Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Tectonics and foreland basin development at the leading edge of the Humber Arm Allochthon, western Newfoundland, Canadian Appalachians

Ryan A. Lacombe, John W. F. Waldron and S. Henry Williams
American Journal of Science May 2020, 320 (5) 450-477; DOI: https://doi.org/10.2475/05.2020.02
Ryan A. Lacombe
* Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G2E3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John W. F. Waldron
* Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G2E3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: john.waldron@ualberta.ca
S. Henry Williams
** Suncor Energy, 150-6th Ave SW, Calgary AB, T2P 3E3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Batten Hender K. L.,
    2. Dix G. R.
    , 2008, Facies development of a Late Ordovician mixed carbonate-siliciclastic ramp proximal to the developing Taconic orogen: Lourdes Formation, Newfoundland, Canada: Facies, v. 54, p. 121–149, doi:https://doi.org/10.1007/s10347-007-0126-0
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Bergström S. M.,
    2. Riva J.,
    3. Kay M.
    , 1974, Significance of conodonts, graptolites, and shelly faunas from the Ordovician of western and north-central Newfoundland: Canadian Journal of Earth Sciences, v. 11, n. 12, p. 1625–1660, doi:https://doi.org/10.1139/e74-163
    OpenUrlAbstract
  3. ↵
    1. Botsford J.
    , ms, 1987, Stratigraphy and sedimentology of Cambro-Ordovician deep water sediments, Bay of Islands, western Newfoundland: St. John's, Newfoundland, Canada, Memorial University of Newfoundland, Ph. D. Thesis, 322 p.
  4. ↵
    1. Bradley D. C.,
    2. Kidd W. S. F.
    , 1991, Flexural extension of the upper continental crust in collisional foredeeps: GSA Bulletin, v. 103, n. 11, p. 1416–1438, doi:https://doi.org/10.1130/0016-7606(1991)103<1416:FEOTUC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Burden E. T.,
    2. Quinn L.,
    3. Nowlan G. S.,
    4. Nill L. A. B.
    , 2002, Palynology and micropaleontology of the Clam Bank Formation (Lower Devonian) of western Newfoundland, Canada: Palynology, v. 26, n. 1, p. 37–41, doi:https://doi.org/10.2113/0260185
    OpenUrlCrossRef
  6. ↵
    1. Cawood P. A.,
    2. Botsford J. W.
    , 1991, Facies and structural contrasts across Bonne Bay cross-strike discontinuity, western Newfoundland: American Journal of Science, v. 291, n. 8, p. 737–759, doi:https://doi.org/10.2475/ajs.291.8.737
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Cawood P. A.,
    2. Suhr G.
    , 1992, Generation and obduction of ophiolites: Constraints from the Bay of Islands Complex, western Newfoundland: Tectonics, v. 11, n. 4, p. 884–897, doi:https://doi.org/10.1029/92TC00471
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Cawood P. A.,
    2. Shaw B. R.,
    3. Etemadi M.,
    4. Stevens R. K.,
    5. Stockmal G. S.,
    6. Waldron J. W. F.
    , 1991, Comment and Reply on “ Structure of the Appalachian deformation front in western Newfoundland: Implications of multichannel seismic reflection data”: Geology, v. 19, n. 9, p. 951–954, doi:https://doi.org/10.1130/0091-7613(1991)019<0951:CAROSO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Byrne T.,
    2. Underwood M. B. III.,
    3. Fisher D.,
    4. McNeill L.,
    5. Saffer D.,
    6. Ujiie K.,
    7. Yamaguchi A.
    1. Chester F. M.,
    2. Moore J. C.
    , 2018, Tectonostratigraphy and processes of frontal accretion with horst-graben subduction at the Japan Trench, in Byrne T., Underwood M. B. III., Fisher D., McNeill L., Saffer D., Ujiie K., Yamaguchi A., editors, Geology and Tectonics of Subduction Zones: A Tribute to Gaku Kimura: GSA Special Papers, v. 534, p. 101–113, doi:https://doi.org/10.1130/2018.2534(06)
    OpenUrlCrossRef
  10. ↵
    1. Chow N.
    , ms, 1985, Sedimentology and diagenesis of Middle and Upper Cambrian platform carbonates and siliciclastics, Port au Port Peninsula, western Newfoundland: St. John's, Newfoundland, Canada, Memorial University of Newfoundland, Ph. D. Thesis, 916 p., http://research.library.mun.ca/id/eprint/6788
  11. ↵
    1. Chow N.,
    2. James N. P.
    , 1987, Cambrian Grand Cycles: A northern Appalachian perspective: GSA Bulletin, v. 98, n. 4, p. 418–429, doi:https://doi.org/10.1130/0016-7606(1987)98<418:CGCANA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Cooper M.,
    2. Weissenberger J.,
    3. Knight I.,
    4. Hostad D.,
    5. Gillespie D.,
    6. Williams H.,
    7. Burden E.,
    8. Porter-Chaudhry J.,
    9. Rae D.,
    10. Clark E.
    , 2001, Basin evolution in western Newfoundland: New insights from hydrocarbon exploration: AAPG bulletin, v. 85, n. 3, p. 393–418, doi:https://doi.org/10.1306/8626C901-173B-11D7-8645000102C1865D
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Gradstein F. M.,
    2. Ogg J. G.,
    3. Schmitz M.,
    4. Ogg G.
    1. Cooper R. A.,
    2. Sadler P. M.,
    3. Hammer O.,
    4. Gradstein F. M.
    , 2012, The Ordovician Period, in Gradstein F. M., Ogg J. G., Schmitz M., Ogg G., editors, The Geologic Time Scale 2012: Amsterdam, The Netherlands, Elsevier B.V., p. 489–523, doi:https://doi.org/10.1016/B978-0-444-59425-9.00020-2
    OpenUrlCrossRef
  14. ↵
    1. Dewey J. F.,
    2. Casey J. F.
    , 2013, The sole of an ophiolite: The Ordovician Bay of Islands Complex, Newfoundland: Journal of the Geological Society, v. 170, p. 715–722, doi:https://doi.org/10.1144/jgs2013-017
    OpenUrlCrossRef
  15. ↵
    1. Forsyth D.,
    2. Uyeda S.
    , 1975, On the Relative Importance of the Driving Forces of Plate Motion: Geophysical Journal of the Royal Astronomical Society, v. 43, n. 1, p. 163–200, doi:https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Harris R.
    , 2011, The Nature of the Banda Arc–Continent Collision in the Timor Region, in Arc-Continent Collision: Berlin, Heidelberg, Springer, p. 163–211, doi:https://doi.org/10.1007/978-3-540-88558-0_7
    OpenUrlCrossRef
  17. ↵
    1. Hibbard J.,
    2. Van Staal C. R.,
    3. Rankin D. W.
    , 2007, A comparative analysis of pre-Silurian crustal building blocks of the northern and the southern Appalachian orogen: American Journal of Science, v. 307, n. 1, p. 23–45, doi:https://doi.org/10.2475/01.2007.02
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Ingram R. L.
    , 1954, Terminology for the thickness of stratification and parting units in sedimentary rocks: GSA Bulletin, v. 65, n. 9, p. 937–938, doi:https://doi.org/10.1130/0016-7606(1954)65[937:TFTTOS]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Jacobi R. D.
    , 1981, Peripheral bulge–a causal mechanism for the Lower/Middle Ordovician unconformity along the western margin of the Northern Appalachians: Earth and Planetary Science Letters, v. 56, p. 245–251, doi:https://doi.org/10.1016/0012-821X(81)90131-X
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Jacobi R. D.,
    2. Mitchell C. E.
    , 2002, Geodynamical interpretation of a major unconformity in the Taconic Foredeep: Slide scar or onlap unconformity?: Physics and Chemistry of the Earth, Parts A/B/C, v. 27, n. 1–3, p. 169–201, doi:https://doi.org/10.1016/S1474-7065(01)00006-7
    OpenUrlCrossRef
  21. ↵
    1. Johnson H.
    , 1941, Paleozoic lowlands of northwestern Newfoundland: Transactions of The New York Academy of Sciences, Series II, v. 3, n. 6, p. 141–145, doi:https://doi.org/10.1111/j.2164-0947.1941.tb00794.x
    OpenUrlCrossRef
  22. ↵
    1. Klappa C. F.,
    2. Opalinski P. R.,
    3. James N. P.
    , 1980, Middle Ordovician Table Head Group of western Newfoundland: A revised stratigraphy: Canadian Journal of Earth Sciences, v. 17, n. 8, p. 1007–1019, doi:https://doi.org/10.1139/e80-101
    OpenUrlAbstract
  23. ↵
    1. Knight I.,
    2. Boyce W. D.
    , 1987, Lower to middle Cambrian terrigenous-carbonate rocks of Chimney Arm, Canada Bay: Lithostratigraphy, preliminary biostratigraphy and regional significance: Current Research (1987) Newfoundland Department of Mines and Energy, Mineral Development Division, v. Report 87-1, p. 359–365, http://gis.geosurv.gov.nl.ca/geofilePDFS/WBox043/NFLD_1667.pdf#page=353
  24. ↵
    1. Knight I.,
    2. Boyce W. D.
    1991, Deformed Lower Paleozoic platform carbonates, Goose Arm–Old Man's Pond: Current Research, Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 91-1, p. 141–153.
  25. ↵
    1. Knight I.,
    2. James N. P.
    , 1987, The stratigraphy of the Lower Ordovician St. George Group, western Newfoundland: The interaction between eustasy and tectonics: Canadian Journal of Earth Sciences, v. 24, n. 10, p. 1927–1951, doi:https://doi.org/10.1139/e87-185
    OpenUrlAbstract
  26. ↵
    1. Knight I.,
    2. James N. P.,
    3. Lane T. E.
    , 1989, The Ordovician St. George unconformity, Northern Appalachians, Newfoundland; effects of lithospheric dynamics on the Sauk-Tippecanoe sequence boundary: Geological Association of Canada, Mineralogical Association of Canada; Annual Meeting; Program with Abstracts, v. 14, p. 10.
    OpenUrl
  27. ↵
    1. Knight I.,
    2. James N. P.,
    3. Lane T. E.
    1991, The Ordovician St. George Unconformity, northern Appalachians: The relationship of plate convergence at the St. Lawrence Promontory to the Sauk/Tippecanoe sequence boundary: GSA Bulletin, v. 103, n. 9, p. 1200–1225, doi:https://doi.org/10.1130/0016-7606(1991)103<1200:TOSGUN>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Knight I.,
    2. Azmy K.,
    3. Boyce W. D.,
    4. Lavoie D.
    , 2008, Tremadocian carbonate rocks of the lower St. George Group, Port au Port Peninsula, western Newfoundland: lithostratigraphic setting of diagenetic, isotopic and geochemistry studies: Current Research: Newfoundland and Labrador Department of Natural Resources, Geological Survey, Report 08-1, p. 115–149, https://www.researchgate.net/publication/266605131
  29. ↵
    1. Knight I.,
    2. Boyce W. D.,
    3. Skovsted C. B.,
    4. Balthasar U.
    , 2017, The Lower Cambrian Forteau Formation, southern Labrador and Great Northern Peninsula, western Newfoundland: Lithostratigraphy, trilobites, and depositional setting: Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, St. John's, Occasional Papers 2017-01, 72 p., https://www.researchgate.net/publication/321335235
  30. ↵
    1. Lacombe R.
    , ms, 2017, Stratigraphic and Structural Relationships in the Foreland Basin and Humber Arm Allochthon on Port au Port Peninsula, western Newfoundland: Alberta, Canada, University of Alberta, M.S. Thesis, 171 p., doi:https://doi.org/10.7939/R3R20S95B
  31. ↵
    1. Lacombe R. A.,
    2. Waldron J. W. F.,
    3. Williams S. H.,
    4. Harris N. B.
    , 2019, Mélanges and disrupted rocks at the leading edge of the Humber Arm Allochthon, W. Newfoundland Appalachians: Deformation under high fluid pressure: Gondwana Research, v. 74, p. 216–236, doi:https://doi.org/10.1016/j.gr.2019.03.002
    OpenUrlCrossRef
  32. ↵
    1. Loydell D. K.
    , 2012, Graptolite biozone correlation charts: Geological Magazine, v. 149, n. 1, p. 124–132, doi:https://doi.org/10.1017/S0016756811000513
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Macdonald F. A.,
    2. Karabinos P. M.,
    3. Crowley J. L.,
    4. Hodgin E. B.,
    5. Crockford P. W.,
    6. Delano J. W.
    , 2017, Bridging the gap between the foreland and hinterland II: Geochronology and tectonic setting of Ordovician magmatism and basin formation on the Laurentian margin from New England to Newfoundland: American Journal of Science, v. 317, n. 5, p. 555–596, doi:https://doi.org/10.2475/05.2017.02
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Gutierrez-Marco J. C.,
    2. Rabano I.,
    3. Garcia-Bellido D.
    1. Maletz J.,
    2. Egenhoff S.
    , 2011, Graptolite biostratigraphy and biogeography of the Table Head and Goose Tickle Groups of western Newfoundland, in Gutierrez-Marco J. C., Rabano I., Garcia-Bellido D. editors, Ordovician of the World: Madrid, Spain, 3-9, Instituto Geológico y Minero de España, Cuadernos del Museo Geominero, 14, p. 333–348, https://www.researchgate.net/publication/235751334
    OpenUrl
  35. ↵
    1. Maletz J.,
    2. Egenhoff S.,
    3. Böhme M.,
    4. Asch R.,
    5. Borowski K.,
    6. Höntzsch S.,
    7. Kirsch M.,
    8. Werner M.
    , 2011, A tale of both sides of Iapetus – upper Darriwilian (Ordovician) graptolite faunal dynamics on the edges of two continents: Canadian Journal of Earth Sciences, v. 48, n. 5, p. 841–859, doi:https://doi.org/10.1139/e10-105
    OpenUrlCrossRefGeoRef
  36. ↵
    1. Buchanan P. G.,
    2. Graninge A. M.,
    3. Thornton R. C. N.
    1. McConachie B.,
    2. Lanzilli E.,
    3. Kendrick,
    4. Burge C.
    , 2000, Extensions of the Papuan Basin Foreland Geology into Eastern Irian Jaya (West Papua) and the New Guinea Fold Belt in Papua New Guinea, in Buchanan P. G., Graninge A. M., Thornton R. C. N., editors, Papua New Guinea's Petroleum Industry in the 21st Century, Proceedings of the Fourth PNG Petroleum Convention, Port Moresby: PNG Chamber of Mines and Petroleum, p. 219–237.
  37. ↵
    1. Nakamura Y.,
    2. Kodaira S.,
    3. Miura S.,
    4. Regalla C.,
    5. Takahashi N.
    , 2013, High-resolution seismic imaging in the Japan Trench axis area off Miyagi, northeastern Japan: Geophysical Research Letters, v. 40, n. 9, p. 1713–1718, doi:https://doi.org/10.1002/grl.50364
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Ogawa Y.,
    2. Anma R.,
    3. Dilek Y.
    1. Nakanishi M.
    , 2011, Bending-Related Topographic Structures of the Subducting Plate in the Northwestern Pacific Ocean, in Ogawa Y., Anma R., Dilek Y., editors, Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin: Dordrecht, The Netherlands, Springer, Modern Approaches in Solid Earth Sciences, v. 8, p. 1–38, doi:https://doi.org/10.1007/978-90-481-8885-7_1
    OpenUrlCrossRef
  39. ↵
    1. Quinn L.
    , 1992a, Diagenesis of the Goose Tickle Group, western Newfoundland: Report for Mobil Oil EL # 92-103-01-EG, 26 p.
  40. ↵
    1. Quinn L.
    ms, 1992b, Foreland and trench slope basin sandstones of the Goose Tickle group and Lower Head Formation, western Newfoundland: St. John's, Newfoundland, Memorial University of Newfoundland, Ph. D. thesis, 593 p., http://research.library.mun.ca/id/eprint/6777
  41. ↵
    1. Hibbard J. P.,
    2. van Staal C. R.,
    3. Cawood P. A.
    1. Quinn L.
    1995, Middle Ordovician foredeep fill in western Newfoundland, in Hibbard J. P., van Staal C. R., Cawood P. A. editors, Current Perspectives in the Appalachian-Caledonian Orogen: Geological Association of Canada Special Paper 41, p. 43–64.
  42. ↵
    1. Quinn L.,
    2. Williams S. H.,
    3. Harper D. A. T.,
    4. Clarkson E. N. K.
    , 1999, Late Ordovician foreland basin fill: Long Point Group of onshore western Newfoundland: Bulletin of Canadian Petroleum Geology, v. 47, n. 1, p. 63–80, doi:https://doi.org/10.35767/gscpgbull.47.1.063
    OpenUrlAbstract
  43. ↵
    1. Quinn L.,
    2. Bashforth A. R.,
    3. Burden E. T.,
    4. Gillespie H.,
    5. Springer R. K.,
    6. Williams S. H.
    , 2004, The Red Island Road Formation: Early Devonian terrestrial fill in the Anticosti Foreland Basin, western Newfoundland: Canadian Journal of Earth Sciences, v. 41, n. 5, p. 587–602, doi:https://doi.org/10.1139/e04-021
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Schillereff S.,
    2. Williams H.
    , 1979, Geology of the Stephenville map area, Newfoundland: Current Research, Part A, Geological survey of Canada, Paper 79-1A, p. 327–332, doi:https://doi.org/10.4095/124015
    OpenUrlCrossRef
  45. ↵
    1. Schultz-Ela D. D.
    , 2001, Excursus on gravity gliding and gravity spreading: Journal of Structural Geology, v. 23, n. 5, p. 725–731, doi:https://doi.org/10.1016/S0191-8141(01)00004-9
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Stenzel S. R.
    , ms, 1992, Carbonate sedimentation in an evolving Middle Ordovician foreland basin, Western Newfoundland: St. John's, Newfoundland, Memorial University of Newfoundland, Ph. D. Thesis, 610 p., http://research.library.mun.ca/id/eprint/6764
  47. ↵
    1. Stenzel S. R.,
    2. Knight I.,
    3. James N. P.
    , 1990, Carbonate platform to foreland basin: Revised stratigraphy of the Table Head Group (Middle Ordovician), western Newfoundland: Canadian Journal of Earth Sciences, v. 27, n. 1, p. 14–26, doi:https://doi.org/10.1139/e90-002
    OpenUrlAbstract
  48. ↵
    1. Lajoie J.
    1. Stevens R. K.
    , 1970, Cambro-Ordovician flysch sedimentation and tectonics in West Newfoundland and their possible bearing on a Proto-Atlantic Ocean, in Lajoie J. editor, Flysch sedimentology in North America: Geological Association of Canada Special Paper 7, p. 165–177.
  49. ↵
    1. Stockmal G. S.,
    2. Waldron J. W. F.
    , 1990, Structure of the Appalachian deformation front in western Newfoundland: Implications of multichannel seismic reflection data: Geology, v. 18, n. 8, p. 765–768, doi:https://doi.org/10.1130/0091-7613(1990)018<0765:SOTADF>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Stockmal G. S.,
    2. Slingsby A.,
    3. Waldron J. W. F.
    , 1998, Deformation styles at the Appalachian structural front, western Newfoundland: Implications of new industry seismic reflection data: Canadian Journal of Earth Sciences, v. 35, n. 11, p. 1299–1306, doi:https://doi.org/10.1139/e97-118
    OpenUrlCrossRef
  51. ↵
    1. Stockmal G. S.,
    2. Slingsby A.,
    3. Waldron J. W. F.
    , 2004, Basement-involved inversion at the Appalachian structural front, western Newfoundland: An interpretation of seismic reflection data with implications for petroleum prospectivity: Bulletin of Canadian Petroleum Geology, v. 52, n. 3, p. 215–233, doi:https://doi.org/10.2113/52.3.215
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Streel M.,
    2. Higgs K.,
    3. Loboziak S.,
    4. Riegel W.,
    5. Steemans P.
    , 1987, Spore stratigraphy and correlation with floras in the type marine Devonian of the Ardenne-Rhenish regions: Review of Palaeobotany and Palynology, v. 50, n. 3, p. 211–229, doi:https://doi.org/10.1016/0034-6667(87)90001-7
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Blundell D. J.,
    2. Scott A. C.
    1. van Staal C. R.,
    2. Dewey J. F.,
    3. MacNiocaill C.,
    4. McKerrow W. S.
    , 1998, The Cambrian-Silurian tectonic evolution of the northern Appalachians and British Caledonides: History of a complex, west and southwest Pacific-type segment of Iapetus, in Blundell D. J., Scott A. C., editors, Lyell: the Past is the Key to the Present: Geological Society of London Special Publication 143, p. 199–242, doi:https://doi.org/10.1144/GSL.SP.1998.143.01.17
    OpenUrlCrossRef
  54. ↵
    1. Waldron J. W. F.,
    2. Stockmal G. S.
    , 1991, Mid-Paleozoic thrusting at the Appalachian deformation front: Port au Port Peninsula, western Newfoundland: Canadian Journal of Earth Sciences, v. 28, n. 12, p. 1992–2002, doi:https://doi.org/10.1139/e91-181
    OpenUrlAbstract
  55. ↵
    1. Waldron J. W. F.,
    2. van Staal C. R.
    , 2001, Taconian orogeny and the accretion of the Dashwoods block: A peri-Laurentian microcontinent in the Iapetus Ocean: Geology, v. 29, n. 9, p. 811–814, doi:https://doi.org/10.1130/0091-7613(2001)029<0811:TOATAO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Waldron J. W. F.,
    2. Stockmal G. S.,
    3. Corney R. E.,
    4. Stenzel S. R.
    , 1993, Basin development and inversion at the Appalachian structural front, Port au Port Peninsula, western Newfoundland Appalachians: Canadian Journal of Earth Sciences, v. 30, n. 9, p. 1759–1772, doi:https://doi.org/10.1139/e93-156
    OpenUrlAbstract
  57. ↵
    1. Waldron J. W. F.,
    2. Anderson S. D.,
    3. Cawood P. A.,
    4. Goodwin L. B.,
    5. Hall J.,
    6. Jamieson R. A,
    7. Palmer S. E.,
    8. Stockmal G. S.,
    9. Williams P. F.
    , 1998, Evolution of the Appalachian Laurentian margin: Lithoprobe results in western Newfoundland: Canadian Journal of Earth Sciences, v. 35, n. 11, p. 1271–1287, doi:https://doi.org/10.1139/e98-053
    OpenUrlAbstract
  58. ↵
    1. Waldron J. W. F.,
    2. Hicks L.,
    3. White S. E.
    , 2012, Stratigraphy, tectonics and petroleum potential of the deformed Laurentian margin and foreland basins in western Newfoundland: Geological Association of Canada–Mineralogical Association of Canada Joint Annual Meeting, Field Trip Guidebook B3. Newfoundland and Labrador Department of Natural Resources, Geological Survey, Open File NFLD/3172, p. 131, http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/openfiles/GAC-MAC_FieldTrips2012/B3_OFNFLD_3172.pdf
  59. ↵
    1. Waldron J. W. F.,
    2. Barr S. M.,
    3. Park A. F.,
    4. White C. E.,
    5. Hibbard J. P.
    , 2015, Late Paleozoic strike-slip faults in Maritime Canada and their role in the reconfiguration of the northern Appalachian orogen: Tectonics, v. 34, n. 8, p. 1661–1684, doi:https://doi.org/10.1002/2015TC003882
    OpenUrlCrossRef
  60. ↵
    1. Wilson R. W.,
    2. Houseman G. A.,
    3. McCaffrey K. J. W.,
    4. Doré A. G.,
    5. Buiter S. J. H.
    1. White S. E.,
    2. Waldron J. W. F.
    , 2019, Inversion of Taconian Extensional Structures During Paleozoic Orogenesis in Western Newfoundland, in Wilson R. W., Houseman G. A., McCaffrey K. J. W., Doré A. G., Buiter S. J. H. editors, Tectonic evolution: 50 years of the Wilson Cycle concept: Geological Society, London, Special Publications, v. 470, p. 311–336, doi:https://doi.org/10.1144/SP470.17
    OpenUrlCrossRef
  61. ↵
    1. White S. E.,
    2. Waldron J. W. F.,
    3. Harris N. B.
    , 2020, Anticosti foreland basin offshore of Western Newfoundland: Concealed Record of Northern Appalachian Orogen Development: Basin Research, v. 32, n. 1, p. 25–50, doi:https://doi.org/10.1111/bre.12364
    OpenUrlCrossRef
  62. ↵
    1. Williams H.
    , 1978, Tectonic lithofacies map of the Appalachian orogen: St. John's, Newfoundland, Canada, Memorial University of Newfoundland, map 1, Scale 1:1,000,000 (W 87°–W 53°/N 52°–N 33°).
  63. ↵
    1. Williams H.
    1979, Appalachian Orogen in Canada: Canadian Journal of Earth Sciences, v. 16, n. 3, p. 792–807, doi:https://doi.org/10.1139/e79-070
    OpenUrlAbstract
  64. ↵
    1. Williams H.
    1984, Miogeoclines and suspect terranes of the Caledonian–Appalachian orogen: Tectonic patterns in the North Atlantic region: Canadian Journal of Earth Sciences, v. 21, n. 8, p. 887–901, doi:https://doi.org/10.1139/e84-095
    OpenUrlAbstract
  65. ↵
    1. Williams H.
    1985, Stephenville Map Area, Newfoundland: Geological Survey of Canada Map, scale 1579A.
  66. ↵
    1. Williams H.,
    2. Cawood P. A.
    , 1989, Geology, Humber Arm Allochthon, Newfoundland: Geological Survey of Canada Map, “A” Series Map 1678A, doi:https://doi.org/10.4095/126990
    OpenUrlCrossRef
  67. ↵
    1. Williams H.,
    2. Hiscott R. N.
    , 1987, Definition of the Iapetus rift-drift transition in western Newfoundland: Geology, v. 15, n. 11, p. 1044–1047, doi:https://doi.org/10.1130/0091-7613(1987)15<1044:DOTLRT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Williams H.,
    2. Stevens R. K.
    , 1974, Taconic Orogeny and the development of the ancient continental margin of eastern North America in Newfoundland: Journal of the Geological Association of Canada, v. 1, n. 2, p. 31–33.
    OpenUrl
  69. ↵
    1. Kiel M. J.,
    2. Busby D.
    1. Williams H.,
    2. James N. P.,
    3. Stevens R. K.
    , 1985, Humber Arm Allochthon and nearby groups between Bonne Bay and Portland Creek, western Newfoundland, in Kiel M. J., Busby D., editors, Current Research Part A: Geologic Survey of Canada Paper 85–1A, p. 399–406, doi:https://doi.org/10.4095/120188
    OpenUrlCrossRef
  70. ↵
    1. Zhang S.,
    2. Barnes C. R.
    , 2004, Arenigian (Early Ordovician) sea-level history and the response of conodont communities, western Newfoundland: Canadian Journal of Earth Sciences, v. 41, n. 7, p. 843–865, doi:https://doi.org/10.1139/e04-036
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 320 (5)
American Journal of Science
Vol. 320, Issue 5
1 May 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Tectonics and foreland basin development at the leading edge of the Humber Arm Allochthon, western Newfoundland, Canadian Appalachians
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
9 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Tectonics and foreland basin development at the leading edge of the Humber Arm Allochthon, western Newfoundland, Canadian Appalachians
Ryan A. Lacombe, John W. F. Waldron, S. Henry Williams
American Journal of Science May 2020, 320 (5) 450-477; DOI: 10.2475/05.2020.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Tectonics and foreland basin development at the leading edge of the Humber Arm Allochthon, western Newfoundland, Canadian Appalachians
Ryan A. Lacombe, John W. F. Waldron, S. Henry Williams
American Journal of Science May 2020, 320 (5) 450-477; DOI: 10.2475/05.2020.02
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL SETTING
    • STRATIGRAPHIC RELATIONSHIPS ON PORT AU PORT PENINSULA
    • STRUCTURE
    • DISCUSSION: HISTORY OF THE THRUST FRONT
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Newfoundland Appalachians
  • thrust front
  • faults
  • mélange
  • stratigraphy

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire