Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

A process-based ecosystem model (Paleo-BGC) to simulate the dynamic response of Late Carboniferous plants to elevated O2 and aridification

Joseph D. White, Isabel P. Montañez, Jonathan P. Wilson, Christopher J. Poulsen, Jennifer C. McElwain, William A. DiMichele, Michael T. Hren, Sophia Macarewich, Jon D. Richey and William J. Matthaeus
American Journal of Science September 2020, 320 (7) 547-598; DOI: https://doi.org/10.2475/09.2020.01
Joseph D. White
* Department of Biology, Baylor University, Waco, Texas 76798, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Joseph_D_White@baylor.edu
Isabel P. Montañez
** Department of Earth and Planetary Sciences, University of California, Davis, California 95616, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan P. Wilson
*** Department of Environmental Studies, Haverford College, Haverford, Pennsylvania 19041, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher J. Poulsen
§ Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer C. McElwain
§§ Botany Department, Trinity College, Dublin 2, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William A. DiMichele
§§§ Department of Paleobiology, Smithsonian Museum of Natural History, Washington, DC 20560, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael T. Hren
‡ Center for Integrative Geosciences, University of Connecticut, Storrs, Connecticut 06269, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sophia Macarewich
§ Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jon D. Richey
** Department of Earth and Planetary Sciences, University of California, Davis, California 95616, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William J. Matthaeus
* Department of Biology, Baylor University, Waco, Texas 76798, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Aber J.,
    2. McDowell W.,
    3. Nadelhoffer K.,
    4. Magill A.,
    5. Berntson G.,
    6. Kamakea M.,
    7. McNulty S.,
    8. Currie W.,
    9. Rustad L.,
    10. Fernandez I.
    , 1998, Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited: BioScience, v. 48, n. 11, p. 921–934, doi:https://doi.org/10.2307/1313296
    OpenUrlCrossRefWeb of Science
  2. ↵
    1. Algeo T. J.,
    2. Heckel P. H.
    , 2008, The Late Pennsylvanian midcontinent sea of North America: A review: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, n. 3–4, p. 205–221, doi:https://doi.org/10.1016/j.palaeo.2008.03.049
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Algeo T. J.,
    2. Scheckler S. E.
    , 1998, Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events: Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, v. 353, n. 1365, p. 113–130, doi:https://doi.org/10.1098/rstb.1998.0195
    OpenUrlCrossRef
    1. Apple M.,
    2. Tiekotter K.,
    3. Snow M.,
    4. Young J.,
    5. Soeldner A.,
    6. Phillips D.,
    7. Tingey D.,
    8. Bond B. J.
    , 2002, Needle anatomy changes with increasing tree age in Douglas-fir: Tree Physiology, v. 22, n. 2–3, p. 129–136, doi:https://doi.org/10.1093/treephys/22.2-3.129
    OpenUrlCrossRefPubMedWeb of Science
  4. ↵
    1. Archer A. W.,
    2. Greb S. F.
    , 1995, An Amazon-scale drainage system in the Early Pennsylvanian of central North America: The Journal of Geology, v. 103, n. 6, p. 611–627, doi:https://doi.org/10.1086/629784
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Bai Y.,
    2. Fang X.,
    3. Nie J.,
    4. Wang Y.,
    5. Wu F.
    , 2009, A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 271, n. 1–2, p. 161–169, doi:https://doi.org/10.1016/j.palaeo.2008.10.006
    OpenUrlCrossRefGeoRef
  6. ↵
    1. Biggins J.
    1. Ball J. T.,
    2. Woodrow I. E.,
    3. Berry J. A.
    , 1987, A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in Biggins J., editors, Progress in Photosynthesis Research: Dordrecht, Springer, p. 221–224, doi:https://doi.org/10.1007/978-94-017-0519-6_48
    OpenUrlCrossRef
  7. ↵
    1. Bartlett M. K.,
    2. Klein T.,
    3. Jansen S.,
    4. Choat B.,
    5. Sack L.
    , 2016, The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought: Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 46, p. 13098–13103, doi:https://doi.org/10.1073/pnas.1604088113
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Bashforth A. R.,
    2. Cleal C. J.,
    3. Gibling M. R.,
    4. Falcon-Lang H. J.,
    5. Miller R. F.
    , 2014, Paleoecology of early Pennsylvanian vegetation on a seasonally dry tropical landscape (Tynemouth Creek Formation, New Brunswick, Canada): Review of Palaeobotany and Palynology, v. 200, p. 229–263, doi:https://doi.org/10.1016/j.revpalbo.2013.09.006
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Bashforth A. R.,
    2. DiMichele W. A.,
    3. Eble C. F.,
    4. Nelson W. J.
    , 2016a, Dryland vegetation from the Middle Pennsylvanian of Indiana (Illinois Basin): The dryland biome in glacioeustatic, paleobiogeographic, and paleoecologic context: Journal of Paleontology, v. 90, n. 5, p. 785–814, doi:https://doi.org/10.1017/jpa.2016.25
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Bashforth A. R.,
    2. DiMichele W. A.,
    3. Eble C. F.,
    4. Nelson W. J.
    2016b, A Middle Pennsylvanian macrofloral assemblage from wetland deposits in Indiana (Illinois Basin): A taxonomic contribution with biostratigraphic, paleobiogeographic, and paleoecologic implications: Journal of Paleontology, v. 90, n. 4, p. 589–631, doi:https://doi.org/10.1017/jpa.2015.69
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Basinger J. F.,
    2. Rothwell G. W.,
    3. Stewart W. N.
    , 1974, Cauline vasculature and leaf trace production in medullosan pteridosperms: American Journal of Botany, v. 61, n. 9, p. 1002–1015, doi:https://doi.org/10.1002/j.1537-2197.1974.tb14040.x
    OpenUrlCrossRefGeoRef
  12. ↵
    1. Beerling D. J.,
    2. Berner R. A.
    , 2005, Feedbacks and the coevolution of plants and atmospheric CO2: Proceedings of the National Academy of Sciences of the United States of America, v. 102, n. 5, p. 1302–1305, doi:https://doi.org/10.1073/pnas.0408724102
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Beerling D. J.,
    2. Woodward F. I.
    , 1997, Changes in land plant function over the Phanerozoic: Reconstructions based on the fossil record: Botanical Journal of the Linnean Society, v. 124, n. 2, p. 137–153, doi:https://doi.org/10.1006/bojl.1997.0098
    OpenUrlCrossRefWeb of Science
  14. ↵
    1. Beerling D. J.,
    2. Woodward F. I.,
    3. Lomas M. R.,
    4. Wills M. A.,
    5. Quick W. P.,
    6. Valdes P. J.
    , 1998, The influence of Carboniferous palaeoatmospheres on plant function: An experimental and modelling assessment: Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, v. 353, n. 1365, p. 131–140, doi:https://doi.org/10.1098/rstb.1998.0196
    OpenUrlCrossRef
  15. ↵
    1. Benner R.,
    2. Hatcher P. G.,
    3. Hedges J. I.
    , 1990, Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses: Geochimica et Cosmochimica Acta, v. 54, n. 7, p. 2003–2013, doi:https://doi.org/10.1016/0016-7037(90)90268-P
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Berner R. A.
    , 1991, A model for atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 291, n. 4, p. 339–376, doi:https://doi.org/10.2475/ajs.291.4.339
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Berner R. A.
    1992, Weathering, plants, and the long-term carbon cycle: Geochimica et Cosmochimica Acta, v. 56, n. 8, p. 3225–3231, doi:https://doi.org/10.1016/0016-7037(92)90300-8
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Berner R. A.
    2006, Geological nitrogen cycle and atmospheric N2 over Phanerozoic time: Geology, v. 34, n. 5, p. 413–415, doi:https://doi.org/10.1130/G22470.1
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Berner R. A.
    2009, Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model: American Journal of Science, v. 309, n. 7, p. 603–606, doi:https://doi.org/10.2475/07.2009.03
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Blackman C. J.,
    2. Brodribb T. J.,
    3. Jordan G. J.
    , 2009, Leaf hydraulics and drought stress: Response, recovery and survivorship in four woody temperate plant species: Plant, Cell & Environment, v. 32, n. 11, p. 1584–1595, doi:https://doi.org/10.1111/j.1365-3040.2009.02023.x
    OpenUrlCrossRefPubMedWeb of Science
  21. ↵
    1. Blackmon M.,
    2. Boville B.,
    3. Bryan F.,
    4. Dickinson R.,
    5. Gent P.,
    6. Kiehl J.,
    7. Moritz R.,
    8. Randall D.,
    9. Shukla J.,
    10. Solomon S.,
    11. Bonan G.,
    12. Doney S.,
    13. Fung I.,
    14. Hack J.,
    15. Hunke E.,
    16. Hurrell J.,
    17. Kutzbach J.,
    18. Meehl J.,
    19. Otto-Bliesner B.,
    20. Saravanan R.,
    21. Schneider E. K.,
    22. Sloan L.,
    23. Spall M.,
    24. Taylor K.,
    25. Tribbia J.,
    26. Washington W.
    , 2001, The community climate system model: Bulletin of the American Meteorological Society, v. 82, n. 11, p. 2357–2376, doi:https://doi.org/10.1175/1520-0477(2001)082<2357:TCCSM>2.3.CO;2
    OpenUrlCrossRef
  22. ↵
    1. Bonan G. B.,
    2. Hartman M. D.,
    3. Parton W. J.,
    4. Wieder W. R.
    , 2013, Evaluating litter decomposition in earth system models with long-term litterbag experiments: An example using the Community Land Model version 4 (CLM 4): Global Change Biology, v. 19, n. 3, p. 957–974, doi:https://doi.org/10.1111/gcb.12031
    OpenUrlCrossRef
  23. ↵
    1. Bond-Lamberty B.,
    2. Peckham S. D.,
    3. Gower S. T.,
    4. Ewers B. E.
    , 2009, Effects of fire on regional evapotranspiration in the central Canadian boreal forest: Global Change Biology, v. 15, n. 5, p. 1242–1254, doi:https://doi.org/10.1111/j.1365-2486.2008.01776.x
    OpenUrlCrossRef
  24. ↵
    1. Boyce C. K.,
    2. Knoll A. H.
    , 2002, Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants: Paleobiology, v. 28, n. 1, p. 70–100, doi:https://doi.org/10.1666/0094-8373(2002)028<0070:EODPAT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Boyce C. K.,
    2. Lee J.-E.
    , 2011, Could land plant evolution have fed the marine revolution?: Paleontological Research, v. 15, n. 2, p. 100–105, doi:https://doi.org/10.2517/1342-8144-15.2.100
    OpenUrlCrossRefGeoRef
  26. ↵
    1. Brodribb T. J.,
    2. Feild T. S.,
    3. Jordan G. J.
    , 2007, Leaf maximum photosynthetic rate and venation are linked by hydraulics: Plant Physiology, v. 144, p. 1890–1898, doi:https://doi.org/10.1104/pp.107.101352
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Campbell G. S.,
    2. Norman J. M.
    , 2012, An introduction to environmental biophysics: New York, Springer Science & Business Media, 159 p.
  28. ↵
    1. Caves J. K.,
    2. Jost A. B.,
    3. Lau K. V.,
    4. Maher K.
    , 2016, Cenozoic carbon cycle imbalances and a variable weathering feedback: Earth and Planetary Science Letters, v. 450, p. 152–163, doi:https://doi.org/10.1016/j.epsl.2016.06.035
    OpenUrlCrossRef
  29. ↵
    1. Cecil C. B.,
    2. Brezinski D. K.,
    3. Dulong F.
    , 2004, The Paleozoic record of changes in global climate and sea level: Central Appalachian Basin: Geology of the National Capital Region—Field Trip Guidebook: US Geological Survey Circular, v. 1264, p. 77–133.
