Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Reconsidering the uplift history and peneplanation of the northern Lhasa terrane, Tibet

Miquela Ingalls, David B. Rowley, Brian S. Currie and Albert S. Colman
American Journal of Science June 2020, 320 (6) 479-532; DOI: https://doi.org/10.2475/06.2020.01
Miquela Ingalls
* Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ingalls@psu.edu
David B. Rowley
** Department of the Geophysical Sciences, The University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian S. Currie
*** Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Albert S. Colman
** Department of the Geophysical Sciences, The University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Banner J. L.,
    2. Hanson G. N.
    , 1990, Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis: Geochimica et Cosmochimica Acta, v. 54, n. 11, p. 3123–3137, doi:https://doi.org/10.1016/0016-7037(90)90128-8
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Berner R. A.
    , 1988, Early Diagenesis: A Theoretical Approach: Princeton, New Jersey, Princeton University Press, 241 p.
  3. ↵
    1. Bonifacie M.,
    2. Calmels D.,
    3. Eiler J. M.,
    4. Horita J.,
    5. Chaduteau C.,
    6. Vasconcelos C.,
    7. Agrinier P.,
    8. Katz A.,
    9. Passey B. H.,
    10. Ferry J. M.,
    11. Bourrand J. J.
    , 2017, Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates: Geochimica et Cosmochimica Acta, v. 200, p. 255–279, doi:https://doi.org/10.1016/j.gca.2016.11.028
    OpenUrlCrossRef
  4. ↵
    1. Botsyun S.,
    2. Sepulchre P.,
    3. Donnadieu Y.,
    4. Risi C.,
    5. Licht A.,
    6. Caves Rugenstein J. K.
    , 2019, Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene: Science, v. 363, n. 6430, doi:https://doi.org/10.1126/science.aaq1436
    OpenUrlCrossRef
  5. ↵
    1. Brand W. A.,
    2. Assonov S. S.,
    3. Coplen T. B.
    , 2010, Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report): Pure and Applied Chemistry, v. 82, n. 8, p. 1719–1733, doi:https://doi.org/10.1351/PAC-REP-09-01-05
    OpenUrlCrossRef
  6. ↵
    1. Breecker D. O.,
    2. Sharp Z. D.,
    3. McFadden L. D.
    , 2009, Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA: GSA Bulletin, v. 121, n. 3–4, p. 630–640, doi:https://doi.org/10.1130/B26413.1
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Budd D. A.,
    2. Land L. S.
    , 1990, Geochemical imprint of meteoric diagenesis in Holocene ooid sands, Schooner Cays, Bahamas: Correlation of calcite cement geochemistry with extant groundwaters: Journal of Sedimentary Petrology, v. 60, n. 3, p. 361–378, doi:https://doi.org/10.1306/212F919C-2B24-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  8. ↵
    Bureau of Geology and Mineral Resources Xizang Autonomous Region, 1992, Regional geology of Xizang (Tibet) autonomous region: Geological Publishing House.
  9. ↵
    1. Burgener L.,
    2. Huntington K. W.,
    3. Hoke G. D.,
    4. Schauer A.,
    5. Ringham M. C.,
    6. Latorre C.,
    7. Díaz F. P.
    , 2016, Variations in soil carbonate formation and seasonal bias over >4 km of relief in the western Andes (30°S) revealed by clumped isotope thermometry: Earth and Planetary Science Letters, v. 441, p. 188–199, doi:https://doi.org/10.1016/j.epsl.2016.02.033
    OpenUrlCrossRef
  10. ↵
    1. Swart P. K.,
    2. Lohmann K. C.,
    3. McKenzie J.,
    4. Savin S.
    1. Cerling T. E.,
    2. Quade J.
    , 1993, Stable carbon and oxygen isotopes in soil carbonates, in Swart P. K., Lohmann K. C., McKenzie J., Savin S., editors, Climate Change in Continetnal Isotopic Records: Geophysical Monograph Series, v. 78, p. 217–231, doi:https://doi.org/10.1029/GM078p0217
    OpenUrlCrossRef
  11. ↵
    1. Chamberlain C. P.,
    2. Poage M. A.
    , 2000, Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals: Geology, v. 28, n. 2, p. 115–118, doi:https://doi.org/10.1130/0091-7613(2000)028<0115:RTPOMB>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Chengfa C.,
    2. Nansheng C.,
    3. Coward M. P.,
    4. Wanming D.,
    5. Dewey J. F.,
    6. Gansser A.,
    7. Harris N. B. W.,
    8. Chengwei J.,
    9. Kidd W. S. F.,
    10. Leeder M. R.,
    11. Huan L.,
    12. Jinlu L.,
    13. Chengjie L.,
    14. Houjun M.,
    15. Molnar P.,
    16. Yun P.,
    17. Yusheng P.,
    18. Pearce J. A.,
    19. Shackleton R. M.,
    20. Smith A. B.,
    21. Yiyin S.,
    22. Ward M.,
    23. Watts D. R.,
    24. Juntao X.,
    25. Ronghua X.,
    26. Jixiang Y.,
    27. Yuquan Z.
    , 1986, Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet: Nature, v. 323, p. 501–507, doi:https://doi.org/10.1038/323501a0
    OpenUrlCrossRefGeoRef
  13. ↵
    1. Coplen T. B.,
    2. Brand W. A.,
    3. Gehre M.,
    4. Gröning M.,
    5. Meijer H. A. J.,
    6. Toman B.,
    7. Verkouteren R. M.
    , 2006, New guidelines for δ13C measurements: Analytical Chemistry, v. 78, n. 7, p. 2439–2441, doi:https://doi.org/10.1021/ac052027c
    OpenUrlCrossRefPubMed
  14. ↵
    1. Craig H.
    , 1961, Isotopic variations in meteoric waters: Science, v. 133, n. 3465, p. 1702–1703, doi:ttps://doi.org/10.1126/science.133.3465.1702
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Tongiorgi E.
    1. Craig H.,
    2. Gordon L.
    , 1965, Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in Tongiorgi E., editor, Stable Isotopes in Oceanographic Studies and Paleotemperatures: Spolito, Italy, Consiglio Nazionale di Recherche, p. 9–130.
