Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

Miocene to Pleistocene glacial history of West Antarctica inferred from Nunatak geomorphology and cosmogenic-nuclide measurements on bedrock surfaces

Perry Spector, John Stone, Greg Balco, Trevor Hillebrand, Mika Thompson and Taryn Black
American Journal of Science October 2020, 320 (8) 637-676; DOI: https://doi.org/10.2475/10.2020.01
Perry Spector
*Berkeley Geochronology Center, Berkeley, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pspector@bgc.org
John Stone
**Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Greg Balco
*Berkeley Geochronology Center, Berkeley, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Trevor Hillebrand
**Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mika Thompson
**Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Taryn Black
**Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Alley R. B.,
    2. Whillans I. M.
    , 1984, Response of the East Antarctica ice sheet to sea-level rise: Journal of Geophysical Research, p. 6487, doi:https://doi.org/10.1029/JC089iC04p06487
    OpenUrlCrossRef
    1. Anderson J. B.,
    2. Warny S.,
    3. Askin R. A.,
    4. Wellner J. S.,
    5. Bohaty S. M.,
    6. Kirshner A. E.,
    7. Livsey D. N.,
    8. Simms A. R.,
    9. Smith T. R.,
    10. Ehrmann W.,
    11. Lawver L. A.,
    12. Barbeau D.,
    13. Wise S. W.,
    14. Kulhanek D. K.,
    15. Weaver F. M.,
    16. Majewski W.
    , 2011, Progressive Cenozoic cooling and the demise of Antarctica's last refugium: Proceedings of the National Academy of Sciences of the United States of America, p. 11356–11360, doi:https://doi.org/21709269
    OpenUrlCrossRef
  2. ↵
    1. Ashworth A. C.,
    2. Cantrill D. J.
    , 2004, Neogene vegetation of the Meyer Desert Formation (Sirius Group) Transantarctic Mountains, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 213, n. 1–2, p. 65–82, doi:https://doi.org/10.1016/S0031-0182(04)00359-1
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Ashworth A. C.,
    2. Erwin T. L.
    , 2016, Antarctotrechus balli sp. n. (Carabidae, Trechini): The first ground beetle from Antarctica: ZooKeys, v. 635, p. 109–122, doi:https://doi.org/10.3897/zookeys.635.10535
    OpenUrlCrossRef
  4. ↵
    1. Balco G.
    , 2017, Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data: Quaternary Geochronology, v. 39, p. 150–173, doi:https://doi.org/10.1016/j.quageo.2017.02.001
    OpenUrlCrossRef
  5. ↵
    1. Balco G.,
    2. Shuster D. L.
    , 2009, Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces: Earth and Planetary Science Letters, v. 281, n. 1–2, p. 48–58, doi:https://doi.org/10.1016/j.epsl.2009.02.006
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Balco G.,
    2. Stone J. O. H.,
    3. Sliwinski M. G.,
    4. Todd C.
    , 2014, Features of the glacial history of the Transantarctic Mountains inferred from cosmogenic 26 Al, 10 Be and 21 Ne concentrations in bedrock surfaces: Antarctic Science, v. 26, n. 6, p. 708–723, doi:https://doi.org/10.1017/S0954102014000261
    OpenUrlCrossRef
  7. ↵
    1. Balco G.,
    2. Todd C.,
    3. Huybers K.,
    4. Campbell S.,
    5. Vermeulen M.,
    6. Hegland M.,
    7. Goehring B. M.,
    8. Hillebrand T. R.
    , 2016, Cosmogenic-nuclide exposure ages from the Pensacola Mountains adjacent to the Foundation Ice Stream, Antarctica: American Journal of Science, v. 316, n. 6, p. 542–577, doi:https://doi.org/10.2475/06.2016.02
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Balco G.,
    2. Blard P.-H.,
    3. Shuster D. L.,
    4. Stone J. O. H.,
    5. Zimmermann L.
    , 2019, Cosmogenic and nucleogenic 21Ne in quartz in a 28-meter sandstone core from the McMurdo Dry Valleys, Antarctica: Quaternary Geochronology, v. 52, p. 63–76, doi:https://doi.org/10.1016/j.quageo.2019.02.006