    OpenUrl
  30. ↵
    1. Cecil C. B.,
    2. DiMichele W. A.,
    3. Elrick S. D.
    , 2014, Middle and Late Pennsylvanian cyclothems, American Midcontinent: Ice-age environmental changes and terrestrial biotic dynamics: Comptes Rendus Geoscience, v. 346, n. 7–8, p. 159–168, doi:https://doi.org/10.1016/j.crte.2014.03.008
    OpenUrlCrossRef
  31. ↵
    1. Chiesi M.,
    2. Maselli F.,
    3. Moriondo M.,
    4. Fibbi L.,
    5. Bindi M.,
    6. Running S. W.
    , 2007, Application of BIOME-BGC to simulate Mediterranean forest processes: Ecological Modelling, v. 206, n. 1–2, p. 179–190, doi:https://doi.org/10.1016/j.ecolmodel.2007.03.032
    OpenUrlCrossRefWeb of Science
  32. ↵
    1. Churkina G.,
    2. Running S. W.
    , 1998, Contrasting climatic controls on the estimated productivity of global terrestrial biomes: Ecosystems, v. 1, p. 206–215, doi:https://doi.org/10.1007/s100219900016
    OpenUrlCrossRef
  33. ↵
    1. Cleal C. J.
    , 2015, The generic taxonomy of Pennsylvanian age marattialean fern frond adpressions: Palaeontographica Abteilung B, v. 292, n. 1–3, p. 1–21, doi:https://doi.org/10.1127/palb/292/2015/1
    OpenUrlCrossRef
  34. ↵
    1. Cleal C. J.,
    2. Thomas B. A.
    , 2005, Palaeozoic tropical rainforests and their effect on global climates: Is the past the key to the present?: Geobiology, v. 3, n. 1, p. 13–31, doi:https://doi.org/10.1111/j.1472-4669.2005.00043.x
    OpenUrlCrossRefGeoRef
  35. ↵
    1. Cleal C. J.,
    2. Uhl D.,
    3. Cascales-Miñana B.,
    4. Thomas B. A.,
    5. Bashforth A. R.,
    6. King S. C.,
    7. Zodrow E. L.
    , 2012, Plant biodiversity changes in Carboniferous tropical wetlands: Earth-Science Reviews, v. 114, n. 1–2, p. 124–155, doi:https://doi.org/10.1016/j.earscirev.2012.05.004
    OpenUrlCrossRefGeoRef
  36. ↵
    1. De Vries F. W. T.
    , 1975, The cost of maintenance processes in plant cells: Annals of Botany, v. 39, n. 1, p. 77–92, doi:https://doi.org/10.1093/oxfordjournals.aob.a084919
    OpenUrlCrossRef
  37. ↵
    1. Delevoryas T.
    , 1955, The Medullosae-Structure and relationships Medullosae-Structure: Palaeontographica Abteilung B, p. 114–167.
  38. ↵
    1. DeNiro M. J.,
    2. Cooper L. W.
    , 1989, Post-photosynthetic modification of oxygen isotope ratios of carbohydrates in the potato: Implications for paleoclimatic reconstruction based upon isotopic analysis of wood cellulose: Geochimica et Cosmochimica Acta, v. 53, n. 10, p. 2573–2580, doi:https://doi.org/10.1016/0016-7037(89)90129-4
    OpenUrlCrossRefGeoRef
  39. ↵
    1. Dessert C.,
    2. Dupré B.,
    3. François L. M.,
    4. Schott J.,
    5. Gaillardet J.,
    6. Chakrapani G.,
    7. Bajpai S.
    , 2001, Erosion of Deccan Traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater: Earth and Planetary Science Letters, v. 188, n. 3–4, p. 459–474, doi:https://doi.org/10.1016/S0012-821X(01)00317-X
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Diefendorf A. F.,
    2. Freimuth E. J.
    , 2017, Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: A review: Organic Geochemistry, v. 103, p. 1–21, doi:https://doi.org/10.1016/j.orggeochem.2016.10.016
    OpenUrlCrossRef
  41. ↵
    1. DiMichele W. A.
    , 1979, Arborescent lycopods of Pennsylvanian age coals: Lepidodendron dicentricum C. Felix: Palaeontographica Abteilung B, p. 122–136.
  42. ↵
    1. DiMichele W. A.
    1980, Paralycopodites Morey & Morey, from the Carboniferous of Euramerica—a reassessment of generic affinities and evolution of “Lepidodendron” brevifolium Williamson: American Journal of Botany, v. 67, n. 10, p. 1466–1476, doi:https://doi.org/10.1002/j.1537-2197.1980.tb07782.x
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. DiMichele W. A.
    2014, Wetland-dryland vegetational dynamics in the Pennsylvanian ice age tropics: International Journal of Plant Sciences, v. 175, n. 2, p. 123–164, doi:https://doi.org/10.1086/675235
    OpenUrlCrossRef
  44. ↵
    1. DiMichele W. A.,
    2. Phillips T. L.
    , 2002, The ecology of Paleozoic ferns: Review of Palaeobotany and Palynology, v. 119, n. 1–2, p. 143–159, doi:https://doi.org/10.1016/S0034-6667(01)00134-8
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. DiMichele W. A.,
    2. Phillips T. L.,
    3. Nelson W. J.
    , 2002, Place vs. time and vegetational persistence: A comparison of four tropical mires from the Illinois Basin during the height of the Pennsylvanian Ice Age: International Journal of Coal Geology, v. 50, n. 1–4, p. 43–72, doi:https://doi.org/10.1016/S0166-5162(02)00113-1
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. DiMichele W. A.,
    2. Tabor N. J.,
    3. Chaney D. S.,
    4. Nelson W. J.
    , 2006, From wetlands to wet spots: Environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras: GSA Special Papers, v. 399, p. 223–248, doi:https://doi.org/10.1130/2006.2399(11)
    OpenUrlCrossRef
  47. ↵
    1. DiMichele W. A.,
    2. Montañez I. P.,
    3. Poulsen C. J.,
    4. Tabor N. J.
    , 2009, Climate and vegetational regime shifts in the late Paleozoic ice age earth: Geobiology, v. 7, n. 2, p. 200–226, doi:https://doi.org/10.1111/j.1472-4669.2009.00192.x
    OpenUrlCrossRefPubMedWeb of Science
  48. ↵
    1. DiMichele W. A.,
    2. Elrick S. D.,
    3. Nelson W. J.
    , 2017, Vegetational zonation in a swamp forest, Middle Pennsylvanian, Illinois Basin, U.S.A., indicates niche differentiation in a wetland plant community: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 487, p. 71–92, doi:https://doi.org/10.1016/j.palaeo.2017.08.020
    OpenUrlCrossRef
  49. ↵
    1. Drew D.
    , 1983, Accelerated soil erosion in a karst area: The Burren, western Ireland: Journal of Hydrology, v. 61, n. 1–3, p. 113–124, doi:https://doi.org/10.1016/0022-1694(83)90238-X
    OpenUrlCrossRefGeoRef
  50. ↵
    1. Dudley R.
    , 1998, Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance: Journal of Experimental Biology, v. 201, p. 1043–1050.
    OpenUrlAbstract
    1. Eggert D. A.
    , 1963, Studies of Paleozoic ferns: The frond of Ankyropteris glabra: American Journal of Botany, v. 50, n. 4, p. 379–387, doi:https://doi.org/10.1002/j.1537-2197.1963.tb07206.x
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Evans J. R.,
    2. Caemmerer S. V.,
    3. Setchell B. A.,
    4. Hudson G. S.
    , 1994, The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco: Functional Plant Biology, v. 21, n. 4, p. 475–495, doi:https://doi.org/10.1071/PP9940475
    OpenUrlCrossRef
  52. ↵
    1. Falcon-Lang H. J.
    , 2004, Pennsylvanian tropical rain forests responded to glacial-interglacial rhythms: Geology, v. 32, n. 8, p. 689–692, doi:https://doi.org/10.1130/G20523.1
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Falcon-Lang H. J.
    2009, A Macroneuropteris scheuchzeri tree preserved in growth position in the Middle Pennsylvanian Sydney Mines Formation, Nova Scotia, Canada: Atlantic Geology, v. 45, doi:https://doi.org/10.4138/atlgeol.2009.004
    OpenUrlCrossRef
  54. ↵
    1. Falcon-Lang H. J.,
    2. Bashforth A. R.
    , 2004, Pennsylvanian uplands were forested by giant cordaitalean trees: Geology, v. 32, n. 5, p. 417–420, doi:https://doi.org/10.1130/G20371.1
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Falcon-Lang H. J.,
    2. Dimichele W. A.
    , 2010, What happened to the coal forests during Pennsylvanian glacial phases?: Palaios, v. 25, n. 9, p. 611–617, doi:https://doi.org/10.2110/palo.2009.p09-162r
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Falcon-Lang H. J.,
    2. Nelson W. J.,
    3. Heckel P. H.,
    4. DiMichele W. A.,
    5. Elrick S. D.
    , 2018, New insights on the stepwise collapse of the Carboniferous Coal Forests: Evidence from cyclothems and coniferopsid tree-stumps near the Desmoinesian–Missourian boundary in Peoria County, Illinois, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 490, p. 375–392, doi:https://doi.org/10.1016/j.qjpalaeo.2017.11.015
    OpenUrlCrossRef
  57. ↵
    1. Farquhar G. V.,
    2. von Caemmerer S.,
    3. Berry J. A.
    , 1980, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species: Planta, v. 149, p. 78–90, doi:https://doi.org/10.1007/BF00386231
    OpenUrlCrossRefPubMedWeb of Science
  58. ↵
    1. Flexas J.,
    2. Barbour M. M.,
    3. Brendel O.,
    4. Cabrera H. M.,
    5. Carriquí M.,
    6. Díaz-Espejo A.,
    7. Douthe C.,
    8. Dreyer E.,
    9. Ferrio J. P.,
    10. Gago J.,
    11. Gallè A.,
    12. Galmès J.,
    13. Kodama N.,
    14. Medrano H.,
    15. Niinemets U.,
    16. Pegurero-Pina J. J.,
    17. Pou A.,
    18. Ribas-Carbò M.,
    19. Tomàs M.,
    20. Tosens T.,
    21. Warren C. R.
    , 2012, Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis: Plant Science, v. 193–194, p. 70–84, doi:https://doi.org/10.1016/j.plantsci.2012.05.009
    OpenUrlCrossRefPubMed
  59. ↵
    1. Florin R.
    , 1951, Evolution of cordaites and conifers: Acta Horti Berginal, v. 17, p. 259–388.
    OpenUrl
  60. ↵
    1. Franks P. J.,
    2. Beerling D. J.
    , 2009, Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time: Proceedings of the National Academy of Sciences of the United States of America, v. 106, n. 25, p. 10343–10347, doi:https://doi.org/10.1073/pnas.0904209106
    OpenUrlAbstract/FREE Full Text
    1. Franks P. J.,
    2. Farquhar G. D.
    , 2001, The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana: Plant Physiology, v. 125, p. 935–942, doi:https://doi.org/10.1104/pp.125.2.935
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Franks P. J.,
    2. Royer D. L.,
    3. Beerling D. J.,
    4. Van de Water P. K.,
    5. Cantrill D. J.,
    6. Barbour M. M.,
    7. Berry J. A.
    , 2014, New constraints on atmospheric CO2 concentration for the Phanerozoic: Geophysical Research Letters, v. 41, n. 13, p. 4685–4694, doi:https://doi.org/10.1002/2014GL060457
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Gastaldo R. A.