  16. ↵
    1. Craig H.,
    2. Gordon L. I.,
    3. Horibe Y.
    , 1963, Isotopic exchange effects in the evaporation of water: 1. Low-temperature experimental results: Journal of Geophysical Research, v. 68, n. 17, p. 5079–5087, doi:https://doi.org/10.1029/JZ068i017p05079
    OpenUrlCrossRef
  17. ↵
    1. Currie B. S.,
    2. Polissar P. J.,
    3. Rowley D. B.,
    4. Ingalls M.,
    5. Li S.,
    6. Olack G.,
    7. Freeman K. H.
    , 2016, Multiproxy paleoaltimetry of the late Oligocene-Pliocene Oiyug Basin, southern Tibet: American Journal of Science, v. 316, n. 5, p. 401–436, doi:https://doi.org/10.2475/05.2016.01
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. DeCelles P. G.,
    2. Kapp P.,
    3. Ding L.,
    4. Gehrels G. E.
    , 2007a, Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain: GSA Bulletin, v. 119, n. 5–6, p. 654–680, doi:https://doi.org/10.1130/B26074.1
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. DeCelles P. G.,
    2. Quade J.,
    3. Kapp P.,
    4. Fan M.,
    5. Dettman D. L.,
    6. Ding L.
    , 2007b, High and dry in central Tibet during the Late Oligocene: Earth and Planetary Science Letters, v. 253, n. 3–4, p. 389–401, doi:https://doi.org/10.1016/j.epsl.2006.11.001
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  20. ↵
    1. DeCelles P. G.,
    2. Kapp P.,
    3. Quade J.,
    4. Gehrels G. E.
    , 2011, Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone: GSA Bulletin, v. 123, n. 7–8, p. 1337–1362, doi:https://doi.org/10.1130/B30258.1
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. DeCelles P.,
    2. Kapp P.,
    3. Gehrels G. E.,
    4. Ding L.
    , 2014, Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision: Tectonics, v. 33, n. 5, p. 824–849, doi:https://doi.org/10.1002/2014TC003522
    OpenUrlCrossRefGeoRef
  22. ↵
    1. DeCelles P. G.,
    2. Castaneda I. S.,
    3. Carrapa B.,
    4. Liu J.,
    5. Quade J.,
    6. Leary R.,
    7. Zhang L.
    , 2018, Oligocene-Miocene Great Lakes in the India-Asia Collision Zone: Basin Research, v. 30, n. S1, p. 228–247, doi:https://doi.org/10.1111/bre.12217
    OpenUrlCrossRef
  23. ↵
    1. Deng L.,
    2. Jia G.
    , 2018, High-relief topography of the Nima basin in central Tibetan Plateau during the mid-Cenozoic time: Chemical Geology, v. 493, p. 199–209, doi:https://doi.org/10.1016/j.chemgeo.2018.05.041
    OpenUrlCrossRef
  24. ↵
    1. Dennis K. J.,
    2. Affek H. P.,
    3. Passey B. H.,
    4. Schrag D. P.,
    5. Eiler J. M.
    , 2011, Defining an absolute reference frame for 'clumped' isotope studies of CO2: Geochimica et Cosmochimica Acta, v. 75, n. 22, p. 7117–7131, doi:https://doi.org/10.1016/j.gca.2011.09.025
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Ding L.,
    2. Lai Q.
    , 2003, New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision: Chinese Science Bulletin, v. 48, p. 1604–1610, doi:https://doi.org/10.1007/BF03183969
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Ding L.,
    2. Xu Q.,
    3. Yue Y.,
    4. Wang H.,
    5. Cai F.,
    6. Li S.
    , 2014, The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin: Earth and Planetary Science Letters, v. 392, p. 250–264, doi:https://doi.org/10.1016/j.epsl.2014.01.045
    OpenUrlCrossRefGeoRef
  27. ↵
    1. Drever J. I.
    , 1982, The Geochemistry of Natural Waters: Upper Saddle River, New Jersey, Prentice Hall, 388 p.
  28. ↵
    1. Eagle R. A.,
    2. Schauble E. A.,
    3. Tripati A. K.,
    4. Tütken T.,
    5. Hulbert R. C.,
    6. Eiler J. M.,
    7. Tutken T.,
    8. Hulbert R. C.,
    9. Eiler J. M.
    , 2010, Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite: Proceedings of the National Academy of Sciences of the United States of America, v. 107, n. 23, p. 10377–10382, doi:https://doi.org/10.1073/pnas.0911115107
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. England P.,
    2. Searle M.
    , 1986, The Cretaceous-Tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet: Tectonics, v. 5, n. 1, p. 1–14, doi:https://doi.org/10.1029/TC005i001p00001
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Fan M.,
    2. Carrapa B.
    , 2014, Late Cretaceous-early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction: Tectonics, v. 33, n. 4, p. 509–529, doi:https://doi.org/10.1002/2012TC003221
    OpenUrlCrossRefGeoRef
  31. ↵
    1. Fricke H. C.,
    2. Wing S. L.
    , 2004, Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene: American Journal of Science, v. 304, n. 7, p. 612–635, doi:https://doi.org/10.2475/ajs.304.7.612
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Gallagher T. M.,
    2. Sheldon N. D.
    , 2016, Combining soil water balance and clumped isotopes to understand the nature and timing of pedogenic carbonate formation: Chemical Geology, v. 435, p. 79–91, doi:https://doi.org/10.1016/j.chemgeo.2016.04.023
    OpenUrlCrossRef
  33. ↵
    1. Gehler A.,
    2. Tütken T.,
    3. Pack A.
    , 2011, Triple oxygen isotope analysis of bioapatite as tracer for diagenetic alteration of bones and teeth: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 310, n. 1–2, doi:https://doi.org/10.1016/j.palaeo.2011.04.014
    OpenUrlCrossRef
  34. ↵
    1. Gérard E.,
    2. Ménez B.,
    3. Couradeau E.,
    4. Moreira D.,
    5. Benzerara K.,
    6. Tavera R.,
    7. López-García P.
    , 2013, Specific carbonate-microbe interactions in the modern microbialites of Lake Alchichica (Mexico): The ISME Journal, v. 7, p. 1997–2009, doi:https://doi.org/10.1038/ismej.2013.81
    OpenUrlCrossRef
  35. ↵
    1. Ghosh P.,
    2. Adkins J.,
    3. Affek H.,
    4. Balta B.,
    5. Guo W. W.,
    6. Schauble E. A.,
    7. Schrag D.,
    8. Eiler J. M.
    , 2006a, 13C-18O bonds in carbonate minerals: A new kind of paleothermometer: Geochimica et Cosmochimica Acta, v. 70, n. 6, p. 1439–1456, doi:https://doi.org/10.1016/j.gca.2005.11.014
    OpenUrlCrossRefGeoRefWeb of Science
    1. Ghosh P.,
    2. Garzione C. N.,
    3. Eiler J. M.
    , 2006b, Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates: Science, v. 311, n. 5760, p. 511–515, doi:https://doi.org/10.1126/science.1119365