    OpenUrlCrossRef
  9. ↵
    1. Bentley M. J.,
    2. Fogwill C. J.,
    3. Kubik P. W.,
    4. Sugden D. E.
    , 2006, Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet: GSA Bulletin, v. 118, n. 9–10, p. 1149–1159, doi:https://doi.org/10.1130/B25735.1
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Bentley M. J.,
    2. Fogwill C. J.,
    3. Le Brocq A. M.,
    4. Hubbard A. L.,
    5. Sugden D. E.,
    6. Dunai T. J.,
    7. Freeman S. P. H. T.
    , 2010, Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: Constraints on past ice volume change: Geology, v. 38, n. 5, p. 411–414, doi:https://doi.org/10.1130/G30754.1
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Bentley M. J.,
    2. Hein A. S.,
    3. Sugden D. E.,
    4. Whitehouse P. L.,
    5. Shanks R.,
    6. Xu S.,
    7. Freeman S. P. H. T.
    , 2017, Deglacial history of the Pensacola Mountains: Quaternary Science Reviews, v. 158, p. 58–76, doi:https://doi.org/10.1016/j.quascirev.2016.09.028
    OpenUrlCrossRef
  12. ↵
    1. Borchers B.,
    2. Marrero S.,
    3. Balco G.,
    4. Caffee M.,
    5. Goehring B.,
    6. Lifton N.,
    7. Nishiizumi K.,
    8. Phillips F.,
    9. Schaefer J.,
    10. Stone J.
    , 2016, Geological calibration of spallation production rates in the CRONUS-Earth project: Quaternary Geochronology, v. 31, p. 188–198, doi:https://doi.org/10.1016/j.quageo.2015.01.009
    OpenUrlCrossRef
  13. ↵
    1. Bruno L. A.,
    2. Baur H.,
    3. Graf T.,
    4. Schlüchter C.,
    5. Signer P.,
    6. Wieler R.
    , 1997, Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne: Earth and Planetary Science Letters, v. 147, p. 37–54, doi:https://doi.org/10.1016/S0012-821X(97)00003-4
    OpenUrlCrossRefGeoRefWeb of Science
    1. Buizert C.,
    2. Cuffey K. M.,
    3. Severinghaus J. P.,
    4. Baggenstos D.,
    5. Fudge T. J.,
    6. Steig E. J.,
    7. Markle B. R.,
    8. Winstrup M.,
    9. Rhodes R. H.,
    10. Brook E. J.,
    11. Sowers T. A.,
    12. Clow G. D.,
    13. Cheng H.,
    14. Edwards R. L.,
    15. Sigl M.,
    16. McConnell J. R.,
    17. Taylor K. C.
    , 2015, The WAIS Divide deep ice core WD2014 chronology–Part 1: Methane synchronization (68–31 kaBP) and the gas age–ice age difference: Climate of the Past, v. 11 n. 2, p. 153–173, doi:https://doi.org/10.5194/cp-11-153-2015
    OpenUrlCrossRef
  14. ↵
    1. Craddock J. P.,
    2. Schmitz M. D.,
    3. Crowley J. L.,
    4. Larocque J.,
    5. Pankhurst R. J.,
    6. Juda N.,
    7. Konstantinou A.,
    8. Storey B.
    , 2017, Precise U-Pb zircon ages and geochemistry of Jurassic granites, Ellsworth-Whitmore terrane, central Antarctica: GSA, Bulletin, v. 129, n. 1 – 2, p. 118–136, doi:https://doi.org/10.1130/B31485.1
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Cuffey K. M.,
    2. Conway H.,
    3. Gades A. M.,
    4. Hallet B.,
    5. Lorrain R.,
    6. Severinghaus J. P.,
    7. Steig E. J.,
    8. Vaughn B.,
    9. White J. W. C.
    , 2000, Entrainment at cold glacier beds: Geology, v. 28, n. 4, p. 351–354, doi:https://doi.org/10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Denton G. H.,
    2. Sugden D. E.
    , 2005, Meltwater features that suggest Miocene ice‐sheet overriding of the transantarctic mountains in Victoria Land, Antarctica: Geografiska Annaler: Series A, Physical Geography, v. 87, n. 1, p. 67–85, doi:https://doi.org/10.1111/j.0435-3676.2005.00245.x