    , 1987, Confirmation of Carboniferous clastic swamp communities: Nature, v. 326, p. 869–871, doi:https://doi.org/10.1038/326869a0
    OpenUrlCrossRefGeoRef
  63. ↵
    1. Glasspool I. J.,
    2. Scott A. C.,
    3. Waltham D.,
    4. Pronina N.,
    5. Shao L.
    , 2015, The impact of fire on the Late Paleozoic Earth system: Frontiers in Plant Science, v. 6, p. 756, doi:https://doi.org/10.3389/fpls.2015.00756
    OpenUrlCrossRef
  64. ↵
    1. Goddéris Y.,
    2. Donnadieu Y.,
    3. Carretier S.,
    4. Aretz M.,
    5. Dera G.,
    6. Macouin M.,
    7. Regard V.
    , 2017, Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering: Nature Geoscience, v. 10, p. 382–386, doi:https://doi.org/10.1038/ngeo2931
    OpenUrlCrossRef
  65. ↵
    1. Godsey S. E.,
    2. Kirchner J. W.,
    3. Clow D. W.
    , 2009, Concentration–discharge relationships reflect chemostatic characteristics of US catchments: Hydrological Processes: An International Journal, v. 23, n. 13, p. 1844–1864, doi:https://doi.org/10.1002/hyp.7315
    OpenUrlCrossRef
    1. Good C. W.,
    2. Taylor T. N.
    , 1970, On the structure of Cordaites felicis Benson from the Lower Pennsylvanian of North America: Palaeontology, v. 13, n. 1, p. 29–39.
    OpenUrlGeoRef
  66. ↵
    1. Gough D.
    , 1981, Solar interior structure and luminosity variations: Solar Physics, v. 74, p. 21–34, doi:https://doi.org/10.1007/978-94-010-9633-1_4
    OpenUrlCrossRefWeb of Science
  67. ↵
    1. Gould S. J.
    , 1994, The evolution of life on the earth: Scientific American, v. 271, n. 4, p. 84–91, doi:https://doi.org/10.1038/scientificamerican1094-84
    OpenUrlCrossRefGeoRefPubMed
  68. ↵
    1. Graham J. B.,
    2. Aguilar N. M.,
    3. Dudley R.,
    4. Gans C.
    , 1995, Implications of the late Paleozoic oxygen pulse for physiology and evolution: Nature, v. 375, p. 117–120, doi:https://doi.org/10.1038/375117a0
    OpenUrlCrossRefGeoRefWeb of Science
    1. Graham R.
    , 1935, An anatomical study of the leaves of the Carboniferous arborescent lycopods: Annals of Botany, v. 49, n. 3, p. 587–608, doi:https://doi.org/10.1093/oxfordjournals.aob.a090525
    OpenUrlCrossRefGeoRef
  69. ↵
    1. Gupta N. S.,
    2. Briggs D. E. G.,
    3. Collinson M. E.,
    4. Evershed R. P.,
    5. Michels R.,
    6. Jack K. S.,
    7. Pancost R. D.
    , 2007, Evidence for the in situ polymerisation of labile aliphatic organic compounds during the preservation of fossil leaves: Implications for organic matter preservation: Organic Geochemistry, v. 38, n. 3, p. 499–522, doi:https://doi.org/10.1016/j.orggeochem.2006.06.011
    OpenUrlCrossRefGeoRefWeb of Science
  70. ↵
    1. Harley P. C.,
    2. Thomas R. B.,
    3. Reynolds J. F.,
    4. Strain B. R.
    , 1992, Modelling photosynthesis of cotton grown in elevated CO2: Plant, Cell & Environment, v. 15, n. 3, p. 271–282, doi:https://doi.org/10.1111/j.1365-3040.1992.tb00974.x
    OpenUrlCrossRefWeb of Science
    1. Harms V. L.,
    2. Leisman G. A.
    , 1961, The anatomy and morphology of certain Cordaites leaves: Journal of Paleontology, p. 1041–1064.
  71. ↵
    1. Harrison S. P.,
    2. Prentice C. I.
    , 2003, Climate and CO2 controls on global vegetation distribution at the last glacial maximum: Analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations: Global Change Biology, v. 9, n. 2, p. 983–1004, doi:https://doi.org/10.1046/j.1365-2486.2003.00640.x
    OpenUrlCrossRefWeb of Science
  72. ↵
    1. Hart S. C.,
    2. Firestone M. K.
    , 1989, Evaluation of three in situ soil nitrogen availability assays: Canadian Journal of Forest Research, v. 19, n. 2, p. 185–191, doi:https://doi.org/10.1139/x89-026
    OpenUrlCrossRef
  73. ↵
    1. Haworth M.,
    2. Raschi A.
    , 2014, An assessment of the use of epidermal micro-morphological features to estimate leaf economics of Late Triassic–Early Jurassic fossil Ginkgoales: Review of Palaeobotany and Palynology, v. 205, p. 1–8, doi:https://doi.org/10.1016/j.revpalbo.2014.02.007
    OpenUrlCrossRefGeoRef
  74. ↵
    1. Heavens N. G.,
    2. Mahowald N. M.,
    3. Soreghan G. S.,
    4. Soreghan M. J.,
    5. Shields C. A.
    , 2012, Glacial-interglacial variability in tropical Pangaean precipitation during the Late Paleozoic ice age: Simulations with the Community Climate System Model: Climate of the Past Discussions, v. 8, p. 1915–1972, doi:https://doi.org/10.5194/cpd-8-1915-2012
    OpenUrlCrossRef
  75. ↵
    1. Heavens N. G.,
    2. Mahowald N. M.,
    3. Soreghan G. S.,
    4. Soreghan M. J.,
    5. Shields C. A.
    2015, A model-based evaluation of tropical climate in Pangaea during the late Palaeozoic icehouse: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 425, p. 109–127, doi:https://doi.org/10.1016/j.palaeo.2015.02.024
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Hernandez-Castillo G. R.,
    2. Rothwell G. W.,
    3. Mapes G.
    , 2001, Thucydiaceae fam. nov., with a review and reevaluation of Paleozoic walchian conifers: International Journal of Plant Sciences, v. 162, n. 5, p. 1155–1185, doi:https://doi.org/10.1086/321920
    OpenUrlCrossRefWeb of Science
  77. ↵
    1. Horton D. E.,
    2. Poulsen C. J.,
    3. Pollard D.
    , 2010, Influence of high-latitude vegetation feedbacks on late Palaeozoic glacial cycles: Nature Geoscience, v. 3, p. 572–577, doi:https://doi.org/10.1038/ngeo922
    OpenUrlCrossRef
  78. ↵
    1. Horton D. E.,
    2. Poulsen C. J.,
    3. Montañez I. P.,
    4. DiMichele W. A.
    , 2012, Eccentricity-paced late Paleozoic climate change: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 331–332, p. 150–161, doi:https://doi.org/10.1016/j.palaeo.2012.03.014
    OpenUrlCrossRef
  79. ↵
    1. Hunt E. R. Jr..,
    2. Running S. W.
    , 1992, Simulated dry matter yields for aspen and spruce stands in the North American boreal forest: Canadian Journal of Remote Sensing, v. 18, n. 3, p. 126–133, doi:https://doi.org/10.1080/07038992.1992.10855315
    OpenUrlCrossRef
  80. ↵
    1. Ibarra D. E.,
    2. Caves J. K.,
    3. Moon S.,
    4. Thomas D. L.,
    5. Hartmann J.,
    6. Chamberlain C. P.,
    7. Maher K.
    , 2016, Differential weathering of basaltic and granitic catchments from concentration–discharge relationships: Geochimica et Cosmochimica Acta, v. 190, p. 265–293, doi:https://doi.org/10.1016/j.gca.2016.07.006
    OpenUrlCrossRef
  81. ↵
    1. Ibarra D. E.,
    2. Rugenstein J. K. C.,
    3. Bachan A.,
    4. Baresch A.,
    5. Lau K. V.,
    6. Thomas D. L.,
    7. Lee J.-E.,
    8. Boyce C. K.,
    9. Chamberlain C. P.
    , 2019, Modeling the consequences of land plant evolution on silicate weathering: American Journal of Science, v. 319, n. 1, p. 1–43, doi:https://doi.org/10.2475/01.2019.01
    OpenUrlAbstract/FREE Full Text
  82. ↵
    1. Igamberdiev A. U.,
    2. Lea P. J.
    , 2006, Land plants equilibrate O2 and CO2 concentrations in the atmosphere: Photosynthesis Research, v. 87, p. 177–94, doi:https://doi.org/10.1007/s11120-005-8388-2
    OpenUrlCrossRefPubMedWeb of Science
  83. ↵
    1. Istanbulluoglu E.,
    2. Bras R. L.
    , 2005, Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography: Journal of Geophysical Research: Earth Surface, v. 110, n. F2, doi:https://doi.org/10.1029/2004JF000249
    OpenUrlCrossRef
  84. ↵
    1. Jacobson A. D.,
    2. Blum J. D.
    , 2003, Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps: Geology, v. 31, n. 10, p. 865–868, doi:https://doi.org/10.1130/G19662.1
    OpenUrlAbstract/FREE Full Text
  85. ↵
    1. Jarvis P. G.
    , 1976, The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field: Philosophical Transactions of the Royal Society of London, B, Biological Sciences, v. 273, n. 927, p. 593–-610, doi:https://doi.org/10.1098/rstb.1976.0035
    OpenUrlCrossRef
    1. Jiménez M. S.,
    2. Zellnig G.,
    3. Stabentheiner E.,
    4. Peters J.,
    5. Morales D.,
    6. Grill D.
    , 2000, Structure and ultrastructure of Pinus canariensis needles: Flora, v. 195, n. 3, p. 228–235, doi:https://doi.org/10.1016/S0367-2530(17)30975-1
    OpenUrlCrossRef
  86. ↵
    1. Jones H. G.
    , 1992, Plants and microclimate: Cambridge, United Kingdom, Cambridge Press, 452 p.