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Ghosh P.,
    2. Eiler J.,
    3. Campana S. E.,
    4. Feeney R. F.
    , 2007, Calibration of the carbonate 'clumped isotope' paleothermometer for otoliths: Geochimica et Cosmochimica Acta, v. 71, n. 11, doi:https://doi.org/10.1016/j.gca.2007.03.015
    OpenUrlCrossRef
  37. ↵
    1. Gonfiantini R.
    , 1986, Environmental Isotopes in Lake Studies, in Handbook of Environemtal Isotope Geochemistry, Volume 2: The Terrestrial Environment B, p. 113–168, doi:https://doi.org/10.1016/B978-0-444-42225-5.50008-5
    OpenUrlCrossRef
  38. ↵
    1. Gourbet L.,
    2. Leloup P. H.,
    3. Paquette J.-L.,
    4. Sorrel P.,
    5. Maheo G.,
    6. Wang G.,
    7. Yadong X.,
    8. Cao K.,
    9. Antoine P.-O.,
    10. Eymard I.,
    11. Liu W.,
    12. Lu H.,
    13. Replumaz A.,
    14. Chevalier M.-L.,
    15. Kexin Z.,
    16. Jing W.,
    17. Shen T.
    , 2017, Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution: Tectonophysics, v. 700–701, p. 162–179, doi:https://doi.org/10.1016/j.tecto.2017.02.007
    OpenUrlCrossRef
  39. ↵
    1. Guo W.,
    2. Mosenfelder J. L.,
    3. Goddard W. A. III.,
    4. Eiler J. M.
    , 2009, Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements: Geochimica et Cosmochimica Acta, v. 73, n. 24, p. 7203–7225, doi:https://doi.org/10.1016/j.gca.2009.05.071
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Haider V. L.,
    2. Dunkl I.,
    3. von Eynatten H.,
    4. Ding L.,
    5. Frei D.,
    6. Zhang L.
    , 2013, Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau: Journal of Asian Earth Sciences, v. 70–71, p. 79–98, doi:https://doi.org/10.1016/j.jseaes.2013.03.005
    OpenUrlCrossRef
  41. ↵
    1. Han Z.,
    2. Xu M.,
    3. Li Y.,
    4. Wei Y.,
    5. Wang C.
    , 2014, Paleocene-Eocene potential source rocks in the Avengco Basin, Tibet: Organic geochemical characteristics and their implication for the paleoenvironment: Journal of Asian Earth Sciences, v. 93, p. 60–73, doi:https://doi.org/10.1016/j.jseaes.2014.06.027
    OpenUrlCrossRefGeoRef
  42. ↵
    1. He H.,
    2. Sun J.,
    3. Li Q.,
    4. Zhu R.
    , 2011, New age determination of the Cenozoic Lunpola basin, central Tibet: Geological Magazine, v. 149, n. 1, p. 141–145, doi:https://doi.org/10.1017/S0016756811000896
    OpenUrlCrossRef
  43. ↵
    1. He S.,
    2. Kapp P.,
    3. DeCelles P. G.,
    4. Gehrels G. E.,
    5. Heizler M.
    , 2007, Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet: Tectonophysics, v. 433, n. 1–2, p. 15–37, doi:https://doi.org/10.1016/j.tecto.2007.01.005
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Hetzel R.,
    2. Dunkl I.,
    3. Haider V.,
    4. Strobl M.,
    5. von Eynatten H.,
    6. Ding L.,
    7. Frei D.
    , 2011, Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift: Geology, v. 39, n. 10, p. 983–986, doi:https://doi.org/10.1130/G32069.1
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Hillel D.
    , 1982, Introduction to Soil Physics: New York, Academic Press, 392 p.
  46. ↵
    1. Horita J.
    , 2014, Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures: Geochimica et Cosmochimica Acta, v. 129, p. 111–124, doi:https://doi.org/10.1016/j.gca.2013.12.027
    OpenUrlCrossRefGeoRef
  47. ↵
    1. Hough B.,
    2. Fan M.,
    3. Passey B. H.
    , 2014, Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction: Earth and Planetary Science Letters, v. 391, p. 110–120, doi:https://doi.org/10.1016/j.epsl.2014.01.008
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Hudson A. M.,
    2. Quade J.,
    3. Ali G.,
    4. Boyle D.,
    5. Bassett S.,
    6. Huntington K. W.,
    7. De los Santos M. G.,
    8. Cohen A. S.,
    9. Lin K.,
    10. Wang X.
    , 2017, Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: Implications for paleoenvironmental reconstructions using carbonates: Geochimica et Cosmochimica Acta, v. 212, p. 274–302, doi:https://doi.org/10.1016/j.gca.2017.06.024
    OpenUrlCrossRef
  49. ↵
    1. Huntington K. W.,
    2. Lechler A. R.
    , 2015, Carbonate clumped isotope thermometry in continental tectonics: Tectonophysics, v. 647–648, p. 1–20, doi:https://doi.org/10.1016/j.tecto.2015.02.019
    OpenUrlCrossRef
  50. ↵
    1. Huntington K. W.,
    2. Eiler J. M.,
    3. Affek H. P.,
    4. Guo W.,
    5. Bonifacie M.,
    6. Yeung L. Y.,
    7. Thiagarajan N.,
    8. Passey B.,
    9. Tripati A.,
    10. Daëron M.,
    11. Came R.
    , 2009, Methods and limitations of 'clumped' CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry: Journal of Mass Spectrometry, v. 44, n. 9, p. 1318–29, doi:https://doi.org/10.1002/jms.1614
    OpenUrlCrossRefPubMedWeb of Science
  51. ↵
    1. Huntington K. W.,
    2. Wernicke B. P.,
    3. Eiler J. M.
    , 2010, Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry: Tectonics, v. 29, n. 3, doi:https://doi.org/10.1029/2009TC002449
    OpenUrlCrossRef
  52. ↵
    1. Huntington K. W.,
    2. Budd D. A.,
    3. Wernicke B. P.,
    4. Eiler J. M.
    , 2011, Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite: Journal of Sedimentary Research, v. 81, n. 9, p. 656–669, doi:https://doi.org/10.2110/jsr.2011.51
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Huntington K. W.,
    2. Saylor J.,
    3. Quade J.,
    4. Hudson A. M.
    , 2015, High late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry: GSA Bulletin, v. 127, n. 1–2, p. 181–199, doi:https://doi.org/10.1130/B31000.1
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Ingalls M.
    , 2019, Reconstructing carbonate alteration histories in orogenic sedimentary basins: Xigaze forearc, southern Tibet: Geochimica et Cosmochimica Acta, v. 251, p. 284–300, doi:https://doi.org/10.1016/j.gca.2019.02.005
    OpenUrlCrossRef
  55. ↵
    1. Ingalls M.,
    2. Rowley D.,
    3. Olack G.,
    4. Currie B.,
    5. Li S.,
    6. Schmidt J.,
    7. Tremblay M.,
    8. Polissar P,
    9. Shuster D. L.,
    10. Lin D.,
    11. Colman A.
    , 2017, Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: Implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering: GSA Bulletin, v. 130, n. 1–2, p. 307–330, doi:https://doi.org/10.1130/B31723.1
    OpenUrlCrossRef
  56. ↵
    1. Ingalls M.,
    2. Frantz C. M.,
    3. Snell K. E.,
    4. Trower E. J.
    , 2020, Carbonate facies-specific stable isotope data record climate, hydrology, and microbial communities in Great Salt Lake, UT: Geobiology, p. 28, doi:https://doi.org/10.1111/gbi.12386
    OpenUrlCrossRef
  57. ↵
    1. Jia G.,
    2. Bai Y.,
    3. Ma Y.,
    4. Sun J.,
    5. Peng P.
    , 2015, Paleoelevation of Tibetan Lunpola basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes: Global and Planetary Change, v. 126, p. 14–22, doi:http://dx.doi.org/10.1016/j.gloplacha.2014.12.007
    OpenUrlCrossRefGeoRef
  58. ↵
    1. Kapp P.,
    2. DeCelles P. G.,
    3. Leier A. L.,
    4. Fabijanic J. M.,
    5. He S.,
    6. Pullen A.,
    7. Gehrels G. E.,
    8. Ding L.
    , 2007, The Gangdese retroarc thrust belt revealed: GSA Today, v. 17, n. 7, p. 4–9, doi:https://doi.org/10.1130/GSAT01707A.1
    OpenUrlCrossRefGeoRef
    1. Keating-Bitonti C. R.,
    2. Ivany L. C.,
    3. Affek H. P.,
    4. Douglas P.,
    5. Samson S. D.
    , 2011, Warm, not super-hot, temperatures in the early Eocene subtropics: Geology, v. 39, n. 8, p. 771–774, doi:https://doi.org/10.1130/G32054.1
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Kelson J. R.,
    2. Huntington K. W.,
    3. Schauer A. J.,
    4. Saenger C.,
    5. Lechler A. R.
    , 2017, Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship: Geochimica et Cosmochimica Acta, v. 197, p. 104–131, doi:https://doi.org/10.1016/j.gca.2016.10.010
    OpenUrlCrossRef
  60. ↵
    1. Kim S.-T.,
    2. O'Neil J. R.
    , 1997, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates: Geochimica et Cosmochimica Acta, v. 61, n. 16, p. 3461–3475, doi:https://doi.org/10.1016/S0016-7037(97)00169-5
    OpenUrlCrossRefGeoRefWeb of Science
  61. ↵
    1. Kirillin G.,
    2. Wen L.,
    3. Shatwell T.
    , 2017, Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands: Hydrology and Earth System Sciences, v. 21, n. 4, doi:https://doi.org/10.5194/hess-2016-632-AC2
    OpenUrlCrossRef
  62. ↵
    1. Lacroix B.,
    2. Niemi N. A.
    , 2019, Investigating the effect of burial histories on the clumped isotope thermometer: An example from the Green River and Washakie Basins, Wyoming: Geochimica et Cosmochimica Acta, v. 247, p. 40–58, doi:https://doi.org/10.1016/j.gca.2018.12.016
    OpenUrlCrossRef
  63. ↵
    1. Leier A.,
    2. Quade J.,
    3. DeCelles P.,
    4. Kapp P.
    , 2009, Stable isotopic results from paleosol carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration: Earth and Planetary Science Letters, v. 279, n. 3–4, p. 242–254, doi:https://doi.org/10.1016/j.epsl.2008.12.044
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Leng M. J.,
    2. Marshall J. D.
    , 2004, Palaeoclimate interpretation of stable isotope data from lake sediment archives: Quaternary Science Reviews, v. 23, n. 7–8, p. 811–831, doi:https://doi.org/10.1016/j.quascirev.2003.06.012
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Levin N. E.,
    2. Zipser E. J.,
    3. Cerling T. E.
    , 2009, Isotopic composition of waters from Ethiopia and Kenya: Insights into moisture sources for eastern Africa: Journal of Geophysical Research-Atmospheres, v. 114, n. D23, doi:https://doi.org/10.1029/2009JD012166
    OpenUrlCrossRef
  66. ↵
    1. Li L.,
    2. Fan M.,
    3. Davila N.,
    4. Jesmok G.,
    5. Mitsunaga B.,
    6. Tripati A.,
    7. Orme D.
    , 2019, Carbonate stable and clumped isotopic evidence for late Eocene moderate to high elevation of the east-central Tibetan Plateau and its geodynamic implications: GSA Bulletin, v. 131, n. 56, p. 831–844, doi:https://doi.org/10.1130/B32060.1
    OpenUrlCrossRef
  67. ↵
    1. Li S.,
    2. Currie B. S.,
    3. Rowley D. B.,
    4. Ingalls M.
    , 2015, Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region: Earth and Planetary Science Letters, v. 432, p. 415–424, doi:https://doi.org/10.1016/j.epsl.2015.09.044
    OpenUrlCrossRef
  68. ↵
    1. Liu J.,
    2. Song X.,
    3. Yuan G.,
    4. Sun X.,
    5. Yang L.
    , 2014, Stable isotopic compositions of precipitation in China: Tellus B: Chemical and Physical Meterology, v. 66, n. 1, doi:https://doi.org/10.3402/tellusb.v66.22567
    OpenUrlCrossRef
  69. ↵
    1. Lloyd M. K.
    , 2020, ClumpyCool: Open Science Framework, doi: 10.17605/OSF.IO/JYHSW.
