1122, doi:https://doi.org/10.1130/B26480.1
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Condie K. C.
    , 1990, Growth and accretion of continental crust: Inferences based on Laurentia: Chemical Geology, v. 83, n. 3–4, p. 183–194, doi:https://doi.org/10.1016/0009-2541(90)90279-G
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Condie K. C.,
    2. Aster R. C.
    , 2010, Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth: Precambrian Research, v. 180, n. 3–4, p. 227–236, doi:https://doi.org/10.1016/j.precamres.2010.03.008
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Corrie S. L.,
    2. Kohn M. J.
    , 2007, Resolving the timing of orogenesis in the Western Blue Ridge, southern Appalachians, via in situ ID-TIMS monazite geochronology: Geology, v. 35, n. 7, p. 627–630, doi:https://doi.org/10.1130/G23601A.1
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. D'Agrella-Filho M. S.,
    2. Tohver E.,
    3. Santos J. O. S.,
    4. Elming S.-A.,
    5. Trindade R. I. F.,
    6. Pacca I. I. G.,
    7. Geraldes M. C.
    , 2008, Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton: Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America: Earth and Planetary Science Letters, v. 267, n. 1–2, p. 188–199, doi:https://doi.org/10.1016/j.epsl.2007.11.030
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Daly J. S.,
    2. McLelland J. M.
    , 1991, Juvenile Middle Proterozoic crust in the Adirondack highlands, Grenville province, northeastern North America: Geology, v. 19, n. 2, p. 119–122, doi:https://doi.org/10.1130/0091-7613(1991)019<0119:JMPCIT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Dalziel I. W. D.
    , 1992, On the organization of American plates in the Neoproterozoic and the breakout of Laurentia: GSA Today, v. 2, p. 1–2.
    OpenUrl
  29. ↵
    1. DePaolo D. J.
    , 1981, Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic: Nature, v. 291, p. 193–196, doi:https://doi.org/10.1038/291193a0
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. DeWolf C. P.,
    2. Mezger K.
    , 1994, Lead isotope analysis of leached feldspars: Constraints on the early crustal history of the Grenville Orogen: Geochimica et Cosmochimica Acta, v. 58, n. 24, p. 5537–5550, doi:https://doi.org/10.1016/0016-7037(94)90248-8
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Eckert J. O. Jr..,
    2. Hatcher R. D. Jr..,
    3. Mohr D. W.
    , 1989, The Wayah granulite-facies metamorphic core, southwestern North Carolina: High-grade culmination of Taconic metamorphism in the southern Blue Ridge: GSA Bulletin, v. 101, n. 11, p. 1434–1447, doi:https://doi.org/10.1130/0016-7606(1989)101<1434:TWGFMC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Eriksson K. A.,
    2. Campbell I. H.,
    3. Palin J. M.,
    4. Allen C. M.
    , 2003, Predominance of Grenvillian magmatism recorded in detrital zircons from modern Appalachian rivers: The Journal of Geology, v. 111, n. 6, p. 707–717, doi:https://doi.org/10.1086/378338
    OpenUrlCrossRefGeoRefWeb of Science
  33. ↵
    1. Fisher C. M.,
    2. Loewy S. L.,
    3. Miller C. F.,
    4. Berquist P.,
    5. Van Schmus W. R.,
    6. Hatcher R. D. Jr..,
    7. Wooden J. L.,
    8. Fullagar P. D.
    , 2010, Whole-rock Pb and Sm-Nd isotopic constraints on the growth of southeastern Laurentia during Grenvillian orogenesis: GSA Bulletin, v. 122, n. 9–10, p. 1646–1659, doi:https://doi.org/10.1130/B30116.1
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Fosdick J. C.,
    2. Grove M.,
    3. Graham S. A.,
    4. Hourigan J. K.,
    5. Lovera O.,
    6. Romans B. W.
    , 2014, Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes: Basin Research, v. 27, n. 4, p. 546–572, doi:https://doi.org/10.1111/bre.12088
    OpenUrlCrossRef
  35. ↵
    1. Gehrels G. E.,
    2. Valencia V. A.,
    3. Ruiz J.
    , 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometery: Geochemistry, Geophysics, Geosystems, v. 9, n. 3, doi:https://doi.org/10.1029/2007GC001805
    OpenUrlCrossRef
  36. ↵
    1. Hadley J. B.,
    2. Goldsmith R.
    , 1963, Geology of the eastern Great Smoky Mountains, North Carolina and Tennessee: U.S. Geological Survey Professional Paper 349-B, 118 p., doi:https://doi.org/10.3133/pp349B
    OpenUrlCrossRef
  37. ↵
    1. Halpin J. A.,
    2. Daczko N. R.,
    3. Milan L. A.,
    4. Clarke G. L.
    , 2012, Decoding near-concordant U-Pb zircon ages spanning several hundred million years: Recrystallization, metamictisation, or diffusion?: Contributions to Mineralogy and Petrology, v. 163, p. 67–85, doi:https://doi.org/10.1007/s00410-011-0659-7
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Hanmer S.,
    2. Corrigan D.,
    3. Pehrsson S.,
    4. Nadeau L.
    , 2000, SW Grenville Province, Canada: The case against post–1.4 Ga accretionary tectonics: Tectonophysics, v. 319, n. 1, p. 33–51, doi:https://doi.org/10.1016/S0040-1951(99)00317-0
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Hatcher R. D. Jr..
    , 1987, Tectonics of the southern and central Appalachian internides: Annual Review of Earth and Planetary Sciences, v. 15, p. 337–362, doi:https://doi.org/10.1146/annurev.ea.15.050187.002005
    OpenUrlCrossRefWeb of Science
  40. ↵
    1. Tollo R. P.,
    2. Corriveau L.,
    3. McLelland J.,
    4. Bartholomew M. J.
    1. Hatcher R. D. Jr..,
    2. Bream B. R.,
    3. Miller C. F.,
    4. Eckert J. O.,
    5. Fullagar P. D.,
    6. Carrigan W. W.
    , 2004, Paleozoic structure of internal basement massifs, southern Appalachian Blue Ridge, incorporating new geochronologic, Nd and Sr isotopic, and geochemical data, in Tollo R. P., Corriveau L., McLelland J., Bartholomew M. J., editors, Proterozoic tectonic evolution of the Grenville orogen in North America: GSA Memoirs, v. 197, p. 459–475, doi:https://doi.org/10.1130/0-8137-1197-5.525
    OpenUrlCrossRef
  41. ↵
    1. Hoffman P. F.
    , 1988, United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia: Annual Review of Earth and Planetary Sciences, v. 16, p. 543–603, doi:https://doi.org/10.1146/annurev.ea.16.050188.002551
    OpenUrlCrossRefPubMedWeb of Science
  42. ↵
    1. Hoffman P. F.
    1991, Did the breakout of Laurentia turn Gondwanaland inside-out?: Science, v. 252, n. 5011, p. 1409–1412, doi:https://doi.org/10.1126/science.252.5011.1409
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Hynes A.,
    2. Rivers T.
    , 2010, Protracted continental collision – evidence from the Grenville Orogen: Canadian Journal of Earth Science, v. 47, n. 5, p. 591–620, doi:https://doi.org/10.1139/E10-003
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Kelly E. M.,
    2. Moecher D. P.
    , 2014, Age of the Walden Creek Group revisited, rehashed, and finally resolved? Evidence from ages of detrital zircon, detrital monazite, and metamorphic/diagenetic monazite from the Whilhite, Sandsuck, and Shields Formations, western Greak Smoky Mountains: GSA Abstracts with Programs, v. 46, no. 3, p. 84.
    OpenUrl
  45. ↵
    1. Kunz B. E.,
    2. Regis D.,
    3. Engi M.
    , 2018, Zircon ages in granulite facies rocks: Decoupling from geochemistry above 850 °C?: Contributions to Mineralogy and Petrology, v. 173, article n. 26, doi:https://doi.org/10.1007/s00410-018-1454-5
    OpenUrlCrossRef
  46. ↵
    1. Larkin E. A.
    , ms, 2016, Field, geochronologic, and geochemical constraints on late Precambrian to early Paleozoic terrane accretion in the southern Appalachian Blue Ridge Province: Lexington, Kentucky, University of Kentucky, M.S. thesis, 127 p., https://uknowledge.uky.edu/ees_etds/39/
  47. ↵
    1. Litherland M.,
    2. Annells R. N.,
    3. Darbyshire D. P. F.,
    4. Fletcher C. J. N.,
    5. Hawkins M. P.,
    6. Klinck B. A.,
    7. Mitchell W. I.,
    8. O'Connor E. A.,
    9. Pitfield P. E. J.,
    10. Power G.,
    11. Webb B. C.
    , 1989, The Proterozoic of eastern Bolivia and its relationship to the Andean mobile belt: Precambrian Research, v. 43, n. 3, p. 157–174, doi:https://doi.org/10.1016/0301-9268(89)90054-5
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Loewy S. L.,
    2. Connelly J. N.,
    3. Dalziel I. W. D.,
    4. Gower C. F.
    , 2003, Eastern Laurentia in Rodinia: Constraints from whole-rock Pb and U/Pb geochronology: Tectonophysics, v. 375, n. 1–4, p. 169–197, doi:https://doi.org/10.1016/S0040-1951(03)00338-X
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Loughry D. F.
    , ms, 2010, Origin of Blue Ridge basement rocks, Dellwood Quad, western NC: New evidence from U-Pb zircon geochronology and whole rock geochemistry: Lexington, Kentucky, University of Kentucky, M. S. thesis, 136 p., https://uknowledge.uky.edu/gradschool_theses/11/
  50. ↵
    1. Ludwig K. R.
    , 2009, IsoPlot 4.1. A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication 4, 76 p.
  51. ↵
    1. Massey M. A.,
    2. Moecher D. P.
    , 2005, Deformation and metamorphic history of the Western Blue Ridge-Eastern Blue Ridge terrane boundary, southern Appalachian orogen: Tectonics, v. 24, n. 5, doi:https://doi.org/10.1029/2004TC001643
    OpenUrlCrossRef
  52. ↵
    1. McLelland J. M.,
    2. Daly J. S.,
    3. Chiarenzelli J.
    , 1993, Sm-Nd and U-Pb isotopic evidence of juvenile crust in the Adirondack Lowlands and implications for the evolution of the Adirondack Mts.: The Journal of Geology, v. 101, n. 1, p. 97–105, doi:https://doi.org/10.1086/648198
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. McLelland J. M.,
    2. Daly J. S.,
    3. McLelland J. M.
    , 1996, The Grenville orogenic cycle (ca. 1350–1000 Ma): An Adirondack perspective: Tectonophysics, v. 265, n. 1–2, p. 1–28, doi:https://doi.org/10.1016/S0040-1951(96)00144-8
    OpenUrlCrossRefGeoRefWeb of Science
  54. ↵
    1. Tollo R. P.,
    2. Bartholomew M. J.,
    3. Hibbard J. P.,
    4. Karabinos P. M.
    1. McLelland J. M.,
    2. Selleck B. W.,
    3. Bickford M. E.
    , 2010, Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians, in Tollo R. P., Bartholomew M. J., Hibbard J. P., Karabinos P. M., editors, From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: GSA Memoirs, v. 206, p. 795–836, doi:https://doi.org/10.1130/2010.1206(02)
    OpenUrlCrossRef
  55. ↵
    1. McLelland J. M.,
    2. Selleck B. W.,
    3. Bickford M. E.
    , 2013, Tectonic evolution of the Adirondack Mountains and Grenville Orogen inliers with in the USA: Geoscience Canada, v. 40, n. 4, doi:https://doi.org/10.12789/geocanj.2013.40.022
    OpenUrlCrossRef
  56. ↵
    1. Merschat A. J.
    , ms, 2009, Assembling the Blue Ridge and Inner Piedmont: Insights into the nature and timing of terrane accretion in the southern Appalachian orogen from geologic mapping, stratigraphy, kinematic analysis, petrology, geochemistry, and modern geochronology: Knoxville, Tennessee, University of Tennessee, Ph. D. thesis, 455 p.
  57. ↵
    1. Merschat C. E.,
    2. Cattanach B. L.
    , 2008, Bedrock geologic map of the western half of the Asheville 1:100,000-scale quadrangle, North Carolina and Tennessee: North Carolina Geological Survey Geologic Map Series 13, scale 1:100,000.
  58. ↵
    1. Mezger K.,
    2. Krogstad E. J.
    , 1997, Interpretation of discordant U-Pb zircon ages: An evaluation: Journal of Metamorphic Geology, v. 15, n. 1, p. 127–140, doi:https://doi.org/10.1111/j.1525-1314.1997.00008.x
    OpenUrlCrossRefGeoRefWeb of Science
  59. ↵
    1. Miller C. F.,
    2. Hatcher R. D. Jr..,
    3. Harrison T. M.,
    4. Coath C. D.,
    5. Gorisch E. B.
    , 1998, Cryptic crustal events elucidated through zone imaging and ion microprobe studies of zircon, southern Appalachian Blue Ridge, North Carolina-Georgia: Geology, v. 26, n. 5, p. 419–422, doi:https://doi.org/10.1130/0091-7613(1998)026<0419:CCEETZ>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Miller C. F.,
    2. Hatcher R. D. Jr..,
    3. Ayers J. C.,
    4. Coath C. D.,
    5. Harrison T. M.
    , 2000, Age and zircon inheritance of Eastern Blue Ridge plutons, southwestern North Carolina and northeastern Georgia, with implications for magma history and evolution of the southern Appalachian orogen: American Journal of Science, v. 300, n. 2, p. 142–172, doi:https://doi.org/10.2475/ajs.300.2.142
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Moecher D. P.,
    2. Samson S. D.,
    3. Miller C. F.
    , 2004, Precise time and conditions of peak Taconian granulite facies metamorphism in the southern Appalachian orogen, U.S.A., with implications for zircon behavior during crustal melting events: The Journal of Geology, v. 112, n. 3, p. 289–304, doi:https://doi.org/10.1086/382760
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Moecher D. P.,
    2. Hietpas J.,
    3. Samson S. D.,
    4. Chakraborty S.
    , 2011, Insights into southern Appalachian tectonic history from ages of detrital monazite and zircon in modern alluvium: Geosphere, v. 7, n. 2, p. 494–512, doi:https://doi.org/10.1130/GES00615.1
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Engel A. S.,
    2. Hatcher R. D. Jr..
    1. Moecher D. P.,
    2. Anderson E. D.,
    3. Loughry D. F. Jr..,
    4. Quinn R. J.,
    5. Larkin E. A.,
    6. Walsh K. B.,
    7. Samson S. D.,
    8. Satkoski A. M.,
    9. Tohver E.
    , 2018, Evolution of the Blue Ridge basement complex in the eastern Great Smoky Mountains: Evidence from zircon U-Pb geochronology and Nd-Pb isotope geochemistry of basement gneisses, in Engel A. S., Hatcher R. D. Jr.., editors, Geology at Every Scale: Field Excursions for the 2018 GSA Southeastern Section Meeeting in Knoxville, Tennessee: Geological Society of America Field Guide 50, p. 121–139, doi:https://doi.org/10.1130/2018.0050(08)
    OpenUrlCrossRef
  64. ↵
    1. Moecher D. P.,
    2. Kelly E. A.,
    3. Hietpas J.,
    4. Samson S. D.
    , 2019, Proof of recycling in clastic sedimentary systems from detrital monazite textures and geochronology: GSA Bulletin, v. 131, n. 7–8, p. 1116–1132, doi:https://doi.org/10.1130/B31947.1
    OpenUrlCrossRef
  65. ↵
    1. Montes C.
    , ms, 1997, The Greenbrier and Hayesville faults in central-western North Carolina: Knoxville, Tennessee, University of Tennessee, M. S. thesis, 145 p.
  66. ↵
    1. Nemchin A. A.,
    2. Cawood P. A.
    , 2005, Discordance of the U-Pb system in detrital zircons: Implications for provenance studies of sedimentary rocks: Sedimentary Geology, v. 182, n. 1–4, p. 143–162, doi:https://doi.org/10.1016/j.sedgeo.2005.07.011
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Tollo R. P.,
    2. Corriveau L.,
    3. McLelland J.,
    4. Bartholomew M. J.
    1. Ownby S. E.,
    2. Miller C. F.,
    3. Berquist P. J.,
    4. Carrigan C. W.,
    5. Wooden J. L.,
    6. Fullager P. D.
    , 2004, U-Pb geochronology and geochemistry of a portion of the Mars Hill terrane, North-Carolina-Tennessee: Constraints on origin, history, and tectonic assembly, in Tollo R. P., Corriveau L., McLelland J., Bartholomew M. J., editors, Proterozoic tectonic evolution of the Grenville orogen in North America: GSA Memoirs, v. 197, p. 609–632, doi:https://doi.org/10.1130/0-8137-1197-5.609
    OpenUrlCrossRef
  68. ↵
    1. Paces J. B.,
    2. Miller J. D. Jr..
    , 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonometamorphic processes associated with the 1.1 Ga Midcontinent Rift System: Journal of Geophysical Research-Solid Earth, v. 98, n. B8, p. 13997–14,013, doi:https://doi.org/10.1029/93JB01159
    OpenUrlCrossRef
  69. ↵
    1. Peck W. H.,
    2. Quinan M. P.,
    3. Selleck B. W.
    , 2019, Detrital zircon constraints on Grenville sedimentation at the margin of Laurentia: Precambrian Research, v. 331, doi:https://doi.org/10.1016/j.precamres.2019.105342
    OpenUrlCrossRef
  70. ↵
    1. Pullen A.,
    2. Ibañez-Mejia M.,
    3. Gehrels G. E.,
    4. Ibañez-Mejia J. C.,
    5. Pecha M.
    , 2014, What happens when n=1000? Creating large-n geochronologic datasets with LA-ICP-MS for geologic investigations: Journal of Analytical Atomic Spectrometry, v. 29, n. 6, p. 971–980, doi:https://doi.org/10.1039/C4JA00024B
    OpenUrlCrossRef
  71. ↵
    1. Quinn M. J.
    , ms, 1991, Two lithotectonic boundaries in western North Carolina: Geologic interpretation of a region surrounding Sylva, Jackson County: Knoxville, Tennessee, University of Tennessee, M. S. thesis, 223 p.
  72. ↵
    1. Quinn R. J.
    , ms, 2012, The evolution of Grenville basement in the eastern Great Smoky Mountains; Constraints from U-Pb zircon, whole rock Sm-Nd, and feldspar Pb geochemistry: Lexington, Kentucky University of Kentucky, M.S. thesis, 115 p., https://uknowledge.uky.edu/ees_etds/7/
  73. ↵
    1. Rainbird R. H.,
    2. Rayner N. M.,
    3. Hadlari T.,
    4. Heaman L. M.,
    5. Ielpi A.,
    6. Turner E. C.,
    7. MacNaughton R. B.
    , 2017, Zircon provenance data record the lateral extent of pancontinental, early Neoproterozoic rivers and erosional unroofing history of the Grenville orogen: GSA Bulletin, v. 129, n. 11–12, p. 1408–1423, doi:https://doi.org/10.1130/B31695.1
    OpenUrlCrossRef
  74. ↵
    1. Rankin D. W.
    , 1975, The continental margin of eastern North America in the southern Appalachians: The opening and closing of the proto-Atlantic ocean: American Journal of Science, v. 279A, p. 298–336.
    OpenUrl
  75. ↵
    1. Hatcher R. D. Jr..,
    2. Thomas W. A.,
    3. Viele G. W.
    1. Rankin D. W.,
    2. Drake A.A. Jr..,
    3. Glover L. III.,
    4. Goldsmith R.,
    5. Hall L. M.,
    6. Murray D. P.,
    7. Ratcliffe N. M.,
    8. Read J. F.,
    9. Secor D. T. Jr..,
    10. Stanley R. S.
    , 1989, Pre-orogneic terranes, in Hatcher R. D. Jr.., Thomas W. A., Viele G. W., editors, The Appalachian-Orogen in the United States: Geological Society of America, The Geology of North America, v. F-2, p. 7–100, doi:https://doi.org/10.1130/DNAG-GNA-F2.7
    OpenUrlCrossRef
  76. ↵
    1. Hatcher R. D. Jr..,
    2. Thomas W. A.,
    3. Viele G. W.
    1. Rankin D. W.,
    2. Drake A. A. Jr..,
    3. Ratcliffe N. M.
    , 1990, Plate 2, Geologic map of the U.S. Appalachians showing the Laurentian margin and the Taconic Orogen, in Hatcher R. D. Jr.., Thomas W. A., Viele G. W., editors, The Appalachian-Orogen in the United States: Geological Society of America, The Geology of North America, v. F-2, Plate 2, map scale 1:1,538,000.
  77. ↵
    1. Van Baalen M.R.
    1. Ratcliffe N. M.,
    2. Aleinikoff J. N.
    , 2008, Pre-Ottawan (1.09 Ga) infrastructure and tectonics of the Hudson Highlands and Manhattan prong of New York, in Van Baalen M.R., editor, Guidebook for field trips in Massachusetts and adjacent regions of Connecticut and New York: Westfield, Massachusetts, New England Intercollegiate Geological Conference, 100th, p. 307–340.
  78. ↵
    1. Ratcliffe N. M.,
    2. Aleinikoff J. N.,
    3. Burton W. C.,
    4. Karabinos P.
    , 1991, Trondhjemitic, 1.35–1.31 Ga gneisses of the Mount Holly Complex of Vermont: Evidence for an Elzevirian event in the Grenville basement of the United States Appalachians: Canadian Journal of Earth Science, v. 28, n. 1, p. 77–93, doi:https://doi.org/10.1139/e91-007
    OpenUrlAbstract
  79. ↵
    1. Horton J. W. Jr..,
    2. Rast N.
    1. Raymond L. A.,
    2. Yurkovich S. P.,
    3. McKinney M.
    , 1989, Block-in-matrix structures in the North Carolina Blue Ridge Belt and their significance for the tectonic history of the Southern Appalachian orogen, in Horton J. W. Jr.., Rast N., editors, Melanges and olistostromes of the U.S. Appalachians: Geological Society of America Special Paper 228, p. 195–215, doi:https://doi.org/10.1130/SPE228-p195
    OpenUrlCrossRef
  80. ↵
    1. Rivers T.
    , 1997, Lithotectonic elements of Grenville province: Review and tectonic implications: Precambrian Research, v. 86, n. 3–4, p. 117–154, doi:https://doi.org/10.1016/S0301-9268(97)00038-7
    OpenUrlCrossRefGeoRefWeb of Science
  81. ↵
    1. Rivers T.
    2008, Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province – Implications for the evolution of large hot long-duration orogens: Precambrian Research, v. 167, n. 3–4, p. 237–259, doi:https://doi.org/10.1016/j.precamres.2008.08.005
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. Percival J. A.,
    2. Cook F. A.,
    3. Clowes R. M.
    1. Rivers T.,
    2. Culshaw N.,
    3. Hynes A.,
    4. Indares A.,
    5. Jamieson R.,
    6. Martignole J.
    , 2012, Chapter 3: The Grenville Orogen – a post-LITHOPROBE perspective, in Percival J. A., Cook F. A., Clowes R. M., editors, Tectonic Styles in Canada: The LITHOPROBE Perspective, Geological Association of Canada, Special Paper 49, p. 97–236.
  83. ↵
    1. Rizzotto G. J.,
    2. Santos J. O. S.,
    3. Hartmann L. A.,
    4. Tohver E.,
    5. Pimental M. M.,
    6. McNaughton N. J.
    , 2013, The Mesoproterozoic Guaporé suture in the SW Amazonian Craton: Geotectonic implications based on field geology, zircon geochronology and Nd-Sr isotope geochemistry: Journal of South American Earth Sciences, v. 48, p. 271–295, doi:https://doi.org/10.1016/j.jsames.2013.10.001
    OpenUrlCrossRefGeoRef
  84. ↵
    1. Roberts N. M. W.,
    2. Spencer C. J.
    , 2015, The zircon archive of continent formation through time: Geological Society, London, Special Publications, v. 389, p. 197–225, doi:https://doi.org/10.1144/SP389.14
    OpenUrlAbstract/FREE Full Text
  85. ↵
    1. Robinson P.,
    2. Tucker R. D.,
    3. Bradley D. C.,
    4. Berry H. N. IV.,
    5. Osberg P. H.
    , 1998, Paleozoic orogens in New England, U.S.A.: Geologiska Foreningen i Stockholm Forhandlingar (GFF), v. 120, n. 2, p. 119–148, doi:https://doi.org/10.1080/11035899801202119
    OpenUrlCrossRef
  86. ↵
    1. Sadowski G. R.,
    2. Bettencourt J. S.
    , 1996, Mesoproterozoic tectonic correlations between eastern Laurentia and the western border of the Amazon Craton: Precambrian Research, v. 76, n. 3–4, p. 213–227, doi:https://doi.org/10.1016/0301-9268(95)00026-7
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Santos J. O. S.,
    2. Rizzotto G. J.,
    3. Potter P. E.,
    4. McNaughton N. J.,
    5. Matos R. S.,
    6. Hartmann L. A.,
    7. Chemale F.,
    8. Quadros M. E. S.
    , 2008, Age and authochthonous evolution of the Sunsás Orogen in West Amazonia Craton based on mapping and U-Pb Geochronology: Precambrian Research, v. 165, p. 120–152, doi:https://doi.org/10.1016/j.precamres.2008.06.009
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Schmitt A. K.,
    2. Grove M.,
    3. Harrison T. M.,
    4. Lovera O.,
    5. Hulen J.,
    6. Walters M.
    , 2003, The Geysers-Cobb Mountain magma system, California (Part 1): U-Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times: Geochimica et Cosmochimica, v. 67, n. 18, p. 3423–3442, doi:https://doi.org/10.1016/S0016-7037(03)00140-6
    OpenUrlCrossRef
  89. ↵
    1. Schmitz M. D.,
    2. Bowring S. A.,
    3. Ireland T. R.
    , 2003, Evaluation of the Duluth Complex anorthositic series (AS3) zircon as a U-Pb geochronological standard: New high-precision isotope dilution thermal ionization mass spectrometry results: Geochimica et Cosmochimica Acta, v. 67, n. 19, p. 3665–3672, doi:https://doi.org/10.1016/S0016-7037(03)00200-X
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Sinha A. K.,
    2. McLelland J. M.
    , 1999, Lead isotope mapping of crustal reservoirs within the Grenville superterrane: II. Adirondack massif, New York: Basement Tectonics, v. 13, p. 293–305, doi:https://doi.org/10.1007/978-94-011-4800-9_17
    OpenUrlCrossRef
  91. ↵
    1. Basu A.,
    2. Hart S.
    1. Sinha A. K.,
    2. Hogan J. P.,
    3. Parks J.
    , 1996, Lead isotope mapping of crustal reservoirs within the Grenville Superterrane: I: Central and Southern Appalachians, in Basu A., Hart S., editors, Earth Processes: Reading the Isotopic Code: Geophyscial Monograph Series, v. 95, p. 293–305, doi:https://doi.org/10.1029/GM095p0293
    OpenUrlCrossRef
  92. ↵
    1. Tollo R. P.,
    2. Bartholomew M. J.,
    3. Hibbard J. P.,
    4. Karabinos P. M.
    1. Southworth S.,
    2. Aleinikoff J. N.,
    3. Tollo R. P.,
    4. Bailey C. M.,
    5. Burton W. C.,
    6. Hackley P. C.,
    7. Fanning M. C.
    , 2010, Mesoproterozoic magmatism and deformation in the northern Blue Ridge, Virginia and Maryland: Application of SHRIMP U-Pb geochronology and integrated field studies in the definition of Grenvillian tectonic history, in Tollo R. P., Bartholomew M. J., Hibbard J. P., Karabinos P. M., editors, From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: GSA Memoirs, v. 206, p. 795–836, doi:https://doi.org/10.1130/2010.1206(31)
    OpenUrlCrossRef
  93. ↵
    1. Southworth S.,
    2. Schultz A.,
    3. Aleinikoff J. N.,
    4. Merschat A. J.
    , 2012, Geologic map of the Great Smoky Mountains National Park Region, Tennessee and North Carolina: U.S. Geological Survey Scientific Investigations Map 2997, doi:https://doi.org/10.3133/sim2997
    OpenUrlCrossRef
  94. ↵
    1. Spaulding D.
    , 2014, Geology of the west half of the Cove Creek Gap 7.5 minute quadrangle and adjacent areas, western North Carolina: Insights into eastern Great Smoky Mountains tectonometamorphism: Lexington, Kentucky, University of Kentucky, 121 p., https://uknowledge.uky.edu/ees_etds/23/
  95. ↵
    1. Spencer C. J.
    , 2020, Continuous continental growth as constrained by the sedimentary record: American Journal of Science, v. 320, n. 4, p. 373–401, doi:https://doi.org/10.2475/04.2020.02
    OpenUrlAbstract/FREE Full Text
  96. ↵
    1. Spencer C. J.,
    2. Cawood P. A.,
    3. Hawkesworth C. J.,
    4. Prave A. R.,
    5. Roberts N. M. W.,
    6. Horstwood M. S. A.,
    7. Whitehouse M. J.
    , and EIMF, 2015, Generation and preservation of continental crust in the Grenville Orogeny: Geoscience Frontiers, v. 6, n. 3, p. 357–372, doi:https://doi.org/10.1016/j.gsf.2014.12.001
    OpenUrlCrossRef
  97. ↵
    1. Spencer C. J.,
    2. Kirkland C. L.,
    3. Taylor R. J. M.
    , 2016, Strategies towards statistically robust interpretation of in situ U-Pb zircon geochronology: Geoscience Frontiers, v. 7, n. 4, p. 581–589, doi:https://doi.org/10.1016/j.gsf.2015.11.006
    OpenUrlCrossRef
  98. ↵
    1. Stacey J. S.,
    2. Kramers J. D.
    , 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, n. 2, p. 207–221, doi:https://doi.org/10.1016/0012-821X(75)90088-6
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Stern R. A.
    , 2001, A new isotopic and trace-element standard for ion microprobe: Preliminary thermal ionization mass spectrometry (TIMS) U-Pb and electron-microprobe data: Geological Survey of Canada Current Research, 2001-F1, 11 p., doi:https://doi.org/10.4095/212668
    OpenUrlCrossRef
    1. Streckeisen A. J.,
    2. Le Maitre R. W.
    , 1979, A chemical approximation to the modal QAPF classification of the igneous rocks: Neues Jahrbuch fuer Mineralogie, Abhandlungen, v. 136, p. 169–206.
    OpenUrl
  100. ↵
    1. Thomas W. A.,
    2. Becker T. P.,
    3. Samson S. D.,
    4. Hamilton M. A.
    , 2004, Detrital zircon evidence of a recycled orogenic foreland provenance for Alleghanian clastic-wedge sandstones: The Journal of Geology, v. 112, n. 1, p. 23–37, doi:https://doi.org/10.1086/379690
    OpenUrlCrossRefGeoRefWeb of Science
  101. ↵
    1. Thomas W. A.,
    2. Gehrels G. E.,
    3. Greb S. F.,
    4. Nadon G. C.,
    5. Satkoski A. M.,
    6. Romero M. C.
    , 2017, Detrital zircons and sediment dispersal in the Appalachian foreland: Geosphere, v. 13, n. 6, p. 2206–2230, doi:https://doi.org/10.1130/GES01525.1
    OpenUrlCrossRef
  102. ↵
    1. Tohver E.,
    2. van der Pluijm B. A.,
    3. Van der Voo R.,
    4. Rizzotto G.,
    5. Scandolara J. E.
    , 2002, Paleogeography of the Amazon craton at 1.2 Ga: Early Grenvillian collision with the Llano segment of Laurentia: Earth and Planetary Science Letters, v. 199, n. 1–2, p. 185–200, doi:https://doi.org/10.1016/S0012-821X(02)00561-7
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Tohver E.,
    2. Bettencourt J. S.,
    3. Tosdal R.,
    4. Mezger K.,
    5. Leite W. B.,
    6. Payolla B. L.
    , 2004a, Terrane transfer during the Grenville orogeny: Tracing the Amazonian ancestry of southern Appalachian basement through Pb and Nd isotopes: Earth and Planetary Science Letters, v. 228, n. 1–2, p. 161–176, doi:https://doi.org/10.1016/j.epsl.2004.09.029
    OpenUrlCrossRefGeoRefWeb of Science
  104. ↵
    1. Tohver E.,
    2. van der Pluijm B.,
    3. Mezger L.,
    4. Essene E.,
    5. Scandolara J.,
    6. Rizotto G.
    , 2004b, Significance of the Nova Brasilândia metasedimentary belt in western Brazil: Redefining the Mesoproterozoic boundary of the Amazon craton: Tectonics, v. 23, n. 6, TC6004, doi:https://doi.org/10.1029/2003TC001563
    OpenUrlCrossRef
  105. ↵
    1. Tohver E.,
    2. van der Pluijm B. A.,
    3. Scandolâria J. E.,
    4. Essene E. J.
    , 2005, Late Mesoproterozoic deformation of SW Amazonia (Rondônia, Brazil): Geochronological and structural evidence for collision with southern Laurentia: The Journal of Geology, v. 113, n. 3, p. 309–323, doi:https://doi.org/10.1086/428807
    OpenUrlCrossRefGeoRefWeb of Science
  106. ↵
    1. Tohver E.,
    2. Teixeira W.,
    3. van der Pluijm B.,
    4. Geraldes M. C.,
    5. Bettencourt J. S.,
    6. Rizzotto G.
    , 2006, Restored transect across exhumed Grenville orogen of Laurentia and Amazonia, with implications for crustal architecture: Geology, v. 34, n. 8, p. 669–672, doi:https://doi.org/10.1130/G22534.1
    OpenUrlAbstract/FREE Full Text
  107. ↵
    1. Tohver E.,
    2. Lana C.,
    3. Cawood P. A.,
    4. Fletcher I. R.,
    5. Jourdan F.,
    6. Sherlock S.,
    7. Rasmussen B.,
    8. Trindade R. I. F.,
    9. Yokoyama E.,
    10. Souza Filho C. R.,
    11. Marangoni Y.
    , 2012, Geochronological constraints on the age of the Permo-Triassic impact event: U-Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil: Geochimica et Cosmochimica Acta, v. 86, p. 214–227, doi:https://doi.org/10.1016/j.gca.2012.03.005
    OpenUrlCrossRefGeoRefWeb of Science
  108. ↵
    1. Tollo R. P.,
    2. Bartholomew M. J.,
    3. Hibbard J. P.,
    4. Karabinos P. M.
    1. Tollo R. P.,
    2. Aleinikoff J. N.,
    3. Wooden J. L.,
    4. Mazdab F. K.,
    5. Southworth S.,
    6. Fanning M. C.
    , 2010, Thermomagmatic evolution of Mesoproterozoic crust in the Blue Ridge of SW Virginia and NW North Carolina: Evidence from U-Pb geochronology and zircon geothermometry, in Tollo R. P., Bartholomew M. J., Hibbard J. P., Karabinos P. M., editors, From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: GSA Memoirs, v. 206, p. 859–896, doi:https://doi.org/10.1130/2010.1206(33)
    OpenUrlCrossRef
  109. ↵
    1. Tollo R. P.,
    2. Aleinikoff J. N.,
    3. Dickin A. P.,
    4. Radwany M. S.,
    5. Southworth C. S.,
    6. Fanning C. M.
    , 2017, Petrology and geochronology of Mesoproterozoic basement of the Mount Rogers area of southwestern Virginia and northwestern North Carolina: Implications for the Precambrian tectonic evolution of the southern Blue Ridge Province: American Journal of Science, v. 317, n. 3, p. 251–337, doi:https://doi.org/10.2475/03.2017.01
    OpenUrlAbstract/FREE Full Text
  110. ↵
    1. Tosdal R. M.
    , 1996, The Amazon-Laurentia connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia and northern Chile: Tectonics, v. 15, n. 4, p. 827–842, doi:https://doi.org/10.1029/95TC03248
    OpenUrlCrossRefWeb of Science
  111. ↵
    1. Tollo R. P.,
    2. Corriveau L.,
    3. McLelland J.,
    4. Bartholomew M. J.
    1. Trupe C. H.,
    2. Stewart K. G.,
    3. Adams M. G.,
    4. Foudy J. P.
    , 2004, Deciphering the Grenville of the southern Appalachians through evaluation of the post-Grenville tectonic history in northwestern North Carolina, in Tollo R. P., Corriveau L., McLelland J., Bartholomew M. J., editors, Proterozoic Tectonic Evolution of the Grenville Orogen in North America: GSA Memoirs, v. 197, p. 679–695, doi:https://doi.org/10.1130/0-8137-1197-5.679
    OpenUrlCrossRef
  112. ↵
    1. Vavra G.,
    2. Gebauer D.,
    3. Schmid R.,
    4. Compston W.
    , 1996, Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study: Contributions to Mineralogy and Petrology, v. 122, p. 337–358, doi:https://doi.org/10.1007/s004100050132
    OpenUrlCrossRefGeoRefWeb of Science
  113. ↵
    1. Vavra G.,
    2. Schmid R.,
    3. Gebauer D.
    , 1999, Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps): Contributions to Mineralogy and Petrology, v. 134, p. 380–404, doi:https://doi.org/10.1007/s004100050492
    OpenUrlCrossRefGeoRefWeb of Science
  114. ↵
    1. Tollo R. P.,
    2. Bartholomew R. P.,
    3. Hibbard M. J.,
    4. Karabinos P. M.
    1. Volkert R. A.,
    2. Aleinikoff J. N.,
    3. Fanning C. M.
    , 2010, Tectonic, magmatic, and metamorphic history of the New Jersey Highlands: New insights from SHRIMP U-Pb geochronology, in Tollo R. P., Bartholomew R. P., Hibbard M. J., Karabinos P. M., editors, From Rodinia to Pangea: The Lithotectonic Record of Appalachian Region: GSA Memoirs, v. 206, p. 307–346, doi:https://doi.org/10.1130/2010.1206(14)
    OpenUrlCrossRef
  115. ↵
    1. Walsh K. B.
    , ms, 2018, Geochronological and geochemical constraints on the origin of the Cartoogechaye Terrane, western North Carolina: Implications for the late Precambrian to early Paleozoic evolution of the eastern Laurentian margin: Lexington, Kentucky, University of Kentucky, M. S. thesis, 108 p., https://uknowledge.uky.edu/ees_etds/57/
  116. ↵
    1. Whitmeyer S. J.,
    2. Karlstrom K. E.
    , 2007, Tectonic model for the Proterozoic growth of North America: Geosphere, v. 3, n. 4, p. 220–259, doi:https://doi.org/10.1130/GES00055.1
    OpenUrlAbstract/FREE Full Text
    1. Whitney D. L.,
    2. Evans B. W.
    , 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, n. 1, p. 181–187, doi:https://doi.org/10.2138/am.2010.3371
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 320 (8)
American Journal of Science
Vol. 320, Issue 8
1 Oct 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Zircon U-Pb geochronology and Nd-Pb isotope geochemistry of Blue Ridge basement in the eastern Great Smoky Mountains, U.S.A.: Implications for the Proterozoic tectonic evolution of the southeastern Laurentian margin
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Zircon U-Pb geochronology and Nd-Pb isotope geochemistry of Blue Ridge basement in the eastern Great Smoky Mountains, U.S.A.: Implications for the Proterozoic tectonic evolution of the southeastern Laurentian margin
D.P. Moecher, F.C. Harris, E.A. Larkin, R.J. Quinn, K.B. Walsh, D.F. Loughry, E.D. Anderson, S.D. Samson, A.M. Satkoski, E. Tohver
American Journal of Science Oct 2020, 320 (8) 677-729; DOI: 10.2475/10.2020.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Zircon U-Pb geochronology and Nd-Pb isotope geochemistry of Blue Ridge basement in the eastern Great Smoky Mountains, U.S.A.: Implications for the Proterozoic tectonic evolution of the southeastern Laurentian margin
D.P. Moecher, F.C. Harris, E.A. Larkin, R.J. Quinn, K.B. Walsh, D.F. Loughry, E.D. Anderson, S.D. Samson, A.M. Satkoski, E. Tohver
American Journal of Science Oct 2020, 320 (8) 677-729; DOI: 10.2475/10.2020.02
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGIC BACKGROUND
    • SAMPLE DESCRIPTIONS
    • METHODS
    • RESULTS
    • TECTONIC IMPLICATIONS
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
  • Constraints on surface temperature 3.4 billion years ago based on triple oxygen isotopes of cherts from the Barberton Greenstone Belt, South Africa, and the problem of sample selection
  • Miocene to Pleistocene glacial history of West Antarctica inferred from Nunatak geomorphology and cosmogenic-nuclide measurements on bedrock surfaces
Show more Articles

Similar Articles

Keywords

  • Appalachian tectonics
  • Grenville orogeny
  • zircon
  • U-Pb geochronology
  • Amazonia-Laurentia collision

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2021 American Journal of Science

Powered by HighWire