  87. ↵
    1. Kielland K.,
    2. Olson K.,
    3. Ruess R. W.,
    4. Boone R. D.
    , 2006, Contribution of winter processes to soil nitrogen flux in taiga forest ecosystems: Biogeochemistry, v. 81, p. 349–360, doi:https://doi.org/10.1007/s10533-006-9045-3
    OpenUrlCrossRef
  88. ↵
    1. Kimball J. S.,
    2. White M. A.,
    3. Running S. W.
    , 1997, Biome-BGC simulations of stand hydrologic processes for BOREAS: Journal of Geophysical Research: Atmospheres, v. 102, n. D24, p. 29043–29051, doi:https://doi.org/10.1029/97JD02235
    OpenUrlCrossRef
  89. ↵
    1. Krause A. J.,
    2. Mills B. J. W.,
    3. Zhang S.,
    4. Planavsky N. J.,
    5. Lenton T. M.,
    6. Poulton S. W.
    , 2018, Stepwise oxygenation of the Paleozoic atmosphere: Nature Communications, v. 9, article n. 4081, doi:https://doi.org/10.1038/s41467-018-06383-y
    OpenUrlCrossRef
  90. ↵
    1. Kutzbach J. E.,
    2. Ziegler A. M.
    , 1993, Simulation of Late Permian climate and biomes with an atmosphere-ocean model: Comparisons with observations: Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, v. 341, n. 1297, p. 327–340, doi:https://doi.org/10.1098/rstb.1993.0118
    OpenUrlCrossRef
  91. ↵
    1. Lagergren F.,
    2. Grelle A.,
    3. Lankreijer H.,
    4. Mölder M.,
    5. Lindroth A.
    , 2006, Current carbon balance of the forested area in Sweden and its sensitivity to global change as simulated by Biome-BGC: Ecosystems, v. 9, p. 894–908, doi:https://doi.org/10.1007/s10021-005-0046-1
    OpenUrlCrossRef
  92. ↵
    1. Lanuza O.,
    2. Casanoves F.,
    3. Delgado D.,
    4. Van den Meersche K.
    , 2019, Leaf litter stoichiometry affects decomposition rates and nutrient dynamics in tropical forests under restoration in Costa Rica: Restoration Ecology, v. 27, n. 3, p. 549–558, doi:https://doi.org/10.1111/rec.12893
    OpenUrlCrossRef
  93. ↵
    1. Laveine J.-P.
    , 1986, The size of the frond in the genus Alethopteris Sternberg (Pteridospermopsida, Carboniferous): Geobios, v. 19, n. 1, p. 49–59, doi:https://doi.org/10.1016/S0016-6995(86)80035-3
    OpenUrlCrossRefGeoRef
  94. ↵
    1. Laveine J.-P.,
    2. Belhis A.
    , 2007, Frond architecture of the seed-fern Macroneuropteris scheuchzeri, based on Pennsylvanian specimens from the Northern France coal field: Palaeontographica B, v. 277, n. 1–4, p. 1–41, doi:https://doi.org/10.1127/palb/277/2007/1
    OpenUrlCrossRef
    1. Laveine J.-P.,
    2. Oudoire T.
    , 2015, Partial alopecia for the Permo-Pennsylvanian seed-fern Macroneuropteris scheuchzeri: Review of Palaeobotany and Palynology, v. 216, p. 132–142, doi:https://doi.org/10.1016/j.revpalbo.2015.01.007
    OpenUrlCrossRefGeoRef
  95. ↵
    1. Le Hir G.,
    2. Donnadieu Y.,
    3. Goddéris Y.,
    4. Meyer-Berthaud B.,
    5. Ramstein G.,
    6. Blakey R. C.
    , 2011, The climate change caused by the land plant invasion in the Devonian: Earth and Planetary Science Letters, v. 310, n. 3–4, p. 203–212, doi:https://doi.org/10.1016/j.epsl.2011.08.042
    OpenUrlCrossRefGeoRefWeb of Science
  96. ↵
    1. Lenton T. M.,
    2. Dahl T. W.,
    3. Daines S. J.,
    4. Mills B. J. W.,
    5. Ozaki K.,
    6. Saltzman M. R.,
    7. Porada P.
    , 2016, Earliest land plants created modern levels of atmospheric oxygen: Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 35, p. 9704–9709, doi:https://doi.org/10.1073/pnas.1604787113
    OpenUrlAbstract/FREE Full Text
  97. ↵
    1. Lenton T. M.,
    2. Daines S. J.,
    3. Mills B. J. W.
    , 2018, COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time: Earth-Science Reviews, v. 178, p. 1–28, doi:https://doi.org/10.1016/j.earscirev.2017.12.004
    OpenUrlCrossRef
  98. ↵
    1. Towsend A. R.
    1. Lewis W. M. Jr..,
    2. Melack J. M.,
    3. McDowell W. H.,
    4. McClain M.,
    5. Richey J. E.
    , 1999, Nitrogen yields from undisturbed watersheds in the Americas, in Towsend A. R., editor, New Perspectives on Nitrogen Cycling in the Temperate and Tropical Americas: Dordrecht, Netherlands, Springer, p. 149–162, doi:https://doi.org/10.1007/978-94-011-4645-6_7
    OpenUrlCrossRef
  99. ↵
    1. Li G.,
    2. Yang D.,
    3. Sun S.
    , 2008, Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude: Functional Ecology, v. 22, n. 4, p. 557–564, doi:https://doi.org/10.1111/j.1365-2435.2008.01407.x
    OpenUrlCrossRef
  100. ↵
    1. Luizão R. C. C.,
    2. Luizão F. J.,
    3. Paiva R. Q.,
    4. Monteiro T. F.,
    5. Sousa L. S.,
    6. Kruijt B.
    , 2004, Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest: Global Change Biology, v. 10, n. 5, p. 592–600, doi:https://doi.org/10.1111/j.1529-8817.2003.00757.x
    OpenUrlCrossRefWeb of Science
    1. Luomala E. M.,
    2. Laitinen K.,
    3. Sutinen S.,
    4. Kellomäki S.,
    5. Vapaavuori E.
    , 2005, Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature: Plant, Cell & Environment, v. 28, n. 6, p. 733–749, doi:https://doi.org/10.1111/j.1365-3040.2005.01319.x
    OpenUrlCrossRefWeb of Science
  101. ↵
    1. Maffre P.,
    2. Ladant J.-B.,
    3. Moquet J.-S.,
    4. Carretier S.,
    5. Labat D.,
    6. Goddéris Y.
    , 2018, Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?: Earth and Planetary Science Letters, v. 493, p. 174–185, doi:https://doi.org/10.1016/j.epsl.2018.04.034
    OpenUrlCrossRef
  102. ↵
    1. Maher K.
    , 2010, The dependence of chemical weathering rates on fluid residence time: Earth and Planetary Science Letters, v. 294, n. 1–2, p. 101–110, doi:https://doi.org/10.1016/j.epsl.2010.03.010
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Maher K.
    2011, The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes: Earth and Planetary Science Letters, v. 312, n. 1–2, p. 48–58, doi:https://doi.org/10.1016/j.epsl.2011.09.040
    OpenUrlCrossRefGeoRefWeb of Science
  104. ↵
    1. Maher K.,
    2. Chamberlain C. P.
    , 2014, Hydrologic regulation of chemical weathering and the geologic carbon cycle: Science, v. 343, n. 6178, p. 1502–1504, doi:https://doi.org/10.1126/science.1250770
    OpenUrlAbstract/FREE Full Text
  105. ↵
    1. Mattsson T.,
    2. Finér L.,
    3. Kortelainen P.,
    4. Sallantaus T.
    , 2003, Brook water quality and background leaching from unmanaged forested catchments in Finland: Water, Air, and Soil Pollution, v. 147, p. 275–298, doi:https://doi.org/10.1023/A:1024525328220
    OpenUrlCrossRef
  106. ↵
    1. McCulloh K. A.,
    2. Sperry J. S.,
    3. Meinzer F. C.,
    4. Lachenbruch B.,
    5. Atala C.
    , 2009, Murray's law, the ‘Yarrum’optimum, and the hydraulic architecture of compound leaves: New Phytologist, v. 184, n. 1, p. 234–244, doi:https://doi.org/10.1111/j.1469-8137.2009.02950.x
    OpenUrlCrossRefPubMedWeb of Science
  107. ↵
    1. McDowell W. H.,
    2. Asbury C. E.
    , 1994, Export of carbon, nitrogen, and major ions from three tropical montane watersheds: Limnology and Oceanography, v. 39, n. 1, p. 111–125, doi:https://doi.org/10.4319/lo.1994.39.1.0111
    OpenUrlCrossRefGeoRefWeb of Science
  108. ↵
    1. McElwain J. C.,
    2. Chaloner W. G.
    , 1995, Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic: Annals of Botany, v. 76, n. 4, p. 389–395, doi:https://doi.org/10.1006/anbo.1995.1112
    OpenUrlCrossRef
    1. McElwain J. C.,
    2. Montañez I.,
    3. White J. D.,
    4. Wilson J. P.,
    5. Yiotis C.
    , 2016, Was atmospheric CO2 capped at 1000 ppm over the past 300 million years?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, Part 4, p. 653–658, doi:https://doi.org/10.1016/j.palaeo.2015.10.017
    OpenUrlCrossRefGeoRef
  109. ↵
    1. McElwain J. C.,
    2. Yiotis C.,
    3. Lawson T.
    , 2016a, Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution: New Phytologist, v. 209, n. 1, p. 94–103, doi:https://doi.org/10.1111/nph.13579
    OpenUrlCrossRefPubMed
  110. ↵
    1. McGroddy M. E.,
    2. Daufresne T.,
    3. Hedin L. O.
    , 2004, Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios: Ecology, v. 85, n. 9, p. 2390–2401, doi:https://doi.org/10.1890/03-0351
    OpenUrlCrossRefWeb of Science
  111. ↵
    1. McKown A. D.,
    2. Cochard H.,
    3. Sack L.
    , 2010, Decoding leaf hydraulics with a spatially explicit model: Principles of venation architecture and implications for its evolution: The American Naturalist, v. 175, n. 4, p. 447–460, doi:https://doi.org/10.1086/650721
    OpenUrlCrossRefPubMedWeb of Science
  112. ↵
    1. McMahon W. J.,
    2. Davies N. S.
    , 2018, Evolution of alluvial mudrock forced by early land plants: Science, v. 359, n. 6379, p. 1022–1024, doi:https://doi.org/10.1126/science.aan4660
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Meyers P. A.,
    2. Leenheer M. J.,
    3. Bourbonniere R. A.
    , 1995, Diagenesis of vascular plant organic matter components during burial in lake sediments: Aquatic Geochemistry, v. 1, p. 35–52, doi:https://doi.org/10.1007/BF01025230
    OpenUrlCrossRefGeoRef
  114. ↵
    1. Mickle J. E.,
    2. Rothwell G. W.
    , 1982, Permineralized Alethopteris from the upper Pennsylvanian of Ohio and Illinois: Journal of Paleontology, v. 56, n. 2, p. 392–402, https://www.jstor.org/stable/1304465
    OpenUrlAbstract
  115. ↵
    1. Montañez I. P.
    , 2016, A Late Paleozoic climate window of opportunity: Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 9, p. 2334–2336, doi:https://doi.org/10.1073/pnas.1600236113
    OpenUrlFREE Full Text
  116. ↵
    1. Montañez I. P.,
    2. McElwain J. C.,
    3. Poulsen C. J.,
    4. White J. D.,
    5. DiMichele W. A.,
    6. Wilson J. P.,
    7. Griggs G.,
    8. Hren M. T.
    , 2016, Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial-interglacial cycles: Nature Geoscience, v. 9, p. 824–828, doi:https://doi.org/10.1038/ngeo2822
    OpenUrlCrossRef
  117. ↵
    1. Montañez I. P.,
    2. Osleger D. J.,
    3. Chen J.,
    4. Wortham B. E.,
    5. Stamm R. G.,
    6. Nemyrovska T. I.,
    7. Griffin J. M.,
    8. Poletaev V. I.,
    9. Wardlaw B. R.
    , 2018, Carboniferous climate teleconnections archived in coupled bioapatite δ18OPO4 and 87Sr/86Sr records from the epicontinental Donets Basin, Ukraine: Earth and Planetary Science Letters, v. 492, p. 89–101, doi:https://doi.org/10.1016/j.epsl.2018.03.051
    OpenUrlCrossRef
  118. ↵
    1. Fogg G.
    1. Monteith J.
    , 1965, Evaporation and environment, in Fogg G., editor, The state of water movement in living organisms: New York, Academic Press, Proceedings of the Society for Experimental Biology, Symposium n. 19, p. 205–234.