  70. ↵
    1. Lunt D. J.,
    2. Farnsworth A.,
    3. Loptson C.,
    4. Foster G. L.,
    5. Markwick P.,
    6. O'Brien C. L.,
    7. Pancost R. D.,
    8. Robinson S. A.,
    9. Wrobel N.
    , 2016, Palaeogeographic controls on climate and proxy interpretation: Climate of the Past, v. 12, p. 1181–1198, doi:https://doi.org/10.5194/cp-12-1181-2016
    OpenUrlCrossRef
  71. ↵
    1. Luz B.,
    2. Barkan E.
    , 2010, Variations of 17O/16O and 18O/16O in meteoric waters: Geochimica et Cosmochimica Acta, v. 74, n. 22, p. 6276–6286, doi:https://doi.org/10.1016/j.gca.2010.08.016
    OpenUrlCrossRefGeoRefWeb of Science
  72. ↵
    1. Ma P.,
    2. Wang C.,
    3. Wang L.,
    4. Li Y.,
    5. Hu J.
    , 2015, Sedimentology and organic properties of lower Tertiary lacustrine source rocks, Lunpola Basin, central Tibetan Plateau: Implications for hydrocarbon potential: Marine and Petroleum Geology, v. 66, Part 4, p. 1029–1041, doi:https://doi.org/10.1016/j.marpetgeo.2015.08.013
    OpenUrlCrossRef
  73. ↵
    1. Ma P.,
    2. Wang C.,
    3. Meng J.,
    4. Ma C.,
    5. Zhao X.,
    6. Li Y.,
    7. Wang M.
    , 2017, Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records: Gondwana Research, v. 48, p. 224–236, doi:https://doi.org/10.1016/j.gr.2017.04.023
    OpenUrlCrossRef
  74. ↵
    1. Mao Z.,
    2. Meng Q.,
    3. Fang X.,
    4. Zhang T.,
    5. Wu F.,
    6. Yang Y.,
    7. Zhang W.,
    8. Zan J.,
    9. Tan M.
    , 2019, Recognition of tuffs in the middle-upper Dingqinghu Fm., Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 525, p. 44–56, doi:https://doi.org/10.1016/j.palaeo.2019.03.040
    OpenUrlCrossRef
  75. ↵
    1. McConnaughey T. A.
    , 2003, Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: Carbonate and kinetic models: Coral Reefs, v. 22, p. 316–327, doi:https://doi.org/10.1007/s00338-003-0325-2
    OpenUrlCrossRefWeb of Science
  76. ↵
    1. Mills G. A.,
    2. Urey H. C.
    , 1940, The Kinetics of Isotopic Exchange between Carbon Dioxide, Bicarbonate Ion, Carbonate Ion and Water: Journal of the American Chemical Society, v. 62, n. 5, doi:https://doi.org/10.1021/ja01862a010
    OpenUrlCrossRef
  77. ↵
    1. Molnar P.,
    2. England P.
    , 1990, Late Cenozoic uplift of mountain ranges and global climate change: Nature, v. 346, p. 29–34, doi:https://doi.org/10.1038/346029a0
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Mortimer R. J. G.,
    2. Coleman M. L.
    , 1997, Microbial influence on the oxygen isotopic composition of diagenetic siderite: Geochimica et Cosmochimica Acta, v. 61, n. 8, p. 1705–1711, doi:https://doi.org/10.1016/S0016-7037(97)00027-6
    OpenUrlCrossRefGeoRefWeb of Science
  79. ↵
    1. Murphy M. A.,
    2. Yin A.,
    3. Harrison T. M.,
    4. Dürr S. B.,
    5. Chen Z.,
    6. Ryerson F. J.,
    7. Kidd W. S. F.,
    8. Wang X.,
    9. Zhou X.
    , 1997, Did the Indo-Asian collision alone create the Tibetan plateau?: Geology, v. 25, n. 8, p. 719–722, doi:https://doi.org/10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Myrttinen A.,
    2. Becker V.,
    3. Barth J. A. C.
    , 2012, A review of methods used for equilibrium isotope fractionation investigations between dissolved inorganic carbon and CO2: Earth-Science Reviews, v. 115, n. 3, p. 192–199, doi:https://doi.org/10.1016/j.earscirev.2012.08.004
    OpenUrlCrossRefGeoRef
  81. ↵
    1. Orme D. A.
    , 2019, Burial and exhumation history of the Xigaze forearc basin, Yarlung suture zone, Tibet: Geoscience Frontiers, v. 10, n. 3, p. p. 895–908, doi:https://doi.org/10.1016/j.gsf.2017.11.011
    OpenUrlCrossRef
  82. ↵
    1. Passey B. H.,
    2. Henkes G. A.
    , 2012, Carbonate clumped isotope bond reordering and geospeedometry: Earth and Planetary Science Letters, v. 351–352, p. 223–236, doi:https://doi.org/10.1016/j.epsl.2012.07.021
    OpenUrlCrossRef
  83. ↵
    1. Passey B. H.,
    2. Levin N. E.,
    3. Cerling T. E.,
    4. Brown F. H.,
    5. Eiler J. M.
    , 2010, High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates: Proceedings of the National Academy of Sciences of the United States of America, v. 107, n. 25, p. 11245–11249, doi:https://doi.org/10.1073/pnas.1001824107
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Passey B. H.,
    2. Hu H.,
    3. Ji H.,
    4. Montanari S.,
    5. Li S.,
    6. Henkes G. A.,
    7. Levin N. E.
    , 2014, Triple oxygen isotopes in biogenic and sedimentary carbonates: Geochimica et Cosmochimica Acta, v. 141, p. 1–25, doi:https://doi.org/10.1016/j.gca.2014.06.006
    OpenUrlCrossRefGeoRef
  85. ↵
    1. Peppe D. J.,
    2. Royer D. L.,
    3. Cariglino B.,
    4. Oliver S. Y.,
    5. Newman S.,
    6. Leight E.,
    7. Enikolopov G.,
    8. Fernandez-Burgos M.,
    9. Herrera F.,
    10. Adams J. M.,
    11. Correa E.,
    12. Currano E. D.,
    13. Erickson J. M.,
    14. Hinojosa L. F.,
    15. Horganson J. W.,
    16. Iglesias A.,
    17. Jaramillo C.A.,
    18. Johnson K. R.,
    19. Jordan G. J.,
    20. Kraft N. J. B.,
    21. Lovelock E. C.,
    22. Lusk C. H.,
    23. Niinemets U.,
    24. Peñuelas,
    25. Rapson G.,
    26. Wing S. L.,
    27. Wright I. J.
    , 2011, Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications: New Phytologist, v. 190, n. 3, doi:https://doi.org/10.1111/j.1469-8137.2010.03615.x
    OpenUrlCrossRef
  86. ↵
    1. Peppe D. J.,
    2. Baumgartner A.,
    3. Flynn A.,
    4. Blonder B.
    , 2018, Reconstructing paleoclimate and paleoecology using fossil leaves, in Vertebrate Paleobiology and Paleoanthropology: PaleorXiv, doi:https://doi.org/10.31233/osf.io/stzuc
    OpenUrlCrossRef
  87. ↵
    1. Peters N. A.,
    2. Huntington K. W.,
    3. Hoke G. D.
    , 2013, Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry: Earth and Planetary Science Letters, v. 361, p. 208–218, doi:https://doi.org/10.1016/j.epsl.2012.10.024