    OpenUrlCrossRef
  17. ↵
    1. Denton G. H.,
    2. Bockheim J. G.,
    3. Wilson S. C.,
    4. Schlüchter C.
    , 1986, Late Cenozoic History of Rennick Glacier and Talos Dome, Northern Victoria Land, Antarctica: Geological Investigations in Northen Victoria Land: Antarctic Research Series, v. 46, p. 339–375, doi:https://doi.org/10.1002/9781118664957.ch16
    OpenUrlCrossRefGeoRef
  18. ↵
    1. Denton G. H.,
    2. Bockheim J. G.,
    3. Rutford R. H.,
    4. Andersen B. G.
    , 1992, Chapter 22, Glacial history of the Ellsworth Mountains, West Antarctica: GSA Memoirs, v. 170, p. 403–432.
    OpenUrl
  19. ↵
    1. Ditchburn R. G.,
    2. Whitehead N. E.
    , 1994, The separation of 10Be from silicates: Canberra, Australia, Proceedings of the 3rd Workshop of the South Pacific Environmental Radioactivity Association.
    1. Fernandez-Mosquera D.,
    2. Hahm D.,
    3. Marti K.
    , 2010, Calculated rates of cosmic ray muon-produced Ne in subsurface quartz: Geophysical Research Letters, v. 37, n. 15, doi:https://doi.org/10.1029/2010GL044106
    OpenUrlCrossRef
  20. ↵
    1. Fitzgerald P. G.,
    2. Stump E.
    , 1991, Early Cretaceous Uplift in the Ellsworth Mountains of West Antarctica: Science, v. 254, n. 5028, p. 92–94, doi:https://doi.org/17739957
    OpenUrlAbstract/FREE Full Text
    1. Fretwell P.,
    2. Pritchard H. D.,
    3. Vaughan D. G.,
    4. Bamber J. L.,
    5. Barrand N. E.,
    6. Bell R.,
    7. Bianchi C.,
    8. Bingham R. G.,
    9. Blankenship D. D.,
    10. Casassa G.,
    11. Catania G.,
    12. Callens D.,
    13. Conway H.,
    14. Cook A. J.,
    15. Corr H. F. J. D.,
    16. Damaske D.,
    17. Damm V.,
    18. Ferraccioli F.,
    19. Forsberg R.,
    20. Fujita S.,
    21. Gim Y.,
    22. Gogineni P.,
    23. Griggs J. A.,
    24. Hindmarsh R. C. A.,
    25. Holmlund P.,
    26. Holt J. W.,
    27. Jacobel R. W. A.,
    28. Jenkins A.,
    29. Jokat W.,
    30. Jordan T.,
    31. King E. C.,
    32. Kohler J.,
    33. Krabill W.,
    34. Riger-Kusk M.,
    35. Langley K. A.,
    36. Leitchenkov G.,
    37. Leuschen C.,
    38. Luyendyk B. P.,
    39. Matsuoka K.,
    40. Mouginot J.,
    41. Nitsche F. O.,
    42. Nogi F.,
    43. Nost O. A.,
    44. Popov S. V.,
    45. Rignot E.,
    46. Rippin D. M.,
    47. Rivera A.,
    48. Roberts J.,
    49. Ross N.,
    50. Siegert M. J.,
    51. Smith A. M.,
    52. Steinhage D.,
    53. Studinger M.,
    54. Sun B.,
    55. Tinto B. K.,
    56. Welch B. C.,
    57. Wilson D.,
    58. Young D. A.,
    59. Xiangbin C.,
    60. Zirizzotti A.
    , 2013, Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica: The Cryosphere, v. 7, p. 375–393, doi:https://doi.org/10.5194/tc-7-375-2013
    OpenUrlCrossRef
  21. ↵
    1. Fudge T. J.,
    2. Markle B. R.,
    3. Cuffey K. M.,
    4. Buizert C.,
    5. Taylor K. C.,
    6. Steig E. J.,
    7. Waddington E. D.,
    8. Conway H.,
    9. Koutnik M.
    , 2016, Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years: Geophysical Research Letters, v. 43, n. 8, p. 3795–3803, doi:https://doi.org/10.1002/2016GL068356
    OpenUrlCrossRef
  22. ↵
    1. Gasson E.,
    2. DeConto R. M.,
    3. Pollard D.,
    4. Levy R. H.
    , 2016, Dynamic Antarctic ice sheet during the early to mid-Miocene: Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 13, p. 3459–3464, doi:https://doi.org/26903645
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Hein A. S.,
    2. Marrero S. M.,
    3. Woodward J.,
    4. Dunning S. A.,
    5. Winter K.,
    6. Westoby M. J.,
    7. Freeman S. P. H. T.,
    8. Shanks R. P.,
    9. Sugden D. E.
    , 2016, Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet: Nature Communications, v. 7, p. 12511, doi:https://doi.org/27545202
    OpenUrlCrossRef
  24. ↵
    1. Hetzel R.,
    2. Niedermann S.,
    3. Ivy-Ochs S.,
    4. Kubik P. W.,
    5. Tao M.,
    6. Gao B.
    , 2002, 21Ne versus 10Be and 26Al exposure ages of fluvial terraces: The influence of crustal Ne in quartz: Earth and Planetary Science Letters, v. 201, n. 3–4, p. 575–591, doi:https://doi.org/10.1016/S0012-821X(02)00748-3
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Holmlund P.,
    2. Näslund J.-O.
    , 1994, The glacially sculptured landscape in Dronning Maud Land, Antarctica, formed by wet-based mountain glaciation and not by the present ice sheet: Boreas, v. 23, n. 2, p. 139–148, doi:https://doi.org/10.1111/j.1502-3885.1994.tb00594.x
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Howat I. M.,
    2. Porter C.,
    3. Smith B. E.,
    4. Noh M.-J.,
    5. Morin P.
    , 2019, The Reference Elevation Model of Antarctica: The Cryosphere, v. 13, n. 2, p. 665–674, doi:https://doi.org/10.5194/tc-13-665-2019
    OpenUrlCrossRef
  27. ↵
    1. Jamieson S. S. R.,
    2. Sugden D. E.,
    3. Hulton N. R. J.
    , 2010, The evolution of the subglacial landscape of Antarctica: Earth and Planetary Science Letters, v. 293, n. 1–2, p. 1–27, doi:https://doi.org/10.1016/j.epsl.2010.02.012
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Johnson J. S.,
    2. Nichols K. A.,
    3. Goehring B. M.,
    4. Balco G.,
    5. Schaefer J. M.
    , 2019, Abrupt mid-Holocene ice loss in the western Weddell Sea Embayment of Antarctica: Earth and Planetary Science Letters, v. 518, p. 127–135, doi:https://doi.org/10.1016/j.epsl.2019.05.002
    OpenUrlCrossRef
  29. ↵
    1. Lewis A. R.,
    2. Marchant D. R.,
    3. Ashworth A. C.,
    4. Hemming S. R.,
    5. Machlus M. L.
    , 2007, Major Middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains: GSA Bulletin, v. 119, n. 11–12, p. 1449–1461, doi:https://doi.org/10.1130/0016-7606(2007)119[1449:MMMGCC]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Lewis A. R.,
    2. Marchant D. R.,
    3. Ashworth A. C.,
    4. Hedenas L.,
    5. Hemming S. R.,
    6. Johnson J. V.,
    7. Leng M. J.,
    8. Machlus M. L.,
    9. Newton A. E.,
    10. Raine J. I.,
    11. Willenbring J. K.,
    12. Williams M.,
    13. Wolfe A. P.
    , 2008, Mid-Miocene cooling and the extinction of tundra in continental Antarctica: Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 31, p. 10676–10680, doi:https://doi.org/18678903
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Lifton N.
    , 2016, Implications of two Holocene time-dependent geomagnetic models for cosmogenic nuclide production rate scaling: Earth and Planetary Science Letters, v. 433, p. 257–268, doi:https://doi.org/10.1016/j.epsl.2015.11.006
    OpenUrlCrossRefGeoRef
  32. ↵
    1. Lifton N.,
    2. Sato T.,
    3. Dunai T. J.
    , 2014, Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes: Earth and Planetary Science Letters, v. 386, p. 149–160, doi:https://doi.org/10.1016/j.epsl.2013.10.052
    OpenUrlCrossRefGeoRef
  33. ↵
    1. Marchant D. R.,
    2. Denton G. H.
    , 1996, Miocene and Pliocene paleoclimate of the Dry Valleys region, Southern Victoria land: A geomorphological approach: Marine Micropaleontology, v. 27, n. 1–4, p. 253–271, doi:https://doi.org/10.1016/0377-8398(95)00065-8
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Mercer J. H.
    , 1963, Glacial Geology of Ohio Range, Central Horlick Mountains, Antarctica: Columbus, Ohio, Ohio State University, Institute of Polar Studies Report 8, Research Foundation and the Institute of Polar Studies, 18 p.
  35. ↵
    1. Mercer J. H.
    1968, Glacial Geology of the Reedy Glacier Area, Antarctica: GSA Bulletin, v. 79, n. 4, p. 471–486, doi:https://doi.org/10.1130/0016-7606(1968)79[471:GGOTRG]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Mukhopadhyay S.,
    2. Ackert R. P. Jr..,
    3. Pope A. E.,
    4. Pollard D.,
    5. DeConto R. M.
    , 2012, Miocene to recent ice elevation variations from the interior of the West Antarctic ice sheet: Constraints from geologic observations, cosmogenic nuclides and ice sheet modeling: Earth and Planetary Science Letters, v. 337–338, p. 243–251, doi:https://doi.org/10.1016/j.epsl.2012.05.015
    OpenUrlCrossRef
  37. ↵
    1. Nichols K. A.,
    2. Goehring B. M.,
    3. Balco G.,
    4. Johnson J. S.,
    5. Hein A. S.,
    6. Todd C.
    , 2019, New Last Glacial Maximum ice thickness constraints for the Weddell Sea Embayment: The Cryosphere, v. 13, p. 2935–2951, doi:https://doi.org/10.5194/tc-13-2935-2019
    OpenUrlCrossRef
  38. ↵
    1. Niedermann S.
    , 2002, Cosmic-Ray-Produced Noble Gases in terrestrial rocks: Dating tools for Surface Processes: Reviews in Mineralogy and Geochemistry, v. 47, n. 1, p. 731–784, doi:https://doi.org/10.2138/rmg.2002.47.16
    OpenUrlFREE Full Text
  39. ↵
    1. Niedermann S.,
    2. Graf T.,
    3. Marti K.
    , 1993, Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components: Earth and Planetary Science Letters, v. 118, n. 1–4, p. 65–73, doi:https://doi.org/10.1016/0012-821X(93)90159-7
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Nishiizumi K.
    , 2004, Preparation of 26Al AMS standards: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 223–224, p. 388–392, doi:https://doi.org/10.1016/j.nimb.2004.04.075
    OpenUrlCrossRef
  41. ↵
    1. Nishiizumi K.,
    2. Imamura M.,
    3. Caffee M. W.,
    4. Southon J. R.,
    5. Finkel R. C.,
    6. McAninch J.
    , 2007, Absolute calibration of 10Be AMS standards: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 258, n. 2, p. 403–413, doi:https://doi.org/10.1016/j.nimb.2007.01.297
    OpenUrlCrossRefWeb of Science
  42. ↵
    1. Parrenin F.,
    2. Dreyfus G.,
    3. Durand G.,
    4. Fujita S.,
    5. Gagliardini O.,
    6. Gillet F.,
    7. Jouzel J.,
    8. Kawamura K.,
    9. Lhomme N.,
    10. Masson-Delmotte V.,
    11. Ritz C.,
    12. Schwander J.,
    13. Shoji H.,
    14. Uemura R.,
    15. Watanabe O.,
    16. Yoshida N.
    , 2007, 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica: Climate of the Past, v. 3, p. 243–259, doi:https://doi.org/10.5194/cp-3-243-2007
    OpenUrlCrossRef
  43. ↵
    1. Phillips W. M.,
    2. McDonald E. V.,
    3. Reneau S. L.,
    4. Poths J.
    , 1998, Dating soils and alluvium with cosmogenic 21Ne depth profiles: Case studies from the Pajarito Plateau, New Mexico, USA: Earth and Planetary Science Letters, v. 160, n. 1–2, p. 209–223, doi:https://doi.org/10.1016/S0012-821X(98)00076-4
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Pollard D.,
    2. Chang W.,
    3. Haran M.,
    4. Applegate P.,
    5. DeConto R.
    , 2016, Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: Comparison of simple and advanced statistical techniques: Geoscientific Model Development, v. 9, p. 1697–1723, doi:https://doi.org/10.5194/gmd-9-1697-2016
    OpenUrlCrossRef
  45. ↵
    1. Rocchi S.,
    2. LeMasurier W. E.,
    3. Di V. G.
    , 2006, Oligocene to Holocene erosion and glacial history in Marie Byrd Land, West Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and from volcano morphologies: GSA Bulletin, v. 118, n. 7–8, p. 991–1005, doi:https://doi.org/10.1130/B25675.1
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Schäfer J. M.,
    2. Ivy-Ochs S.,
    3. Wieler R.,
    4. Leya I.,
    5. Baur H.,
    6. Denton G. H.,
    7. Schlüchter C.
    , 1999, Cosmogenic noble gas studies in the oldest landscape on earth: Surface exposure ages of the Dry Valleys, Antarctica: Earth and Planetary Science Letters, v. 167, n. 3–4, p. 215–226, doi:https://doi.org/10.1016/S0012-821X(99)00029-1
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Shevenell A. E.,
    2. Kennett J. P.,
    3. Lea D. W.
    , 2004, Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion: Science, v. 305, n. 5691, p. 1766–1770, doi:https://doi.org/15375266
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Shuster D. L.,
    2. Farley K. A.
    , 2005, Diffusion kinetics of proton-induced 21Ne, 3He, and 4He in quartz: Geochimica et Cosmochimica Acta, v. 69, n. 9, p. 2349–2359, doi:https://doi.org/10.1016/j.gca.2004.11.002
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Spector P.,
    2. Balco G.
    , 2020, Exposure-age data from across Antarctica reveal mid-Miocene establishment of polar desert climate: Geology, doi:https://doi.org/10.1130/G47783.1
    OpenUrlCrossRef
  50. ↵
    1. Spector P.,
    2. Stone J.,
    3. Pollard D.,
    4. Hillebrand T.,
    5. Lewis C.,
    6. Gombiner J.
    , 2018, West Antarctic sites for subglacial drilling to test for past ice-sheet collapse: The Cryosphere Discussions, p. 1–26, doi:https://doi.org/10.5194/tc-2018-88
    OpenUrlCrossRef
  51. ↵
    1. Spector P.,
    2. Stone J.,
    3. Goehring B.
    , 2019, Thickness of the divide and flank of the West Antarctic Ice Sheet through the last deglaciation: The Cryoshpere Discussions, doi:https://doi.org/https://doi.org/10.5194/tc-2019-115
    OpenUrlCrossRef
  52. ↵
    1. Alley R. B.,
    2. Bindschadler R. A.
    1. Steig E. J.,
    2. Fastook J. L.,
    3. Zweck C.,
    4. Goodwin I. D.,
    5. Licht K. J.,
    6. White J. W. C.,
    7. Ackert R. P.
    , 2001, West Antarctic Ice Sheet Elevation Changes, in Alley R. B., Bindschadler R. A., editors, The West Antarctic Ice Sheet-Behavior and Environment, v. 77, p. 75–90, doi:https://doi.org/10.1029/AR077p0075
    OpenUrlCrossRef
  53. ↵
    1. Stone J. O.
    , 2000, Air pressure and cosmogenic isotope production: Journal of Geophysical Research: Solid Earth, p. 23753–23759, doi:https://doi.org/10.1029/2000JB900181
    OpenUrlCrossRef
  54. ↵
    1. Stone J.,
    2. Spector P.,
    3. Hillebrand T.,
    4. Gombiner J. H.,
    5. Feathers J. K.,
    6. Talghader J.,
    7. Severinghaus J. P.,
    8. Pollard D.,
    9. Balco G.,
    10. Fifield L. K.
    , 2019, West Antarctic Ice Sheet history from a subglacial bedrock core: San Francisco, California, Abstract C21E-1507 presented at 2019 Fall Meeting, American Geophysical Union, 10 Dec.
  55. ↵
    1. Sugden D.,
    2. Denton G.
    , 2004, Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis: GSA Bulletin, v. 116, n. 7–8, p. 840–857, doi:https://doi.org/10.1130/B25356.1
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Sugden D. E.,
    2. Hein A. S.,
    3. Woodward J.,
    4. Marrero S. M.,
    5. Rodés Á.,
    6. Dunning S. A.,
    7. Stuart F. M.,
    8. Freeman S. P. H. T.,
    9. Winter K.,
    10. Westoby M. J.
    , 2017, The million-year evolution of the glacial trimline in the southernmost Ellsworth Mountains: Earth and Planetary Science Letters, v. 469, p. 42–52, doi:https://doi.org/10.1016/j.epsl.2017.04.006
    OpenUrlCrossRef
  57. The Polar Rock Repository (PRR), Byrd Polar and Climate Research Center (BPCRC), Ohio State University, Polar rock and dredge samples available for research: and educational use from the PRR, doi:https://doi.org/10.7289/V5RF5S18, Accessed May 10, 2020.
    OpenUrlCrossRef
  58. ↵
    1. Vermeesch P.,
    2. Balco G.,
    3. Blard P.-H.,
    4. Dunai T. J.,
    5. Kober F.,
    6. Niedermann S.,
    7. Shuster D. L.,
    8. Strasky S.,
    9. Stuart F. M.,
    10. Wieler R.,
    11. Zimmermann L.
    , 2015, Interlaboratory comparison of cosmogenic 21Ne in quartz: Quaternary Geochronology, v. 26, p. 20–28, doi:https://doi.org/10.1016/j.quageo.2012.11.009
    OpenUrlCrossRef
    1. Warny S.,
    2. Askin R. A.,
    3. Hannah M. J.,
    4. Mohr B. A. R.,
    5. Raine J. I.,
    6. Harwood D. M.,
    7. Florindo F.
    , and the SMS Science Team, 2009, Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene: Geology, v. 37, n. 10, p. 955–958, doi:https://doi.org/10.1130/G30139A.1
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Webers G.,
    2. Craddock C.,
    3. Rogers M.,
    4. Anderson J.
    , 1982, Geology of the Whitmore Mountains: International Union of Geological Sciences Publication, Series B, n. 4, Antarctic Geoscience, p. 841–847.
  60. ↵
    1. Wei L. J.,
    2. Raine J. I.,
    3. Liu X. H.
    , 2014, Terrestrial palynomorphs of the Cenozoic Pagodroma Group, northern Prince Charles Mountains, East Antarctica: Antarctic Science, v. 26, n. 1, p. 69–79, doi:https://doi.org/10.1017/S0954102013000278
    OpenUrlCrossRefGeoRef
  61. ↵
    1. Zachos J.,
    2. Pagani M.,
    3. Sloan L.,
    4. Thomas E.,
    5. Billups K.
    , 2001, Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present: Science, v. 292, n. 5517, p. 686–693, doi:https://doi.org/11326091
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 320 (8)
American Journal of Science
Vol. 320, Issue 8
1 Oct 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Miocene to Pleistocene glacial history of West Antarctica inferred from Nunatak geomorphology and cosmogenic-nuclide measurements on bedrock surfaces
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
13 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Miocene to Pleistocene glacial history of West Antarctica inferred from Nunatak geomorphology and cosmogenic-nuclide measurements on bedrock surfaces
Perry Spector, John Stone, Greg Balco, Trevor Hillebrand, Mika Thompson, Taryn Black
American Journal of Science Oct 2020, 320 (8) 637-676; DOI: 10.2475/10.2020.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Miocene to Pleistocene glacial history of West Antarctica inferred from Nunatak geomorphology and cosmogenic-nuclide measurements on bedrock surfaces
Perry Spector, John Stone, Greg Balco, Trevor Hillebrand, Mika Thompson, Taryn Black
American Journal of Science Oct 2020, 320 (8) 637-676; DOI: 10.2475/10.2020.01
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • FIELD SITES AND GLACIAL GEOLOGY
    • METHODS
    • COSMOGENIC NUCLIDE RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
  • Constraints on surface temperature 3.4 billion years ago based on triple oxygen isotopes of cherts from the Barberton Greenstone Belt, South Africa, and the problem of sample selection
Show more Articles

Similar Articles

Keywords

  • Antarctica
  • West Antarctic Ice Sheet
  • cosmogenic-nuclide geochemistry
  • exposure dating
  • glacial geology
  • Miocene
  • Pleistocene

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2021 American Journal of Science

Powered by HighWire