  119. ↵
    1. Monteith J. L.,
    2. Unsworth M. H.
    , 2008, Principles of Environmental Sciences: Elsevier, The Netherlands, Amsterdam, 440 p.
  120. ↵
    1. Mösle B.,
    2. Collinson M. E.,
    3. Finch P.,
    4. Stankiewicz B. A.,
    5. Scott A. C.,
    6. Wilson R.
    , 1998, Factors influencing the preservation of plant cuticles: A comparison of morphology and chemical composition of modern and fossil examples: Organic Geochemistry, v. 29, n. 5–7, p. 1369–1380, doi:https://doi.org/10.1016/S0146-6380(98)00080-1
    OpenUrlCrossRefGeoRefWeb of Science
  121. ↵
    1. Munzimi Y. A.,
    2. Hansen M. C.,
    3. Adusei B.,
    4. Senay G. B.
    , 2015, Characterizing Congo Basin rainfall and climate using tropical rainfall measuring mission (TRMM) satellite data and limited rain gauge ground observations: Journal of Applied Meteorology and Climatology, v. 54, n. 3, p. 541–555, doi:https://doi.org/10.1175/JAMC-D-14-0052.1
    OpenUrlCrossRef
  122. ↵
    1. Neill C.,
    2. Piccolo M. C.,
    3. Steudler P. A.,
    4. Melillo J. M.,
    5. Feigl B. J.,
    6. Cerri C. C.
    , 1995, Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin: Soil Biology and Biochemistry, v. 27, n. 9, p. 1167–1175, doi:https://doi.org/10.1016/0038-0717(95)00036-E
    OpenUrlCrossRefWeb of Science
  123. ↵
    1. Nemani R.,
    2. White M.,
    3. Thornton P.,
    4. Nishida K.,
    5. Reddy S.,
    6. Jenkins J.,
    7. Running S.
    , 2002, Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States: Geophysical Research Letters, v. 29, n. 10, p. 106-1–106-4, doi:https://doi.org/10.1029/2002GL014867
    OpenUrlCrossRef
  124. ↵
    1. Neumann M.,
    2. Ukonmaanaho L.,
    3. Johnson J.,
    4. Benham S.,
    5. Vesterdal L.,
    6. Novotný R.,
    7. Verstraeten A.,
    8. Lundin L.,
    9. Thimonier A.,
    10. Michopoulos P.,
    11. Hasenauer H.
    , 2018, Quantifying carbon and nutrient input from litterfall in european forests using field observations and modeling: Global Biogeochemical Cycles, v. 32, n. 5, p. 784–798, doi:https://doi.org/10.1029/2017GB005825
    OpenUrlCrossRef
  125. ↵
    1. Niinemets Ü.,
    2. Reichstein M.
    , 2003, Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained: Journal of Geophysical Research: Atmospheres, v. 108, n. D7, doi:https://doi.org/10.1029/2002JD002620
    OpenUrlCrossRef
  126. ↵
    1. Niinemets Ü.,
    2. Díaz-Espejo A.,
    3. Flexas J.,
    4. Galmés J.,
    5. Warren C. R.
    , 2009, Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field: Journal of Experimental Botany, v. 60, n. 8, p. 2271–2282, doi:https://doi.org/10.1093/jxb/erp063
    OpenUrlCrossRefPubMedWeb of Science
  127. ↵
    1. Oguchi R.,
    2. Hikosaka K.,
    3. Hirose T.
    , 2003, Does the photosynthetic light-acclimation need change in leaf anatomy?: Plant, Cell & Environment, v. 26, n. 4, p. 505–512, doi:https://doi.org/10.1046/j.1365-3040.2003.00981.x
    OpenUrlCrossRefWeb of Science
  128. ↵
    1. Oleson K.,
    2. Lawrence D. M.,
    3. Bonan G. B.,
    4. Drewniak B.,
    5. Huang M.,
    6. Koven C.,
    7. Levis S.,
    8. Li F.,
    9. Riley W. J.,
    10. Subin Z. M.,
    11. Swenson S. C.,
    12. Thornton P. E.
    , 2013, Technical description of version 4.5 of the Community Land Model (CLM), 420 p., doi:https://doi.org/10.5065/D6RR1W7M
  129. ↵
    1. Ooba M.,
    2. Wang Q.,
    3. Murakami S.,
    4. Kohata K.
    , 2010, Biogeochemical model (BGC-ES) and its basin-level application for evaluating ecosystem services under forest management practices: Ecological Modelling, v. 221, n. 16, p. 1979–1994, doi:https://doi.org/10.1016/j.ecolmodel.2010.05.008
    OpenUrlCrossRef
  130. ↵
    1. Peck S. L.
    , 2004, Simulation as experiment: A philosophical reassessment for biological modeling: Trends in Ecology & Evolution, v. 19, n. 10, p. 530–534, doi:https://doi.org/10.1016/j.tree.2004.07.019
    OpenUrlCrossRef
  131. ↵
    1. Penman H. L.
    , 1948, Natural evaporation from open water, bare soil and grass: Proceedings of the Royal Society of London, Series A, Mathematical, Physical and Engineering Sciences, v. 193, n. 1032, p. 120–145, doi:https://doi.org/10.1098/rspa.1948.0037
    OpenUrlCrossRefWeb of Science
  132. ↵
    1. Peppe D. J.,
    2. Royer D. L.,
    3. Cariglino B.,
    4. Oliver S. Y.,
    5. Newman S.,
    6. Leight E.,
    7. Enikolopov G.,
    8. Fernandez-Burgos M.,
    9. Herrera F.,
    10. Adams J. M.,
    11. Correa E.,
    12. Currano E. D.,
    13. Erickson J. M.,
    14. Hinojosa L. F.,
    15. Hoganson J. W.,
    16. Iglesias A.,
    17. Jaramillo C. A.,
    18. Johnson K. R.,
    19. Jordan G. J.,
    20. Kraft N. J. B.,
    21. Lovelock E. C.,
    22. Lusk C. H.,
    23. Niinemets U.,
    24. Peñuelas,
    25. Rapson G.,
    26. Wing S. L.,
    27. Wright I. J.
    , 2011, Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications: New Phytologist, v. 190, n. 3, p. 724–739, doi:https://doi.org/10.1111/j.1469-8137.2010.03615.x
    OpenUrlCrossRefPubMedWeb of Science
  133. ↵
    1. Peppe D. J.,
    2. Lemons C. R.,
    3. Royer D. L.,
    4. Wing S. L.,
    5. Wright I. J.,
    6. Lusk C. H.,
    7. Rhoden C. H.
    , 2014, Biomechanical and leaf–climate relationships: A comparison of ferns and seed plants: American Journal of Botany, v. 101, n. 2, p. 338–347, doi:https://doi.org/10.3732/ajb.1300220
    OpenUrlAbstract/FREE Full Text
  134. ↵
    1. Pérez C. A.,
    2. Hedin L. O.,
    3. Armesto J. J.
    , 1998, Nitrogen mineralization in two unpolluted old-growth forests of contrasting biodiversity and dynamics: Ecosystems, v. 1, p. 361–373, doi:https://doi.org/10.1007/s100219900030
    OpenUrlCrossRef
  135. ↵
    1. Peyser C. E.,
    2. Poulsen C. J.
    , 2008, Controls on Permo-Carboniferous precipitation over tropical Pangaea: A GCM sensitivity study: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, n. 3–4, p. 181–192, doi:https://doi.org/10.1016/j.palaeo.2008.03.048
    OpenUrlCrossRefGeoRefWeb of Science
  136. ↵
    1. Pfefferkorn H. W.,
    2. Thomson M. C.
    , 1982, Changes in dominance patterns in Upper Carboniferous plant-fossil assemblages: Geology, v. 10, n. 12, p. 641–644, doi:https://doi.org/10.1130/0091-7613(1982)10<641:CIDPIU>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Pfefferkorn H. W.,
    2. Wang J.
    , 2009, Stigmariopsis, Stigmaria asiatica, and the survival of the Sigillaria brardii-ichthyolepis group in the tropics of the late Pennsylvanian and Early Permian: Palaeoworld, v. 18, n. 2–3, p. 130–135, doi:https://doi.org/10.1016/j.palwor.2009.04.005
    OpenUrlCrossRef
  138. ↵
    1. Phillips T. L.,
    2. Peppers R. A.
    , 1984, Changing patterns of Pennsylvanian coal-swamp vegetation and implications of climatic control on coal occurrence: International Journal of Coal Geology, v. 3, n. 3, p. 205–255, doi:https://doi.org/10.1016/0166-5162(84)90019-3
    OpenUrlCrossRefGeoRefWeb of Science
  139. ↵
    1. Phillips T. L.,
    2. Peppers R. A.,
    3. Avcin M. J.,
    4. Laughnan P. F.
    , 1974, Fossil plants and coal: Patterns of change in Pennsylvanian coal swamps of the Illinois Basin: Science, v. 184, n. 4144, p. 1367–1369, doi:https://doi.org/10.1126/science.184.4144.1367
    OpenUrlAbstract/FREE Full Text
  140. ↵
    1. Pollard D.,
    2. Thompson S. L.
    , 1995, Use of a land-surface-transfer scheme (LSX) in a global climate model: The response to doubling stomatal resistance: Global and Planetary Change, v. 10, n. 1–4, p. 129–161, doi:https://doi.org/10.1016/0921-8181(94)00023-7
    OpenUrlCrossRefWeb of Science
  141. ↵
    1. Pollard D.,
    2. Thompson S. L.
    1997, Climate and ice-sheet mass balance at the last glacial maximum from the GENESIS version 2 global climate model: Quaternary Science Reviews, v. 16, n. 8, p. 841–863, doi:https://doi.org/10.1016/S0277-3791(96)00115-1
    OpenUrlCrossRefGeoRefWeb of Science
  142. ↵
    1. Poulsen C. J.,
    2. Pollard D.,
    3. Montañez I. P.,
    4. Rowley D.
    , 2007, Late Paleozoic tropical climate response to Gondwanan deglaciation: Geology, v. 35, n. 9, p. 771–774, doi:https://doi.org/10.1130/G23841A.1
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Poulsen C. J.,
    2. Tabor C.,
    3. White J. D.
    , 2015, Long-term climate forcing by atmospheric oxygen concentrations: Science, v. 348, n. 6240, p. 1238–1241, doi:https://doi.org/10.1126/science.1260670
    OpenUrlAbstract/FREE Full Text
    1. Pšenička J.
    , ms, 2005, Taxonomy of Pennsylvanian-Permian ferns from coal basins in the Czech Republic and Canada: Prague, Czech Republic, Charles University, Ph. D. thesis, 185 p.
    1. Pšenička J.,
    2. Bek J.,
    3. Zodrow E. L.,
    4. Cleal C. J.,
    5. Hemsley A. R.
    , 2003, A new late Westphalian fossil marattialean fern from Nova Scotia: Botanical Journal of the Linnean Society, v. 142, n. 2, p. 199–212, doi:https://doi.org/10.1046/j.1095-8339.2003.00169.x
    OpenUrlCrossRef
  144. ↵
    1. Raj R.,
    2. Hamm N. A. S.,
    3. van der Tol C.,
    4. Stein A.
    , 2014, Variance-based sensitivity analysis of BIOME-BGC for gross and net primary production: Ecological Modelling, v. 292, p. 26–36, doi:https://doi.org/10.1016/j.ecolmodel.2014.08.012
    OpenUrlCrossRef
  145. ↵
    1. Raymond A.,
    2. Lambert L.,
    3. Costanza S.,
    4. Slone E. J.,
    5. Cutlip P. C.
    , 2010, Cordaiteans in paleotropical wetlands: An ecological re-evaluation: International Journal of Coal Geology, v. 83, n. 2–3, p. 248–265, doi:https://doi.org/10.1016/j.coal.2009.10.009
    OpenUrlCrossRefGeoRefWeb of Science
  146. ↵
    1. Rees P. M.,
    2. Ziegler A. M.,
    3. Gibbs M. T.,
    4. Kutzbach J. E.,
    5. Behling P. J.,
    6. Rowley D. B.
    , 2002, Permian phytogeographic patterns and climate data/model comparisons: The Journal of Geology, v. 110, n. 1, p. 1–31, doi:https://doi.org/10.1086/324203
    OpenUrlCrossRefGeoRefWeb of Science
  147. ↵
    1. Reeves M. C.,
    2. Moreno A. L.,
    3. Bagne K. E.,
    4. Running S. W.
    , 2014, Estimating climate change effects on net primary production of rangelands in the United States: Climatic Change, v. 126, p. 429–442, doi:https://doi.org/10.1007/s10584-014-1235-8
    OpenUrlCrossRef
  148. ↵
    1. Reich P. B.,
    2. Grigal D. F.,
    3. Aber J. D.,
    4. Gower S. T.
    , 1997, Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils: Ecology, v. 78, n. 2, p. 335–347, doi:https://doi.org/10.1890/0012-9658(1997)078[0335:NMAPIH]2.0.CO;2
    OpenUrlCrossRefWeb of Science
  149. ↵
    1. Rice D. L.,
    2. Tenore K. R.
    , 1981, Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes: Estuarine, Coastal and Shelf Science, v. 13, n. 6, p. 681–690, doi:https://doi.org/10.1016/S0302-3524(81)80049-7
    OpenUrlCrossRefGeoRef
  150. ↵
    1. Riebe C. S.,
    2. Kirchner J. W.,
    3. Finkel R. C.
    , 2004, Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes: Earth and Planetary Science Letters, v. 224, n. 3–4, p. 547–562, doi:https://doi.org/10.1016/j.epsl.2004.05.019
    OpenUrlCrossRefGeoRefWeb of Science
  151. ↵
    1. Roelfsema M. R. G.,
    2. Hedrich R.
    , 2005, In the light of stomatal opening: New insights into ‘the Watergate’: New Phytologist, v. 167, n. 3, p. 665–691, doi:https://doi.org/10.1111/j.1469-8137.2005.01460.x
    OpenUrlCrossRefPubMedWeb of Science
  152. ↵
    1. Romero A.
    , 2001, Evolution is opportunistic, not directional: BioScience, v. 51, n. 1, p. 4–7, doi:https://doi.org/10.1641/0006-3568(2001)051[0004:EIOND]2.0.CO;2
    OpenUrlCrossRef
  153. ↵
    1. Rosenau N. A.,
    2. Tabor N. J.,
    3. Elrick S. D.,
    4. Nelson W. J.
    , 2013, Polygenetic History of Paleosols In Middle–Upper Pennsylvanian Cyclothems of the Illinois Basin, USA: Part II. Integrating Geomorphology, Climate, and Glacioeustasy: Part II: Journal of Sedimentary Research, v. 83, n. 8, p. 637–668, doi:https://doi.org/10.2110/jsr.2013.51
    OpenUrlAbstract/FREE Full Text
  154. ↵
    1. Royer D. L.,
    2. Hren M. T.
    , 2017, Carbon isotopic fractionation between whole leaves and cuticle: Palaios, v. 32, n. 4, p. 199–205, doi:https://doi.org/10.2110/palo.2016.073
    OpenUrlAbstract/FREE Full Text
  155. ↵
    1. Royer D. L.,
    2. Wilf P.,
    3. Janesko D. A.,
    4. Kowalski E. A.,
    5. Dilcher D. L.
    , 2005, Correlations of climate and plant ecology to leaf size and shape: Potential proxies for the fossil record: American Journal of Botany, v. 92, n. 7, p. 1141–1151, doi:https://doi.org/10.3732/ajb.92.7.1141
    OpenUrlAbstract/FREE Full Text
  156. ↵
    1. Runge J.
    , 2008, The Congo River, Central Africa: Large Rivers: Geomorphology and Management: Chichester, England, John Wiley and Sons Ltd., p. 293–309, doi:https://doi.org/10.1002/9780470723722.ch14
  157. ↵
    1. Running S. W.
    , 1984, Microclimate control of forest productivity: Analysis by computer simulation of annual photosynthesis/transpiration balance in different environments: Agricultural and Forest Meteorology, v. 32, n. 3–4, p. 267–288, doi:https://doi.org/10.1016/0168-1923(84)90054-6
    OpenUrlCrossRef
  158. ↵
    1. Running S. W.,
    2. Coughlan J. C.
    , 1988, A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes: Ecological Modelling, v. 42, n. 2, p. 125–154, doi:https://doi.org/10.1016/0304-3800(88)90112-3
    OpenUrlCrossRefWeb of Science
  159. ↵
    1. Running S. W.,
    2. Gower S. T.
    , 1991, FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets: Tree Physiology, v. 9, n. 1–2, p. 147–160, doi:https://doi.org/10.1093/treephys/9.1-2.147
    OpenUrlCrossRefPubMedWeb of Science
  160. ↵
    1. Running S. W.,
    2. Nemani R. R.,
    3. Hungerford R. D.
    , 1987, Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis: Canadian Journal of Forest Research, v. 17, n. 6, p. 472–483, doi:https://doi.org/10.1139/x87-081
    OpenUrlCrossRef
  161. ↵
    1. Ryan M.
    , 1995, Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content: Plant, Cell & Environment, v. 18, n. 7, p. 765–772, doi:https://doi.org/10.1111/j.1365-3040.1995.tb00579.x
    OpenUrlCrossRefWeb of Science
  162. ↵
    1. Sack L.,
    2. Holbrook N. M.
    , 2006, Leaf hydraulics: Annual Review of Plant Biology, v. 57, p. 361–381, doi:https://doi.org/10.1146/annurev.arplant.56.032604.144141
    OpenUrlCrossRefPubMedWeb of Science
  163. ↵
    1. Sahagian D. L.,
    2. Maus J. E.
    , 1994, Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation: Nature, v. 372, p. 449–451, doi:https://doi.org/10.1038/372449a0
    OpenUrlCrossRefGeoRef
    1. Saxton K. E.,
    2. Rawls W. J.
    , 2006, Soil water characteristic estimates by texture and organic matter for hydrologic solutions: Soil Science Society of America Journal, v. 70, n. 5, p. 1569–1578, doi:https://doi.org/10.2136/sssaj2005.0117
    OpenUrlCrossRefWeb of Science
  164. ↵
    1. Schachat S. R.,
    2. Labandeira C. C.,
    3. Saltzman M. R.,
    4. Cramer B. D.,
    5. Payne J. L.,
    6. Boyce C. K.
    , 2018, Phanerozoic p O2 and the early evolution of terrestrial animals: Proceedings of the Royal Society B: Biological Sciences, v. 285, n. 1871, p. 20172631, doi:https://doi.org/10.1098/rspb.2017.2631
    OpenUrlCrossRefPubMed
  165. ↵
    1. Schimel D.,
    2. Melillo J.,
    3. Tian H.,
    4. McGuire A. D.,
    5. Kicklighter D.,
    6. Kittel T.,
    7. Rosenbloom N.,
    8. Running S.,
    9. Thornton P.,
    10. Ojima D.,
    11. Parton W.,
    12. Kelly R.,
    13. Sykes M.,
    14. Neilson R.,
    15. Rizzo B.
    , 2000, Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States: Science, v. 287, n. 5460, p. 2004–2006, doi:https://doi.org/10.1126/science.287.5460.2004
    OpenUrlAbstract/FREE Full Text
  166. ↵
    1. Schulze E.-D.,
    2. Kelliher F. M.,
    3. Körner C.,
    4. Lloyd J.,
    5. Leuning R.
    , 1994, Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise: Annual Review of Ecology and Systematics, v. 25, p. 629–662, doi:https://doi.org/10.1146/annurev.es.25.110194.003213
    OpenUrlCrossRefWeb of Science
  167. ↵
    1. Schwalm C. R.,
    2. Huntzinger D. N.,
    3. Fisher J. B.,
    4. Michalak A. M.,
    5. Bowman K.,
    6. Ciais P.,
    7. Cook R.,
    8. El-Masri B.,
    9. Hayes D.,
    10. Huang M.,
    11. Ito A.,
    12. Jain A.,
    13. King A. W.,
    14. Lei H.,
    15. Liu J.,
    16. Lu C.,
    17. Jao J.,
    18. Peng S.,
    19. Poulter B.,
    20. Ricciuto D.,
    21. Schaefer K.,
    22. Shi X.,
    23. Tao B.,
    24. Tian H.,
    25. Wang W.,
    26. Wei Y.,
    27. Yang J.,
    28. Zeng N.
    , 2015, Toward “optimal” integration of terrestrial biosphere models: Geophysical Research Letters, v. 42, n. 11, p. 4418–4428, doi:https://doi.org/10.1002/2015GL064002
    OpenUrlCrossRef
  168. ↵
    1. Scoffoni C.,
    2. Rawls M.,
    3. McKown A.,
    4. Cochard H.,
    5. Sack L.
    , 2011, Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture: Plant Physiology, v. 156, p. 832–843, doi:https://doi.org/10.1104/pp.111.173856
    OpenUrlAbstract/FREE Full Text
  169. ↵
    1. Seibt U.,
    2. Rajabi A.,
    3. Griffiths H.,
    4. Berry J. A.
    , 2008, Carbon isotopes and water use efficiency: Sense and sensitivity: Oecologia, v. 155, article n. 441, doi:https://doi.org/10.1007/s00442-007-0932-7
    OpenUrlCrossRef
    1. Šimůnek Z.
    , 2007, New classification of the genus Cordaites from the Carboniferous and Permian of the Bohemian Massif, based on cuticle micromorphology: Acta Musei Nationalis Pragae, Series B, Historia Naturalis, v. 62, n. 34, p. 97–210.
    OpenUrl
    1. Šimůnek Z.,
    2. Florjan S.
    , 2013, The Pennsylvanian cordaitalean dispersed cuticles from the Upper Silesian Basin (Poland): Review of Palaeobotany and Palynology, v. 197, p. 26–49, doi:https://doi.org/10.1016/j.revpalbo.2013.04.006
    OpenUrlCrossRef
    1. Šimunek Z.,
    2. Opluštil S.,
    3. Drábková J.
    , 2009, Cordaites borassifolius (Sternberg) Unger (Cordaitales) from the Radnice Basin (Bolsovian, Czech Republic): Bulletin of Geosciences, v. 84, n. 2, p. 301–336, doi:https://doi.org/10.3140/bull.geosci.1130
    OpenUrlCrossRef
  170. ↵
    1. Soh W. K.,
    2. Wright I. J.,
    3. Bacon K. L.,
    4. Lenz T. I.,
    5. Steinthorsdottir M.,
    6. Parnell A. C.,
    7. McElwain J. C.
    , 2017, Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event: Nature Plants, v. 3, article n. 17104, doi:https://doi.org/10.1038/nplants.2017.104
    OpenUrlCrossRef
  171. ↵
    1. Som S. M.,
    2. Buick R.,
    3. Hagadorn J. W.,
    4. Blake T. S.,
    5. Perreault J. M.,
    6. Harnmeijer J. P.,
    7. Catling D. C.
    , 2016, Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels: Nature Geoscience, v. 9, p. 448–451, doi:https://doi.org/10.1038/ngeo2713
    OpenUrlCrossRef
  172. ↵
    1. Somner M. G.
    , 1989, Rufloria Meyen em sedimentitos gondwanicos sulriograndenses (Formação Rio Bonito, Super Grupo Tubarão): Pesquisas em Geociências, v. 22, n. 22, p. 56, doi:https://doi.org/10.22456/1807-9806.21460
    OpenUrlCrossRef
  173. ↵
    1. Sperry J. S.,
    2. Wang Y.,
    3. Wolfe B. T.,
    4. Mackay D. S.,
    5. Anderegg W. R.,
    6. McDowell N. G.,
    7. Pockman W. T.
    , 2016, Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits: New Phytologist, v. 212, n. 3, p. 577–589, doi:https://doi.org/10.1111/nph.14059
    OpenUrlCrossRef
  174. ↵
    1. Stewart W.,
    2. Delevoryas T.
    , 1952, Bases for determining relationships among the Medullosaceae: American Journal of Botany, v. 39, n. 7, p. 505–516, doi:https://doi.org/10.1002/j.1537-2197.1952.tb13060.x
    OpenUrlCrossRefGeoRef
    1. Stopes M. C.
    , 1903, On the leaf-structure of Cordaites: New Phytologist, v. 2, n. 4–5, p. 91–97, doi:https://doi.org/10.1111/j.1469-8137.1903.tb05822.x
    OpenUrlCrossRef
  175. ↵
    1. Strader R. H.,
    2. Binkley D.,
    3. Wells C. G.
    , 1989, Nitrogen mineralization in high elevation forests of the Appalachians. I. Regional patterns in southern spruce-fir forests: Biogeochemistry, v. 7, p. 131–145, doi:https://doi.org/10.1007/BF00004125
    OpenUrlCrossRef
  176. ↵
    1. Syvertsen J. P.,
    2. Lloyd J.,
    3. McConchie C.,
    4. Kriedemann P. E.,
    5. Farquhar G. D.
    , 1995, On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves: Plant, Cell & Environment, v. 18, n. 2, p. 149–157, doi:https://doi.org/10.1111/j.1365-3040.1995.tb00348.x
    OpenUrlCrossRefWeb of Science
  177. ↵
    1. Fielding C. R.,
    2. Frank T. D.,
    3. Isbell J. L.
    1. Tabor N. J.,
    2. Montañez I. P.,
    3. Scotese C. R.,
    4. Poulsen C. J.,
    5. Mack G. H.
    , 2008, Paleosol archives of environmental and climatic history in paleotropical western Pangea during the latest Pennsylvanian through Early Permian, in Fielding C. R., Frank T. D., Isbell J. L., editors, Resolving the late Paleozoic ice age in time and space: Geological Society of America Special Papers, v. 441, p. 291–303, doi:https://doi.org/10.1130/2008.2441(20)
    OpenUrlCrossRef
  178. ↵
    1. Tabor N. J.,
    2. DiMichele W. A.,
    3. Montañez I. P.,
    4. Chaney D. S.
    , 2013, Late Paleozoic continental warming of a cold tropical basin and floristic change in western Pangea: International Journal of Coal Geology, v. 119, p. 177–186, doi:https://doi.org/10.1016/j.coal.2013.07.009
    OpenUrlCrossRefGeoRef
    1. Taiz L.,
    2. Zeiger E.
    , 2002, Plant physiology: Sunderland, Massachusetts, Sinauer, 690 p.
  179. ↵
    1. Taylor E. L.,
    2. Taylor T. N.
    , 2009, Seed ferns from the late Paleozoic and Mesozoic: Any angiosperm ancestors lurking there?: American Journal of Botany, v. 96, n. 1, p. 237–251, doi:https://doi.org/10.3732/ajb.0800202
    OpenUrlAbstract/FREE Full Text
  180. ↵
    1. Taylor P. G.,
    2. Wieder W. R.,
    3. Weintraub S.,
    4. Cohen S.,
    5. Cleveland C. C.,
    6. Townsend A. R.
    , 2015, Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed: Ecology, v. 96, n. 5, p. 1229–1241, doi:https://doi.org/10.1890/13-1418.1
    OpenUrlCrossRef
    1. Thomas B.
    , 1966, The cuticle of the lepidodendroid stem: New Phytologist, v. 65, n. 3, p. 296–303, doi:https://doi.org/10.1111/j.1469-8137.1966.tb06365.x
    OpenUrlCrossRefGeoRefWeb of Science
    1. Thomas B.
    1967, The cuticle of two species of Bothrodendron [Lycopsida: Lepidodendrales]: Journal of Natural History, v. 1, n. 1, p. 53–60, doi:https://doi.org/10.1080/00222936700770621
    OpenUrlCrossRefWeb of Science
    1. Thomas B.
    1968, A revision of the Carboniferous lycopod genus Eskdalia Kidston: Palaeontology, v. 11, p. 439–444.
    OpenUrlGeoRef
    1. Thomas B.
    1970, A new specimen of Lepidostrobus binneyanus from the Westphalian B of Yorkshire: Pollen et Spores, v. 12, n. 2, p. 217–234.
    OpenUrlGeoRef
    1. Thomas B.
    1977, Epidermal studies in the interpretation of Lepidophloios species: Palaeontology, v. 20, Part 2, p. 273–293.
    OpenUrlGeoRef
  181. ↵
    1. Thomas B. A.,
    2. Dimitrova T. K.
    , 2017, Ecological changes in Pennsylvanian (Asturian and early Cantabrian) coal floras inferred from lycophyte microspore abundances: Earth-Science Reviews, v. 171, p. 646–662, doi:https://doi.org/10.1016/j.earscirev.2017.05.008
    OpenUrlCrossRef
  182. ↵
    1. Thornton P. E.,
    2. Rosenbloom N. A.
    , 2005, Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model: Ecological Modelling, v. 189, n. 1–2, p. 25–48, doi:https://doi.org/10.1016/j.ecolmodel.2005.04.008
    OpenUrlCrossRefWeb of Science
  183. ↵
    1. Thornton P. E.,
    2. Running S. W.
    , 2002, User's Guide for Biome-BGC, Version 4.1.2.
  184. ↵
    1. Thornton P. E.,
    2. Law B. E.,
    3. Gholz H. L.,
    4. Clark K. L.,
    5. Falge E.,
    6. Ellsworth D. S.,
    7. Goldstein A. H.,
    8. Monson R. K.,
    9. Hollinger D.,
    10. Falk M.,
    11. Chen J.,
    12. Sparks J. P.
    , 2002, Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests: Agricultural and Forest Meteorology, v. 113, n. 1–4, p. 185–222, doi:https://doi.org/10.1016/S0168-1923(02)00108-9
    OpenUrlCrossRefWeb of Science
  185. ↵
    1. Tian X.,
    2. Yan M.,
    3. van der Tol C.,
    4. Li Z.,
    5. Su Z.,
    6. Chen E.,
    7. Li X.,
    8. Li L.,
    9. Wang X.,
    10. Pan X.
    , 2017, Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the Qilian Mountains: Agricultural and Forest Meteorology, v. 246, p. 1–14, doi:https://doi.org/10.1016/j.agrformet.2017.05.026
    OpenUrlCrossRef
    1. Tiwari S. P.,
    2. Kumar P.,
    3. Yadav D.,
    4. Chauhan D. K.
    , 2013, Comparative morphological, epidermal, and anatomical studies of Pinus roxburghii needles at different altitudes in the North-West Indian Himalayas: Turkish Journal of Botany, v. 37, p. 65–73.
    OpenUrl
  186. ↵
    1. Tomás M.,
    2. Flexas J.,
    3. Copolovici L.,
    4. Galmés J.,
    5. Hallik L.,
    6. Medrano H.,
    7. Ribas-Carbó M.,
    8. Tosens T.,
    9. Vislap V.,
    10. Niinemets Ü.
    , 2013, Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: Quantitative limitations and scaling up by models: Journal of Experimental Botany, v. 64, n. 8, p. 2269–2281, doi:https://doi.org/10.1093/jxb/ert086
    OpenUrlCrossRefPubMedWeb of Science
    1. Torres M. A.,
    2. West A. J.,
    3. Clark K. E.
    , 2015, Geomorphic regime modulates hydrologic control of chemical weathering in the Andes–Amazon: Geochimica et Cosmochimica Acta, v. 166, p. 105–128, doi:https://doi.org/10.1016/j.gca.2015.06.007
    OpenUrlCrossRefGeoRef
  187. ↵
    1. Tosens T.,
    2. Niinemets U.,
    3. Vislap V.,
    4. Eichelmann H.,
    5. Castro Diez P.
    , 2012a, Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: How structure constrains function: Plant, Cell & Environment, v. 35, n. 5, p. 839–856, doi:https://doi.org/10.1111/j.1365-3040.2011.02457.x
    OpenUrlCrossRefPubMedWeb of Science
  188. ↵
    1. Tosens T.,
    2. Niinemets Ü.,
    3. Westoby M.,
    4. Wright I. J.
    , 2012b, Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: News of a long and winding path: Journal of Experimental Botany, v. 63, n. 14, p. 5105–5119, doi:https://doi.org/10.1093/jxb/ers171
    OpenUrlCrossRefPubMedWeb of Science
  189. ↵
    1. Tu T. T. N.,
    2. Bocherens H.,
    3. Mariotti A.,
    4. Baudin F.,
    5. Pons D.,
    6. Broutin J.,
    7. Derenne S.,
    8. Largeau C.
    , 1999, Ecological distribution of Cenomanian terrestrial plants based on 13C/12C ratios: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 145, n. 1–3, p. 79–93, doi:https://doi.org/10.1016/S0031-0182(98)00092-3
    OpenUrlCrossRefGeoRefWeb of Science
  190. ↵
    1. Turner B. L.,
    2. Brenes-Arguedas T.,
    3. Condit R.
    , 2018, Pervasive phosphorus limitation of tree species but not communities in tropical forests: Nature, v. 555, p. 367–370, doi:https://doi.org/10.1038/nature25789
    OpenUrlCrossRef
  191. ↵
    1. Turner D. P.,
    2. Ritts W. D.,
    3. Law B. E.,
    4. Cohen W. B.,
    5. Yang Z.,
    6. Hudiburg T.,
    7. Campbell J. L.,
    8. Duane M.
    , 2007, Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States: Biogeosciences Discussions, v. 4, p. 1093–1135, doi:https://doi.org/10.5194/bgd-4-1093-2007
    OpenUrlCrossRef
  192. ↵
    1. Wade D. C.,
    2. Abraham N. L.,
    3. Farnsworth A.,
    4. Valdes P. J.,
    5. Bragg F.,
    6. Archibald A. T.
    , 2019, Simulating the climate response to atmospheric oxygen variability in the Phanerozoic: A focus on the Holocene, Cretaceous and Permian: Climate of the Past, v. 15, p. 1463–1483, doi:https://doi.org/10.5194/cp-15-1463-2019
    OpenUrlCrossRef
    1. Wagner R. H.,
    2. Álvarez-Vázquez C.
    , 2016, A reappraisal of Pecopteris miltonii (Artis) Brongniart, a mid-Westphalian (Early–Mid Pennsylvanian) fern: Proceedings of the Yorkshire Geological Society, v. 61, n. 1, p. 37–53, doi:https://doi.org/10.1144/pygs2015-368
    OpenUrlAbstract/FREE Full Text
  193. ↵
    1. Wang Q.,
    2. Watanabe M.,
    3. Ouyang Z.
    , 2005, Simulation of water and carbon fluxes using BIOME-BGC model over crops in China: Agricultural and Forest Meteorology, v. 131, n. 3–4, p. 209–224, doi:https://doi.org/10.1016/j.agrformet.2005.06.002
    OpenUrlCrossRef
    1. Wang S.-J.,
    2. Tian B.-L.,
    3. Chen G.-R.
    , 2002, Anatomically preserved lepidodendralean plants from Permian coal balls of China: Leaves of Lepidophylloides Snigirevskaya: Review of Palaeobotany and Palynology, v. 122, n. 1–2, p. 63–76, doi:https://doi.org/10.1016/S0034-6667(02)00104-5
    OpenUrlCrossRefGeoRef
  194. ↵
    1. Wang W.,
    2. Dungan J.,
    3. Hashimoto H.,
    4. Michaelis A. R.,
    5. Milesi C.,
    6. Ichii K.,
    7. Nemani R. R.
    , 2011, Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 1. Primary production: Global Change Biology, v. 17, n. 3, p. 1350–1366, doi:https://doi.org/10.1111/j.1365-2486.2010.02309.x
    OpenUrlCrossRef
  195. ↵
    1. Lange O. L.,
    2. Kappen L.,
    3. Schulze E. D.
    1. Waring R. H.,
    2. Running S. W.
    , 1976, Water uptake, storage and transpiration by conifers: A physiological model, in Lange O. L., Kappen L., Schulze E. D., editors, Water and Plant Life: Berlin, Germany, Springer, Ecological Studies, v. 19, p. 189–202, doi:https://doi.org/10.1007/978-3-642-66429-8_12
    OpenUrlCrossRef
  196. ↵
    1. West A. J.,
    2. Galy A.,
    3. Bickle M.
    , 2005, Tectonic and climatic controls on silicate weathering: Earth and Planetary Science Letters, v. 235, n. 1–2, p. 211–228, doi:https://doi.org/10.1016/j.epsl.2005.03.020
    OpenUrlCrossRefGeoRefWeb of Science
  197. ↵
    1. White J. D.,
    2. Scott N. A.
    , 2006, Specific leaf area and nitrogen distribution in New Zealand forests: Species independently respond to intercepted light: Forest Ecology and Management, v. 226, n. 1–3, p. 319–329, doi:https://doi.org/10.1016/j.foreco.2006.02.001
    OpenUrlCrossRef
  198. ↵
    1. White M. A.,
    2. Thornton P. E.,
    3. Running S. W.,
    4. Nemani R. R.
    , 2000, Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls: Earth Interactions, v. 4, n. 3, p. 1–85, doi:https://doi.org/10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2
    OpenUrlCrossRef
  199. ↵
    1. Willard D. A.,
    2. DiMichele W. A.,
    3. Eggert D. L.,
    4. Hower J. C.,
    5. Rexroad C. B.,
    6. Scott A. C.
    , 1995, Paleoecology of the Springfield Coal Member (Desmoinesian, Illinois Basin) near the Leslie Cemetery paleochannel, southwestern Indiana: International Journal of Coal Geology, v. 27, n. 1, p. 59–98, doi:https://doi.org/10.1016/0166-5162(94)00015-R
    OpenUrlCrossRefGeoRefWeb of Science
  200. ↵
    1. Willis K. J.,
    2. McElwain J. C.
    , 2014, The evolution of plants: Oxford, United Kingdom, Oxford University Press, 425 p.
  201. ↵
    1. Wilson J. P.
    , 2013, Modeling 400 million years of plant hydraulics: The Paleontological Society Papers, v. 19, p. 175–194, doi:https://doi.org/10.1017/S1089332600002734
    OpenUrlCrossRefGeoRef
  202. ↵
    1. Wilson J. P.,
    2. Knoll A. H.,
    3. Holbrook N. M.,
    4. Marshall C. R.
    , 2008, Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant: Paleobiology, v. 34, n. 4, p. 472–493, doi:https://doi.org/10.1666/07076.1
    OpenUrlAbstract/FREE Full Text
  203. ↵
    1. Wilson J. P.,
    2. White J. D.,
    3. DiMichele W. A.,
    4. Hren M. T.,
    5. Poulsen C. J.,
    6. McElwain J. C.,
    7. Montañez I. P.
    , 2015, Reconstructing extinct plant water use for understanding vegetation–climate feedbacks: Methods, synthesis, and a case study using the Paleozoic-era medullosan seed ferns: The Paleontological Society Papers, v. 21, p. 167–196, doi:https://doi.org/10.1017/S1089332600003004
    OpenUrlCrossRef
  204. ↵
    1. Wilson J. P.,
    2. Montañez I. P.,
    3. White J. D.,
    4. DiMichele W. A.,
    5. McElwain J. C.,
    6. Poulsen C. J.,
    7. Hren M. T.
    , 2017, Dynamic Carboniferous tropical forests: New views of plant function and potential for physiological forcing of climate: New Phytologist, v. 215, n. 4, p. 1333–1353, doi:https://doi.org/10.1111/nph.14700
    OpenUrlCrossRef
  205. ↵
    1. Wilson J. P.,
    2. White J. D.,
    3. Montañez I. P.,
    4. DiMichele W. A.,
    5. McElwain J. C.,
    6. Poulsen C. J.,
    7. Hren M. T.
    , 2020, Carboniferous plant physiology breaks the mold: New Phytologist, v. 227, n. 3, p. 667–679, doi:https://doi.org/10.1111/nph.16460
    OpenUrlCrossRef
  206. ↵
    1. Wolf K.,
    2. Veldkamp E.,
    3. Homeier J.,
    4. Martinson G. O.
    , 2011, Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador: Global Biogeochemical Cycles, v. 25, n. 4, doi:https://doi.org/10.1029/2010GB003876
    OpenUrlCrossRef
  207. ↵
    1. Wnuk C.,
    2. Pfefferkorn H. W.
    , 1984, The life habits and paleoecology of Middle Pennsylvanian medullosan pteridosperms based on an in situ assemblage from the Bernice Basin (Sullivan County, Pennsylvania, USA): Review of Palaeobotany and Palynology, v. 41, n. 3–4, p. 329–351, doi:https://doi.org/10.1016/0034-6667(84)90053-8
    OpenUrlCrossRefGeoRefWeb of Science
    1. Wunk C.,
    2. Pfefferkorn H. W.
    , 1987, A Pennsylvanian-age terrestrial storm deposit; using plant fossils to characterize the history and process of sediment accumulation: Journal of Sedimentary Research, v. 57, n. 2, p. 212–221, doi:https://doi.org/10.1306/212F8AE9-2B24-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  208. ↵
    1. Yasin J. A.,
    2. Kroeze C.,
    3. Mayorga E.
    , 2010, Nutrients export by rivers to the coastal waters of Africa: Past and Future Trends: Global Biogeochemical Cycles, v. 24, n. 4, doi:https://doi.org/10.1029/2009GB003568
    OpenUrlCrossRef
  209. ↵
    1. Ye J.-S.,
    2. Reynolds J. F.,
    3. Maestre F. T.,
    4. Li F.-M.
    , 2016, Hydrological and ecological responses of ecosystems to extreme precipitation regimes: A test of empirical-based hypotheses with an ecosystem model: Perspectives in Plant Ecology, Evolution and Systematics, v. 22, p. 36–46, doi:https://doi.org/10.1016/j.ppees.2016.08.001
    OpenUrlCrossRef
  210. ↵
    1. Yiotis C.,
    2. McElwain J.
    , 2019, A novel hypothesis for the role of photosynthetic physiology in shaping macroevolutionary patterns: Plant Physiology, v. 181, p. 1148–1162, doi:https://doi.org/10.1104/pp.19.00749
    OpenUrlAbstract/FREE Full Text
  211. ↵
    1. You T.,
    2. Kwon M.,
    3. Jo H.-H.,
    4. Jung W.-S.,
    5. Baek S. K.
    , 2017, Chaos and unpredictability in evolution of cooperation in continuous time: Physical Review E, v. 96, p. 062310, doi:https://doi.org/10.1103/PhysRevE.96.062310
    OpenUrlCrossRef
  212. ↵
    1. Zhou J.,
    2. Poulsen C. J.,
    3. Rosenbloom N.,
    4. Shields C.,
    5. Briegleb B.
    , 2012, Vegetation-climate interactions in the warm mid-Cretaceous: Climate of the Past, v. 8, p. 565–576, doi:https://doi.org/10.5194/cp-8-565-2012
    OpenUrlCrossRefWeb of Science
  213. ↵
    1. Martini I. P.
    1. Ziegler A.,
    2. Hulver M.,
    3. Rowley D.
    , 1997, Permian world topography and climate, in Martini I. P., editor, Late glacial and postglacial environmental changes-Quaternary, Carboniferous-Permian and Proterozoic: New York, Oxford University Press, v. 1, p. 111–146.
    OpenUrl
    1. Zodrow E. L.,
    2. Imunek Z.,
    3. Bashforth A. R.
    , 2000, New cuticular morphotypes of Cordaites principalis from the Canadian Carboniferous Maritimes Basin: Canadian Journal of Botany, v. 78, n. 2, p. 135–148, doi:https://doi.org/10.1139/b00-010
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 320 (7)
American Journal of Science
Vol. 320, Issue 7
1 Sep 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A process-based ecosystem model (Paleo-BGC) to simulate the dynamic response of Late Carboniferous plants to elevated O2 and aridification
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 15 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A process-based ecosystem model (Paleo-BGC) to simulate the dynamic response of Late Carboniferous plants to elevated O2 and aridification
Joseph D. White, Isabel P. Montañez, Jonathan P. Wilson, Christopher J. Poulsen, Jennifer C. McElwain, William A. DiMichele, Michael T. Hren, Sophia Macarewich, Jon D. Richey, William J. Matthaeus
American Journal of Science Sep 2020, 320 (7) 547-598; DOI: 10.2475/09.2020.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A process-based ecosystem model (Paleo-BGC) to simulate the dynamic response of Late Carboniferous plants to elevated O2 and aridification
Joseph D. White, Isabel P. Montañez, Jonathan P. Wilson, Christopher J. Poulsen, Jennifer C. McElwain, William A. DiMichele, Michael T. Hren, Sophia Macarewich, Jon D. Richey, William J. Matthaeus
American Journal of Science Sep 2020, 320 (7) 547-598; DOI: 10.2475/09.2020.01
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • METHODS
    • RESULTS
    • DISCUSSION
    • SUMMARY
    • SOURCE CODE
    • ACKNOWLEDGMENTS
    • APPENDIX A
    • APPENDIX B
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Past climates inform our future
  • Google Scholar

More in this TOC Section

  • Reconstruction of the original extent of the Tertiary pre-volcanic gravels in the northern Sierra Nevada (CA): Implications for the range's Paleotopography
  • Zn2+-Pb2+-doped calcite shrub fabrics: Abiotic morphogenesis of travertine-like dripstone encrustation at the Jersey Zinc Mine, southeastern British Columbia
  • Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
Show more Articles

Similar Articles

Keywords

  • Paleozoic
  • ecosystem modeling
  • stomatal conductance
  • surface runoff
  • carbon cycle
  • atmospheric oxygen

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2021 American Journal of Science

Powered by HighWire