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Petryshyn V. A.,
    2. Lim D.,
    3. Laval B. L.,
    4. Brady A.,
    5. Slater G.,
    6. Tripati A. K.
    , 2015, Reconstruction of limnology and microbialite formation conditions from carbonate clumped isotope thermometry: Geobiology, v. 13, n. 1, p. 53–67, doi:https://doi.org/10.1111/gbi.12121
    OpenUrlCrossRefGeoRef
  89. ↵
    1. Polissar P. J.,
    2. Freeman K. H.
    , 2010, Effects of aridity and vegetation on plant-wax δD in modern lake sediments: Geochimica et Cosmochimica Acta, v. 74, n. 20, p. 5785–5797, doi:https://doi.org/10.1016/j.gca.2010.06.018
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Polissar P. J.,
    2. Freeman K. H.,
    3. Rowley D. B.,
    4. McInerney F. A.,
    5. Currie B. S.
    , 2009, Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers: Earth and Planetary Science Letters, v. 287, n. 1–2, p. 64–76, doi:https://doi.org/10.1016/j.epsl.2009.07.037
    OpenUrlCrossRefGeoRefWeb of Science
  91. ↵
    1. Prior D. J.,
    2. Boyle A. P.,
    3. Brenker F.,
    4. Cheadle M. C.,
    5. Day A.,
    6. Lopez G.,
    7. Peruzzi L.,
    8. Potts G. J.,
    9. Reddy S.,
    10. Spiess R.,
    11. Timms N. E.,
    12. Trimby P.,
    13. Wheeler J.,
    14. Zetterström L.
    , 1999, The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks: American Mineralogist, v. 84, n. 11–12, p. 1741–1759, doi:https://doi.org/10.2138/am-1999-11-1204
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Quade J.,
    2. Breecker D. O.,
    3. Daëron M.,
    4. Eiler J. M.
    , 2011, The paleoaltimetry of Tibet: An isotopic perspective: American Journal of Science, v. 311, n. 2, p. 77–115, doi:https://doi.org/10.2475/02.2011.01
    OpenUrlAbstract/FREE Full Text
  93. ↵
    1. Quade J.,
    2. Eiler J.,
    3. Daëron M.,
    4. Achyuthan H.
    , 2013, The clumped isotope geothermometer in soil and paleosol carbonate: Geochimica et Cosmochimica Acta, v. 105, p. 92–107, doi:https://doi.org/10.1016/j.gca.2012.11.031
    OpenUrlCrossRefWeb of Science
  94. ↵
    1. Quade J.,
    2. Leary R.,
    3. Dettinger M. P.,
    4. Orme D.,
    5. Krupa A.,
    6. DeCelles P. G.,
    7. Kano A.,
    8. Kato H.,
    9. Waldrip R.,
    10. Huang W.,
    11. Kapp P.
    , 2020, Resetting Southern Tibet: The serious challenge of obtaining primary records of Paleoaltimetry: Global and Planetary Change, v. 191, p. 103194, doi:https://doi.org/10.1016/j.gloplacha.2020.103194
    OpenUrlCrossRef
  95. ↵
    1. Ringham M. C.,
    2. Hoke G. D.,
    3. Huntington K. W.,
    4. Aranibar J. N.
    , 2016, Influence of vegetation type and site-to-site variability on soil carbonate clumped isotope records, Andean piedmont of Central Argentina (32–34°S): Earth and Planetary Science Letters, v. 440, p. 1–11, doi:https://doi.org/10.1016/j.epsl.2016.02.003
    OpenUrlCrossRef
  96. ↵
    1. Rowley D. B.
    , 2007, Stable Isotope-Based Paleoaltimetry: Theory and Validation: Reviews in Mineralogy and Geochemistry, v. 66, n. 1, p. 23–52, doi:https://doi.org/10.2138/rmg.2007.66.2
    OpenUrlAbstract/FREE Full Text
  97. ↵
    1. Rowley D. B.
    2019, Comparing paleomagnetic study means with apparent wander paths: A case study and paleomagnetic test of the Greater India versus Greater Indian Basin hypotheses: Tectonics, v. 38, n. 2, p. 722–740, doi:https://doi.org/10.1029/2017TC004802
    OpenUrlCrossRef
  98. ↵
    1. Rowley D. B.,
    2. Currie B. S.
    , 2006, Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet: Nature, v. 439, p. 677–81, doi:https://doi.org/10.1038/nature04506
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  99. ↵
    1. Rowley D. B.,
    2. Pierrehumbert R. T.,
    3. Currie B. S.
    , 2001, A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene: Earth and Planetary Science Letters, v. 188, n. 1–2, p. 253–268, doi:https://doi.org/10.1016/S0012-821X(01)00324-7
    OpenUrlCrossRefGeoRefWeb of Science
  100. ↵
    1. Rozanski K.,
    2. Araguas-Araguas L.,
    3. Gonfiantini R.
    , 1993, Isotopic patterns in modern global precipitation, in Cliamte Change in Continental Isotopic Records: Geophysical Monograph Series, v. 78, p. 1–36, doi:https://doi.org/10.1029/GM078p0001
    OpenUrlCrossRef
  101. ↵
    1. Shelley D.
    , 1993, Igneous and metamorphic rocks under the microscope: Classification, textures, microstructures, and mineral preferred-orientations: London, Chapman and Hall, 468 p.
  102. ↵
    1. Shen X.
    , 1993, Kinematics and tectonothermal modeling-interpretation of heat flow observed on the Tibetan Plateau: Tectonophysics, v. 225, n. 1–2, p. 91–106, doi:https://doi.org/10.1016/0040-1951(93)90251-E
    OpenUrlCrossRefGeoRef
  103. ↵
    1. Snell K. E.,
    2. Thrasher B. L.,
    3. Eiler J. M.,
    4. Koch P. L.,
    5. Sloan L. C.,
    6. Tabor N. J.
    , 2013, Hot summers in the Bighorn Basin during the early Paleogene: Geology, v. 41, n. 1, p. 55–58, doi:https://doi.org/10.1130/G33567.1
    OpenUrlAbstract/FREE Full Text
  104. ↵
    1. Stolper D. A.,
    2. Eiler J. M.
    , 2015, The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples: American Journal of Science, v. 315, n. 5, p. 363–411, doi:https://doi.org/10.2475/05.2015.01
    OpenUrlAbstract/FREE Full Text
  105. ↵
    1. Stumm W.,
    2. Morgan J. J.
    , 1981, Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters: New York, Wiley-Interscience, 583 p.
  106. ↵
    1. Su T.,
    2. Farnsworth A.,
    3. Spicer R. A.,
    4. Huang J.,
    5. Wu F. X.,
    6. Liu J.,
    7. Li S. F.,
    8. Xing Y. W.,
    9. Huang Y. J.,
    10. Deng W. Y. D.,
    11. Tang H.,
    12. Xu C. L.,
    13. Zhao F.,
    14. Srivastava G.,
    15. Valdes P. J.,
    16. Deng T.,
    17. Zhou Z. K.
    , 2019, No high tibetan plateau until the Neogene: Science Advances, v. 5, n. 3, doi:https://doi.org/10.1126/sciadv.aav2189
    OpenUrlCrossRef
  107. ↵
    1. Sun B.,
    2. Wang Y.,
    3. Li C.,
    4. Yang J.,
    5. Li J.,
    6. Li Y.,
    7. Deng T.,
    8. Wang S.,
    9. Zhao M.,
    10. Spicer R. A.,
    11. Ferguson D. K.,
    12. Mehrotra R. C.
    , 2015, Early Miocene elevation in northern Tibet estimated by palaeobotanical evidence: Scientific Reports 5, article number 10379, p. 1–6, doi:https://doi.org/10.1038/srep10379
    OpenUrlCrossRef
  108. ↵
    1. Sun J.,
    2. Xu Q.,
    3. Liu W.,
    4. Zhang Z.,
    5. Xue L.,
    6. Zhao P.
    , 2014b, Palynological evidence for the latest Oligocene − early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 399, p. 21–30, doi:https://doi.org/10.1016/j.palaeo.2014.02.004
    OpenUrlCrossRefGeoRef
  109. ↵
    1. Sun T.,
    2. Wang C.,
    3. Duan Y.,
    4. Li Y.,
    5. Hu B.
    , 2014a, The organic geochemistry of the Eocene–Oligocene black shales from the Lunpola Basin, central Tibet: Journal of Asian Earth Sciences, v. 79, Part A, p. 468–476, doi:https://doi.org/10.1016/j.jseaes.2013.09.034
    OpenUrlCrossRefGeoRef
  110. ↵
    1. Sun X.,
    2. Zhao Y.,
    3. He Z.
    , 1984, Oligocene–Miocene sporopollen assemblages in Xining-Minhe basins of Qinghai Province: Geological Review, v. 30, n. 3, p. 207–215.
    OpenUrlGeoRef
  111. ↵
    1. Swart P. K.
    , 2015, The geochemistry of carbonate diagenesis: The past, present and future: Sedimentology, v. 62, n. 5, p. 1233–1304, doi:https://doi.org/10.1111/sed.12205
    OpenUrlCrossRefGeoRef
  112. ↵
    1. Talbot M. R.
    , 1990, A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates: Chemical Geology, v. 80, n. 4, p. 261–279, doi:https://doi.org/10.1016/0168-9622(90)90009-2
    OpenUrlCrossRefWeb of Science
  113. ↵
    1. Tang M.,
    2. Liu-Zeng J.,
    3. Hoke G. D.,
    4. Xu Q.,
    5. Wang W.,
    6. Li Z.,
    7. Zhang J.,
    8. Wang W.
    , 2017, Paleoelevation reconstruction of the Paleocene-Eocene Gonjo Basin, SE-central Tibet: Tectonophysics, v. 712–713, p. 170–181. doi:https://doi.org/10.1016/j.tecto.2017.05.018.
    OpenUrlCrossRef
  114. ↵
    1. Tao D.,
    2. Shiqi W.,
    3. Xie G. P.,
    4. Li Q.,
    5. Hou S. K.,
    6. Sun B. Y.
    , 2012, A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry: Chinese Science Bulletin, v. 57, p. 261–269, doi:https://doi.org/10.1007/s11434-011-4773-8
    OpenUrlCrossRefGeoRef
  115. ↵
    1. Taylor M.,
    2. Yin A.,
    3. Ryerson F. J.,
    4. Kapp P.,
    5. Ding L.
    , 2003, Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau: Tectonics, v. 22, n. 4, p. 7407–7407, doi:https://doi.org/10.1029/2002TC001361
    OpenUrlCrossRef
  116. ↵
    1. Thaler C.,
    2. Millo C.,
    3. Ader M.,
    4. Chaduteau C.,
    5. Guyot F.,
    6. Ménez B.
    , 2017, Disequilibrium δ18O values in microbial carbonates as a tracer of metabolic production of dissolved inorganic carbon: Geochimica et Cosmochimica Acta, v. 199, p. 112–129, doi:https://doi.org/10.1016/j.gca.2016.10.051
    OpenUrlCrossRef
  117. ↵
    1. Thiagarajan N.,
    2. Adkins J.,
    3. Eiler J.
    , 2011, Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects: Geochimica et Cosmochimica Acta, v. 75, n. 16, p. 4416–4425, doi:https://doi.org/10.1016/j.gca.2011.05.004
    OpenUrlCrossRefGeoRefWeb of Science
  118. ↵
    1. van Hinsbergen D. J. J.,
    2. Kapp P.,
    3. Dupont-Nivet G.,
    4. Lippert P. C.,
    5. DeCelles P. G.,
    6. Torsvik T. H.
    , 2011, Restoration of Cenozoic deformation in Asia and the size of Greater India: Tectonics, v. 30, n. 5, p. TC5003, doi:https://doi.org/10.1029/2011TC002908
    OpenUrlCrossRef
  119. ↵
    1. Mackenzie F. T.
    1. Veizer J.,
    2. Mackenzie F. T.
    , 2003, Evolution of Sedimentary Rocks, in Mackenzie F. T., editor, Sediments, Diagenesis, and Sedimentary Rocks: Treatise on Geochemistry, v. 7, p. 369–407, doi:https://doi.org/10.1016/B0-08-043751-6/07103-6
    OpenUrlCrossRef
  120. ↵
    1. Vogel J. C.,
    2. Grootes P. M.,
    3. Mook W. G.
    , 1970, Isotopic fractionation between gaseous and dissolved carbon dioxide: Zeitschrift für Physik, v. 230, p. 225–238, doi:https://doi.org/10.1007/BF01394688
    OpenUrlCrossRefWeb of Science
  121. ↵
    1. Wan W.,
    2. Li H.,
    3. Xie H.,
    4. Hong Y.,
    5. Long D.,
    6. Zhao L.,
    7. Han Z.,
    8. Cui Y.,
    9. Liu B.,
    10. Wang C.,
    11. Yang W.
    , 2017, A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001-2015: Scientific Data, v. 4, doi:https://doi.org/10.1038/sdata.2017.95
    OpenUrlCrossRef
  122. ↵
    1. Wang C.,
    2. Zhao X.,
    3. Liu Z.,
    4. Lippert P. C.,
    5. Graham S. A.,
    6. Coe R. S.,
    7. Yi H.,
    8. Zhu L.,
    9. Liu S.,
    10. Li Y.
    , 2008, Constraints on the early uplift history of the Tibetan Plateau: Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 13, p. 4987–4992, doi:https://doi.org/10.1073/pnas.0703595105
    OpenUrlAbstract/FREE Full Text
  123. ↵
    1. Wei W.,
    2. Lu Y.,
    3. Xing F.,
    4. Liu Z.,
    5. Pan L.,
    6. Algeo T. J.
    , 2017, Sedimentary facies associations and sequence stratigraphy of source and reservoir rocks of the lacustrine Eocene Niubao Formation (Lunpola Basin, central Tibet): Marine and Petroleum Geology, v. 86, p. 1273–1290, doi:https://doi.org/10.1016/j.marpetgeo.2017.07.032
    OpenUrlCrossRef
  124. ↵
    1. Wei Y.,
    2. Zhang K.,
    3. Garzione C. N.,
    4. Xu Y.,
    5. Song B.,
    6. Ji J.
    , 2016, Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin: Scientific Reports, v. 6, p. 1–9, doi:https://doi.org/10.1038/srep27508
    OpenUrlCrossRef
  125. ↵
    1. Wing S. L.,
    2. Currano E. D.
    , 2013, Plant response to a global greenhouse event 56 million years ago: American Journal of Botany, v. 100, n. 7, p. 1234–1254, doi:https://doi.org/10.3732/ajb.1200554
    OpenUrlAbstract/FREE Full Text
  126. ↵
    1. Wu F.,
    2. Miao D.,
    3. Chang M. M.,
    4. Shi G.,
    5. Wang N.
    , 2017, Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene: Scientific Reports, v. 7, p. 1–7, doi:https://doi.org/10.1038/s41598-017-00928-9
    OpenUrlCrossRef
  127. ↵
    1. Wu Z.,
    2. Barosh P. J.,
    3. Zhonghai W.,
    4. Daogong H.,
    5. Xun Z.,
    6. Peisheng Y.
    , 2008, Vast early Miocene lakes of the central Tibetan plateau: GSA Bulletin, v. 120, n. 9–10, p. 1326–1337, doi:https://doi.org/10.1130/B26043.1
    OpenUrlAbstract/FREE Full Text
  128. ↵
    1. Wu Z.,
    2. Yang Y.,
    3. Barosh P. J.,
    4. Wu Z.,
    5. Zhang Y.
    , 2014, Tectonics and topography of the tibetan plateau in early Miocene: Acta Geologica Sinica, v. 88, n. 2, p. 410–424, doi:https://doi.org/10.1111/1755-6724.12205
    OpenUrlCrossRef
  129. ↵
    1. Xia J.-B.
    , 1983, Cenozoic of Baingoin and its borders, Xizang (Tibet), in CGQXP Editorial Committee, Contribution to the Geology of the Qinghai-Xizang Plateau 3, Ministry of Geology and Mineral Resources: Beijing, Geological Publishing House.
  130. ↵
    1. Xu Z. Y.
    , 1980, The Tertiary and its petroleum potential in the Lunpola Basin, Tibet: Oil Gas Geology, v. 1, p. 153–158.
    OpenUrl
  131. ↵
    1. Xu Z. Y.,
    2. Zhao J. P.,
    3. Wu Z. L.
    , 1985, On the Tertiary continental basins and their petroleum potential in Qinghai-Xizang (Tibet) Plateau with Lunpola Basin as example: Contribution to Geology of Qinghai-Xizang (Tibet) Plateau, v. 17, p. 391–399.
    OpenUrl
  132. ↵
    1. Yuan F.,
    2. Sheng Y.,
    3. Yao T.,
    4. Fan C.,
    5. Li J.,
    6. Zhao H.,
    7. Lei Y.
    , 2011, Evaporative enrichment of oxygen-18 and deuterium in lake waters on the Tibetan Plateau: Journal of Paleolimnology, v. 46, p. 291–307, doi:https://doi.org/10.1007/s10933-011-9540-y
    OpenUrlCrossRefGeoRef
  133. ↵
    1. Zeebe R. E.
    , 2014, Kinetic fractionation of carbon and oxygen isotopes during hydration of carbon dioxide: Geochimica et Cosmochimica Acta, v. 139, p. 540 552, doi:https://doi.org/10.1016/j.gca.2014.05.005
    OpenUrlCrossRefGeoRef
  134. ↵
    1. Zhang J.,
    2. Quay P. D.,
    3. Wilbur D. O.
    , 1995, Carbon isotope fractionation during gas-water exchange and dissolution of CO2: Geochimica et Cosmochimica Acta, v. 59, n. 1, p. 107–114, doi:https://doi.org/10.1016/0016-7037(95)91550-D
    OpenUrlCrossRefGeoRefWeb of Science
  135. ↵
    1. Zhang K.,
    2. Wang G.,
    3. Xu Y.,
    4. Luo M.,
    5. Ji J.,
    6. Xiao G.,
    7. Wang A.,
    8. Song B.,
    9. Liang Y.,
    10. Jiang S.,
    11. Cao K.,
    12. Chen F.,
    13. Chen R.,
    14. Yang Y.
    , 2013, Sedimentary evolution of the Qinghai-Tibet plateau in Cenozoic and its response to the uplift of the plateau: Acta Geologica Sinica.
  136. ↵
    1. Zhu D.-C.,
    2. Wang Q.,
    3. Chung S.-L.,
    4. Cawood P. A.,
    5. Zhao Z.-D.
    , 2019, Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma: Geological Society, London, Special Publications, v. 483, doi:https://doi.org/10.1144/SP483.14
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 320 (6)
American Journal of Science
Vol. 320, Issue 6
1 Jun 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reconsidering the uplift history and peneplanation of the northern Lhasa terrane, Tibet
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
15 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Reconsidering the uplift history and peneplanation of the northern Lhasa terrane, Tibet
Miquela Ingalls, David B. Rowley, Brian S. Currie, Albert S. Colman
American Journal of Science Jun 2020, 320 (6) 479-532; DOI: 10.2475/06.2020.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Reconsidering the uplift history and peneplanation of the northern Lhasa terrane, Tibet
Miquela Ingalls, David B. Rowley, Brian S. Currie, Albert S. Colman
American Journal of Science Jun 2020, 320 (6) 479-532; DOI: 10.2475/06.2020.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGIC SETTING
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Paleoaltimetry
  • Tectonics
  • oxygen isotopes
  • carbonate clumped isotopes
  • proxy assessment
  • Tibetan Plateau
  • Lunpola basin

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire