Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Continuous continental growth as constrained by the sedimentary record

Christopher J. Spencer
American Journal of Science April 2020, 320 (4) 373-401; DOI: https://doi.org/10.2475/04.2020.02
Christopher J. Spencer
* Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: c.spencer@queensu.ca
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Barham M.,
    2. Kirkland C. L.,
    3. Hollis J.
    , 2019, Spot the difference: Zircon disparity tracks crustal evolution: REPLY: Geology, v. 47, n. 9, p. e482–e482, doi:https://doi.org/10.1130/G46477Y.1
    OpenUrlCrossRef
  2. ↵
    1. Belousova E. A.,
    2. Griffin W. L.,
    3. O'Reilly S. Y.
    , 2006, Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: Examples from Eastern Australian granitoids: Journal of Petrology, v. 47, n. 2, p. 329–353, doi:https://doi.org/10.1093/petrology/egi077
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Belousova E. A.,
    2. Kostitsyn Y. A.,
    3. Griffin W. L.,
    4. Begg G. C.,
    5. O'Reilly S. Y.,
    6. Pearson N. J.
    , 2010, The growth of the continental crust: Constraints from zircon Hf-isotope data: Lithos, v. 119, n. 3–4, p. 457–466, doi:https://doi.org/10.1016/j.lithos.2010.07.024
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Bindeman I. N.,
    2. Zakharov D. O.,
    3. Palandri J.,
    4. Greber N. D.,
    5. Dauphas N.,
    6. Retallack G. J.,
    7. Hofmann A.,
    8. Lackey J. S.,
    9. Bekker A.
    , 2018, Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago: Nature, v. 557, p. 545–548, doi:https://doi.org/10.1038/s41586-018-0131-1
    OpenUrlCrossRef
  5. ↵
    1. Block S.,
    2. Jessell M.,
    3. Aillères L.,
    4. Baratoux L.,
    5. Bruguier O.,
    6. Zeh A.,
    7. Bosch D.,
    8. Caby R.,
    9. Mensah E.
    , 2016, Lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton: Interplay of coeval contractional deformation and extensional gravitational collapse: Precambrian Research, v. 274, p. 82–109, doi:https://doi.org/10.1016/j.precamres.2015.10.014
    OpenUrlCrossRefGeoRef
  6. ↵
    1. Bose P. K.,
    2. Eriksson P. G.,
    3. Sarkar S.,
    4. Wright D. T.,
    5. Samanta P.,
    6. Mukhopadhyay S.,
    7. Mandal S.,
    8. Banerjee S.,
    9. Altermann W.
    , 2012, Sedimentation patterns during the Precambrian: A unique record?: Marine and Petroleum Geology, v. 33, n. 1, p. 34–68, doi:https://doi.org/10.1016/j.marpetgeo.2010.11.002
    OpenUrlCrossRefGeoRef
  7. ↵
    1. Braudrick C. A.,
    2. Dietrich W. E.,
    3. Leverich G. T.,
    4. Sklar L. S.
    , 2009, Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers: Proceedings of the National Academy of Sciences of the United States of America, v. 106, n. 40, p. 16936–16941, doi:https://doi.org/10.1073/pnas.0909417106
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Brown M.,
    2. Johnson T.
    , 2018, Secular change in metamorphism and the onset of global plate tectonics: American Mineralogist, v. 103, n. 2, p. 181–196, doi:https://doi.org/10.2138/am-2018-6166
    OpenUrlCrossRef
  9. ↵
    1. Brown M.,
    2. Johnson T.
    2019, Metamorphism and the evolution of subduction on Earth: American Mineralogist, v. 104, n. 8, p. 1065–1082, doi:https://doi.org/10.2138/am-2019-6956
    OpenUrlCrossRef
  10. ↵
    1. Bucholz C. E.,
    2. Spencer C. J.
    , 2019, Strongly peraluminous granites across the Archean-Proterozoic Transition: Journal of Petrology, v. 60, n. 7, p. 1299–1348, doi:https://doi.org/10.1093/petrology/egz033
    OpenUrlCrossRef
  11. ↵
    1. Cagnard F.,
    2. Durrieu N.,
    3. Gapais D.,
    4. Brun J.,
    5. Ehlers C.
    , 2006, Crustal thickening and lateral flow during compression of hot lithospheres, with particular reference to Precambrian times: Terra Nova, v. 18, n. 1, p. 72–78, doi:https://doi.org/10.1111/j.1365-3121.2005.00665.x
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Cagnard F.,
    2. Barbey P.,
    3. Gapais D.
    , 2011, Transition between “Archaean-type” and “modern-type” tectonics: Insights from the Finnish Lapland Granulite Belt: Precambrian Research, v. 187, n. 1–2, p. 127–142, doi:https://doi.org/10.1016/j.precamres.2011.02.007
    OpenUrlCrossRefGeoRef
  13. ↵
    1. Cavosie A. J.,
    2. Valley J. W.,
    3. Wilde S. A.
    , 2007, The oldest terrestrial mineral record: A review of 4400 to 4000 Ma detrital zircons from Jack Hills, Western Australia: Developments in Precambrian Geology, v. 15, p. 91–111, doi:https://doi.org/10.1016/S0166-2635(07)15025-8
    OpenUrlCrossRefGeoRef
  14. ↵
    1. Cawood P. A.,
    2. Korsch R. J.
    , 2008, Assembling Australia: Proterozoic building of a continent: Precambrian Research, v. 166, n. 1–4, p. 1–35, doi:https://doi.org/10.1016/j.precamres.2008.08.006
    OpenUrlCrossRefWeb of Science
  15. ↵
    1. Cawood P. A.,
    2. Nemchin A. A.
    , 2001, Paleogeographic development of the east Laurentian margin: Constraints from U/Pb dating of detrital zircon in the Newfoundland Appalachians: GSA Bulletin, v. 113, n. 9, p. 1234–1246, doi:https://doi.org/10.1130/0016-7606(2001)113<1234:PDOTEL>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Cawood P. A.,
    2. Strachan R.,
    3. Cutts K.,
    4. Kinny P. D.,
    5. Hand M.,
    6. Pisarevsky S.
    , 2010, Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic: Geology, v. 38, n. 2, p. 99–102, doi:https://doi.org/10.1130/G30450.1
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Cawood P. A.,
    2. Hawkesworth C. J.,
    3. Dhuime B.
    , 2012, Detrital zircon record and tectonic setting: Geology, v. 40, n. 10, p. 875–878, doi:https://doi.org/10.1130/G32945.1
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Cawood P. A.,
    2. Hawkesworth C. J.,
    3. Dhuime B.
    2013, The continental record and the generation of continental crust: GSA Bulletin, v. 125, n. 1–2, p. 14–32, doi:https://doi.org/10.1130/B30722.1
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Chardon D.,
    2. Jayananda M.,
    3. Chetty T. R. K.,
    4. Peucat J. J.
    , 2008, Precambrian continental strain and shear zone patterns: South Indian case: Journal of Geophysical Research: Solid Earth, v. 113, n. B8, doi:https://doi.org/10.1029/2007JB005299
    OpenUrlCrossRef
  20. ↵
    1. Chardon D.,
    2. Gapais D.,
    3. Cagnard F.
    , 2009, Flow of ultra-hot orogens: A view from the Precambrian, clues for the Phanerozoic: Tectonophysics, v. 477, n. 3–4, p. 105–118, doi:https://doi.org/10.1016/j.tecto.2009.03.008
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Chardon D.,
    2. Jayananda M.,
    3. Peucat J. J.
    , 2011, Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of south India, geological and geophysical implications for orogenic plateaux: Geochemistry, Geophysics, Geosystems, v. 12, n. 2, doi:https://doi.org/10.1029/2010GC003398
    OpenUrlCrossRef
  22. ↵
    1. Compston W.,
    2. Pidgeon R. T.
    , 1986, Jack Hills, evidence of more very old detrital zircons in Western Australia: Nature, v. 321, p. 766, doi:https://doi.org/10.1038/321766a0
    OpenUrlCrossRefGeoRef
  23. ↵
    1. Condie K. C.
    , 1989, Origin of the Earth's crust: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 75, n. 1–2, p. 57–81, doi:https://doi.org/10.1016/0031-0182(89)90184-3
    OpenUrlCrossRef
  24. ↵
    1. Condie K. C.,
    2. Aster R. C.
    , 2010, Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth: Precambrian Research, v. 180, n. 1–4, p. 227–236, doi:https://doi.org/10.1016/j.precamres.2010.03.008
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Condie K. C.,
    2. Belousova E.,
    3. Griffin W. L.,
    4. Sircombe K. N.
    , 2009a, Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra: Gondwana Research, v. 15, n. 3–4, p. 228–242, doi:https://doi.org/10.1016/j.gr.2008.06.001
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Condie K. C.,
    2. O'Neill C.,
    3. Aster R. C.
    , 2009b, Evidence and implications for a widespread magmatic shutdown for 250 My on Earth: Earth and Planetary Science Letters, v. 282, n. 1–4, p. 294–298, doi:https://doi.org/10.1016/j.epsl.2009.03.033
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Condie K. C.,
    2. Bickford M. E.,
    3. Aster R. C.,
    4. Belousova E.,
    5. Scholl D. W.
    , 2011, Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust: GSA Bulletin, v. 123, n. 5–6, p. 951–957, doi:https://doi.org/10.1130/B30344.1
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Condie K. C.,
    2. Davaille A.,
    3. Aster R. C.,
    4. Arndt N.
    , 2015, Upstairs-downstairs: Supercontinents and large igneous provinces, are they related?: International Geology Review, v. 57, n. 11–12, p. 1341–1348, doi:https://doi.org/10.1080/00206814.2014.963170
    OpenUrlCrossRefGeoRef
  29. ↵
    1. Condie K. C.,
    2. Aster R. C.,
    3. Van Hunen J.
    , 2016, A great thermal divergence in the mantle beginning 2.5 Ga: Geochemical constraints from greenstone basalts and komatiites: Geoscience Frontiers, v. 7, n. 4, p. 543–553, doi:https://doi.org/10.1016/j.gsf.2016.01.006
    OpenUrlCrossRef
  30. ↵
    1. Cox G. M.,
    2. Lyons T. W.,
    3. Mitchell R. N.,
    4. Hasterok D.,
    5. Gard M.
    , 2018, Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory: Earth and Planetary Science Letters, v. 489, p. 28–36, doi:https://doi.org/10.1016/j.epsl.2018.02.016
    OpenUrlCrossRef
  31. ↵
    1. Darbyshire F. A.,
    2. Bastow I. D.,
    3. Petrescu L.,
    4. Gilligan A.,
    5. Thompson D. A.
    , 2017, A tale of two orogens: Crustal processes in the Proterozoic Trans-Hudson and Grenville Orogens, eastern Canada: Tectonics, v. 36, n. 8, p. 1633–1659, doi:https://doi.org/10.1002/2017TC004479
    OpenUrlCrossRef
  32. ↵
    1. Davies N. S.,
    2. Gibling M. R.
    , 2010a, Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants: Earth-Science Reviews, v. 98, n. 3–4, p. 171–200, doi:https://doi.org/10.1016/j.earscirev.2009.11.002
    OpenUrlCrossRefGeoRef
  33. ↵
    1. Davies N. S.,
    2. Gibling M. R.
    2010b, Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets: Geology, v. 38, n. 1, p. 51–54, doi:https://doi.org/10.1130/G30443.1
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Dearnley R.
    , 1966, Orogenic fold-belts and a hypothesis of earth evolution: Physics and Chemistry of the Earth, v. 7, p. 1–114, doi:https://doi.org/10.1016/0079-1946(66)90002-4
    OpenUrlCrossRefGeoRef
  35. ↵
    1. Dhuime B.,
    2. Hawkesworth C. J.,
    3. Cawood P. A.,
    4. Storey C. D.
    , 2012, A change in the geodynamics of continental growth 3 billion years ago: Science, v. 335, n. 6074, p. 1334–1336, doi:https://doi.org/10.1126/science.1216066
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Dhuime B.,
    2. Hawkesworth C. J.,
    3. Delavault H.,
    4. Cawood P. A.
    , 2017, Continental growth seen through the sedimentary record: Sedimentary Geology, v. 357, p. 16–32, doi:https://doi.org/10.1016/j.sedgeo.2017.06.001
    OpenUrlCrossRef
  37. ↵
    1. Dickinson W. R.
    , 2008, Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis: Earth and Planetary Science Letters, v. 275, n. 1–2, p. 80–92, doi:https://doi.org/10.1016/j.epsl.2008.08.003
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Dong Y.,
    2. Yang Z.,
    3. Liu X.,
    4. Zhang X.,
    5. He D.,
    6. Li W.,
    7. Zhang F.,
    8. Sun S.,
    9. Zhang H.,
    10. Zhang G.
    , 2014, Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite: Precambrian Research, v. 255, Part 1, p. 77–95, doi:https://doi.org/10.1016/j.precamres.2014.09.008
    OpenUrlCrossRefGeoRef
  39. ↵
    1. Dong Y.,
    2. Sun S.,
    3. Yang Z.,
    4. Liu X.,
    5. Zhang F.,
    6. Li W.,
    7. Cheng B.,
    8. He D.,
    9. Zhang G.
    , 2017, Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China: Precambrian Research, v. 293, p. 73–90, doi:https://doi.org/10.1016/j.precamres.2017.02.015
    OpenUrlCrossRef
  40. ↵
    1. Ducea M. N.,
    2. Paterson S. R.,
    3. DeCelles P. G.
    , 2015, High-volume magmatic events in subduction systems: Elements, v. 11, n. 2, p. 99–104, doi:https://doi.org/10.2113/gselements.11.2.99
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Duclaux G.,
    2. Rey P.,
    3. Guillot S.,
    4. Ménot R.-P.
    , 2007, Orogen-parallel flow during continental convergence: Numerical experiments and Archean field examples: Geology, v. 35, n. 8, p. 715–718, doi:https://doi.org/10.1130/G23540A.1
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Eglinger A.,
    2. Thébaud N.,
    3. Zeh A.,
    4. Davis J.,
    5. Miller J.,
    6. Parra-Avila L. A.,
    7. Loucks R.,
    8. McCuaig C.,
    9. Belousova E.
    , 2017, New insights into the crustal growth of the Paleoproterozoic margin of the Archean Kéména-Man domain, West African craton (Guinea): Implications for gold mineral system: Precambrian Research, v. 292, p. 258–289, doi:https://doi.org/10.1016/j.precamres.2016.11.012
    OpenUrlCrossRef
  43. ↵
    1. Eriksson P. G.,
    2. Condie K. C.,
    3. Tirsgaard H.,
    4. Mueller W. U.,
    5. Altermann W.,
    6. Miall A. D.,
    7. Aspler L. B.,
    8. Catuneanu O.,
    9. Chiarenzelli J. R.
    , 1998, Precambrian clastic sedimentation systems: Sedimentary Geology, v. 120, n. 1–4, p. 5–53, doi:https://doi.org/10.1016/S0037-0738(98)00026-8
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Eriksson P. G.,
    2. Mazumder R.,
    3. Catuneanu O.,
    4. Bumby A. J.,
    5. Ountsché Ilondo B.
    , 2006, Precambrian continental freeboard and geological evolution: A time perspective: Earth-Science Reviews, v. 79, n. 3–4, p. 165–204, doi:https://doi.org/10.1016/j.earscirev.2006.07.001
    OpenUrlCrossRefGeoRef
  45. ↵
    1. Ernst R. E.,
    2. Wingate M. T. D.,
    3. Buchan K. L.,
    4. Li Z.-X.
    , 2008, Global record of 1600–700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents: Precambrian Research, v. 160, n. 1–2, p. 159–178, doi:https://doi.org/10.1016/j.precamres.2007.04.019
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Evans D. A. D.,
    2. Mitchell R. N.
    , 2011, Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna: Geology, v. 39, n. 5, p. 443–446, doi:https://doi.org/10.1130/G31654.1
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Fairchild I. J.,
    2. Kennedy M. J.
    , 2007, Neoproterozoic glaciation in the Earth System: Journal of the Geological Society, v. 164, n. 5, p. 895–921, doi:https://doi.org/10.1144/0016-76492006-191
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Fedo C. M.,
    2. Myers J. S.,
    3. Appel P. W. U.
    , 2001, Depositional setting and paleogeographic implications of earth's oldest supracrustal rocks, the >3.7 Ga Isua Greenstone belt, West Greenland: Sedimentary Geology, v. 141–142, p. 61–77, doi:https://doi.org/10.1016/S0037-0738(01)00068-9
    OpenUrlCrossRef
  49. ↵
    1. Flament N.,
    2. Coltice N.,
    3. Rey P. F.
    , 2008, A case for late-Archaean continental emergence from thermal evolution models and hypsometry: Earth and Planetary Science Letters, v. 275, n. 3–4, p. 326–336, doi:https://doi.org/10.1016/j.epsl.2008.08.029
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Galer S. J. G.
    , 1991, Interrelationships between continental freeboard, tectonics and mantle temperature: Earth and Planetary Science Letters, v. 105, n. 1–3, p. 214–228, doi:https://doi.org/10.1016/0012-821X(91)90132-2
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Ganne J.,
    2. Feng X.
    , 2017, Primary magmas and mantle temperatures through time: Geochemistry, Geophysics, Geosystems, v. 18, n. 3, p. 872–888, doi:https://doi.org/10.1002/2016GC006787
    OpenUrlCrossRef
  52. ↵
    1. Ganne J.,
    2. Feng X.,
    3. McFarlane H.,
    4. Macouin M.,
    5. Rousse S.,
    6. Naba S.,
    7. Traoré A.,
    8. Hodel F.
    , 2018, When Proterozoic Crusts Became Thick: New Insights from Magma Petrology: Geosciences, v. 8, n. 12, p. 428, doi:https://doi.org/10.3390/geosciences8120428
    OpenUrlCrossRef
  53. ↵
    1. Gapais D.,
    2. Cagnard F.,
    3. Gueydan F.,
    4. Barbey P.,
    5. Ballevre M.
    , 2009, Mountain building and exhumation processes through time: Inferences from nature and models: Terra Nova, v. 21, n. 3, p. 188–194, doi:https://doi.org/10.1111/j.1365-3121.2009.00873.x
    OpenUrlCrossRefGeoRefWeb of Science
  54. ↵
    1. Gastil G.
    , 1960, The Distribution of mineral dates in time and space: American Journal of Science, v. 258, n. 1, p. 1–35, doi:https://doi.org/10.2475/ajs.258.1.1
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Gerya T.
    , 2014, Precambrian geodynamics: Concepts and models: Gondwana Research, v. 25, n. 2, p. 442–463, doi:https://doi.org/10.1016/j.gr.2012.11.008
    OpenUrlCrossRefGeoRef
  56. ↵
    1. Gibling M. R.,
    2. Davies N. S.
    , 2012, Palaeozoic landscapes shaped by plant evolution: Nature Geoscience, v. 5, p. 99, doi:https://doi.org/10.1038/ngeo1376
    OpenUrlCrossRef
  57. ↵
    1. Groves D. I.,
    2. Condie K. C.,
    3. Goldfarb R. J.,
    4. Hronsky J. M. A.,
    5. Vielreicher R. M.
    , 2005, 100th Anniversary Special Paper: Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits: Economic Geology, v. 100, n. 2, p. 203–224, doi:https://doi.org/10.2113/gsecongeo.100.2.203
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Hall C. E.,
    2. Jones S. A.,
    3. Bodorkos S.
    , 2008, Sedimentology, structure and SHRIMP zircon provenance of the Woodline Formation, Western Australia: Implications for the tectonic setting of the West Australian Craton during the Paleoproterozoic: Precambrian Research, v. 162, n. 3–4, p. 577–598, doi:https://doi.org/10.1016/j.precamres.2007.11.001
    OpenUrlCrossRefGeoRef
  59. ↵
    1. Hamilton W. B.
    , 2011, Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated: Lithos, v. 123, n. 1–4, p. 1–20, doi:https://doi.org/10.1016/j.lithos.2010.12.007
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Harlan S. S.,
    2. Heaman L.,
    3. LeCheminant A. N.,
    4. Premo W. R.
    , 2003, Gunbarrel mafic magmatic event: A key 780 Ma time marker for Rodinia plate reconstructions: Geology, v. 31, n. 12, p. 1053–1056, doi:https://doi.org/10.1130/G19944.1
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Harris N. B. W.,
    2. Ronghua X.,
    3. Lewis C. L.,
    4. Hawkesworth C. J.,
    5. Yuquan Z.
    , 1988, Isotope geochemistry of the 1985 Tibet geotraverse, Lhasa to Golmud: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 327, p. 263–285, doi:https://doi.org/10.1098/rsta.1988.0129
    OpenUrlCrossRefGeoRef
  62. ↵
    1. Hastie A. R.,
    2. Fitton J. G.,
    3. Bromiley G. D.,
    4. Butler I. B.,
    5. Odling N. W. A.
    , 2016, The origin of Earth's first continents and the onset of plate tectonics: Geology, v. 44, n. 10, p. 855–858, doi:https://doi.org/10.1130/G38226.1
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Hawkesworth C.,
    2. Cawood P.,
    3. Kemp T.,
    4. Storey C.,
    5. Dhuime B.
    , 2009, A matter of preservation: Science, v. 323, n. 5910, p. 49–50, doi:https://doi.org/10.1126/science.1168549
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Hawkesworth C. J.,
    2. Cawood P. A.,
    3. Dhuime B.,
    4. Kemp T. I. S.
    , 2017, Earth's Continental Lithosphere Through Time: Annual Review of Earth and Planetary Sciences, v. 45, p. 169–198, doi:https://doi.org/10.1146/annurev-earth-063016-020525
    OpenUrlCrossRef
  65. ↵
    1. Hawkesworth C.,
    2. Cawood P. A.,
    3. Dhuime B.
    , 2019, Rates of generation and growth of the continental crust: Geoscience Frontiers, v. 10, n. 1, p. 165–173, doi:https://doi.org/10.1016/j.gsf.2018.02.004
    OpenUrlCrossRef
  66. ↵
    1. Herzberg C.
    , 2016, Petrological Evidence from Komatiites for an Early Earth Carbon and Water Cycle: Journal of Petrology, v. 57, n. 11–12, p. 2271–2288, doi:https://doi.org/10.1093/petrology/egw055
    OpenUrlCrossRef
  67. ↵
    1. Herzberg C.,
    2. Asimow P. D.,
    3. Arndt N.,
    4. Niu Y.,
    5. Lesher C. M.,
    6. Fitton J. G.,
    7. Cheadle M. J.,
    8. Saunders A. D.
    , 2007, Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites: Geochemistry, Geophysics, Geosystems, v. 8, n. 2, doi:https://doi.org/10.1029/2006GC001390
    OpenUrlCrossRef
  68. ↵
    1. Herzberg C.,
    2. Condie K.,
    3. Korenaga J.
    , 2010, Thermal history of the Earth and its petrological expression: Earth and Planetary Science Letters, v. 292, n. 1–2, p. 79–88, doi:https://doi.org/10.1016/j.epsl.2010.01.022
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Bally A. W.,
    2. Palmer A. R.
    1. Hoffman P. F.
    , 1989, Precambrian geology and tectonic history of North America, in Bally A. W., Palmer A. R., editors, The geology of North America—an overview: Geological Society of America, The Geology of North America, Part A, p. 447–512, doi:https://doi.org/10.1130/DNAG-GNA-A.447
    OpenUrlCrossRef
  70. ↵
    1. Hoffman P. F.,
    2. Abbot D. S.,
    3. Ashkenazy Y.,
    4. Benn D. I.,
    5. Brocks J. J.,
    6. Cohen P. A.,
    7. Cox G. M.,
    8. Creveling J. R.,
    9. Donnadieu Y.,
    10. Erwin D. H.,
    11. Fairchild I. J.,
    12. Ferreira D.,
    13. Goodman J. C.,
    14. Halverson G. P.,
    15. Jansen M. F.,
    16. Le Hir G.,
    17. Love G. D.,
    18. Macdonald F. A.,
    19. Maloof A. C.,
    20. Partin C. A.,
    21. Ramstein G.,
    22. Rose B. E. J.,
    23. Rose C. V.,
    24. Sadler P. M.,
    25. Tziperman E.,
    26. Voigt A.,
    27. Warren S. G.
    , 2017, Snowball Earth climate dynamics and Cryogenian geology-geobiology: Science Advances, v. 3, n. 11, p. e1600983, doi:https://doi.org/10.1126/sciadv.1600983
    OpenUrlFREE Full Text
  71. ↵
    1. Husson J. M.,
    2. Peters S. E.
    , 2018, Nature of the sedimentary rock record and its implications for Earth system evolution: Emerging Topics in Life Sciences, v. 2, n. 2, p. 125–136, doi:https://doi.org/10.1042/ETLS20170152
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. Ibanez-Mejia M.,
    2. Ruiz J.,
    3. Valencia V. A.,
    4. Cardona A.,
    5. Gehrels G. E.,
    6. Mora A. R.
    , 2011, The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U-Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America: Precambrian Research, v. 191, n. 1–2, p. 58–77, doi:https://doi.org/10.1016/j.precamres.2011.09.005
    OpenUrlCrossRefGeoRefWeb of Science
  73. ↵
    1. Iizuka T.,
    2. Komiya T.,
    3. Rino S.,
    4. Maruyama S.,
    5. Hirata T.
    , 2010, Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth: Geochimica et Cosmochimica Acta, v. 74, n. 8, p. 2450–2472, doi:https://doi.org/10.1016/j.gca.2010.01.023
    OpenUrlCrossRefGeoRefWeb of Science
  74. ↵
    1. Kay S. M.,
    2. Godoy E.,
    3. Kurtz A.
    , 2005, Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes: GSA Bulletin, v. 117, n. 1–2, p. 67–88, doi:https://doi.org/10.1130/B25431.1
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. Keller C. B.,
    2. Husson J. M.,
    3. Mitchell R. N.,
    4. Bottke W. F.,
    5. Gernon T. M.,
    6. Boehnke P.,
    7. Bell E. A.,
    8. Swanson-Hysell N. L.,
    9. Peters S. E.
    , 2019, Neoproterozoic glacial origin of the Great Unconformity: Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 4, p. 1136–1145, doi:https://doi.org/10.1073/pnas.1804350116
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Kemp A. I. S.,
    2. Hawkesworth C. J.,
    3. Paterson B. A.,
    4. Kinny P. D.,
    5. Kemp T.
    , 2006, Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon: Nature, v. 439, p. 580–583, doi:https://doi.org/10.1038/nature04505
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  77. ↵
    1. Kirkland C. L.,
    2. Smithies R. H.,
    3. Woodhouse A. J.,
    4. Howard H. M.,
    5. Wingate M. T. D.,
    6. Belousova E. A.,
    7. Cliff J. B.,
    8. Murphy R. C.,
    9. Spaggiari C. V.
    , 2013, Constraints and deception in the isotopic record; The crustal evolution of the west Musgrave Province, central Australia: Gondwana Research, v. 23, n. 2, p. 759–781, doi:https://doi.org/10.1016/j.gr.2012.06.001
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Komiya T.
    , 2007, Material circulation through time: Chemical differentiation within the mantle and secular variation of temperature and composition of the mantle, in Superplumes: Beyond plate tectonics: Dordrecht, The Netherlands, Springer, p. 187–234, doi:https://doi.org/10.1007/978-1-4020-5750-2_8
    OpenUrlCrossRef
  79. ↵
    1. Korenaga J.
    , 2013, Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations: Annual Review of Earth and Planetary Sciences, v. 41, p. 117–151, doi:https://doi.org/10.1146/annurev-earth-050212-124208
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Korenaga J.
    2018a, Crustal evolution and mantle dynamics through Earth history: Philosophical Transactions of the Royal Society, Series A, Mathematical, Physical, and Engineering Sciences, v. 376, doi:https://doi.org/10.1098/rsta.2017.0408
    OpenUrlCrossRef
  81. ↵
    1. Korenaga J.
    2018b, Estimating the formation age distribution of continental crust by unmixing zircon ages: Earth and Planetary Science Letters, v. 482, p. 388–395, doi:https://doi.org/10.1016/j.epsl.2017.11.039
    OpenUrlCrossRef
  82. ↵
    1. Korenaga J.,
    2. Planavsky N. J.,
    3. Evans D. A. D.
    , 2017, Global water cycle and the coevolution of the Earth's interior and surface environment: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 375, p. 20150393, doi:https://doi.org/10.1098/rsta.2015.0393
    OpenUrlCrossRef
  83. ↵
    1. Kump L. R.,
    2. Barley M. E.
    , 2007, Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago: Nature, v. 448, p. 1033–1036, doi:https://doi.org/10.1038/nature06058
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  84. ↵
    1. Küster D.,
    2. Liégeois J. P.,
    3. Matukov D.,
    4. Sergeev S.,
    5. Lucassen F.
    , 2008, Zircon geochronology and Sr, Nd, Pb isotope geochemistry of granitoids from Bayuda Desert and Sabaloka (Sudan): Evidence for a Bayudian event (920-900 Ma) preceding the Pan-African orogenic cycle (860–590 Ma) at the eastern boundary of the Saharan Metacra: Precambrian Research, v. 164, n. 1–2, p. 16–39, doi:https://doi.org/10.1016/j.precamres.2008.03.003
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Laurent O.,
    2. Martin H.,
    3. Moyen J. F.,
    4. Doucelance R.
    , 2014, The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern- style” plate tectonics between 3.0 and 2.5 Ga: Lithos, v. 205, p. 208–235, doi:https://doi.org/10.1016/j.lithos.2014.06.012
    OpenUrlCrossRefGeoRef
  86. ↵
    1. Lee C.-T. A.,
    2. Caves J.,
    3. Jiang H.,
    4. Cao W.,
    5. Lenardic A.,
    6. McKenzie N. R.,
    7. Shorttle O.,
    8. Yin Q.,
    9. Dyer B.
    , 2018, Deep mantle roots and continental emergence: Implications for whole-Earth elemental cycling, long-term climate, and the Cambrian explosion: International Geology Review, v. 60, n. 4, p. 431–448, doi:https://doi.org/10.1080/00206814.2017.1340853
    OpenUrlCrossRef
  87. ↵
    1. Li X. H.,
    2. Li W. X.,
    3. Li Z. X.,
    4. Liu Y.
    , 2008, 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia: Lithos, v. 102, n. 1–2, p. 341–357, doi:https://doi.org/10.1016/j.lithos.2007.04.007
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Li Z. X.,
    2. Evans D. A. D.,
    3. Halverson G. P.
    , 2013, Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland: Sedimentary Geology, v. 294, p. 219–232, doi:https://doi.org/10.1016/j.sedgeo.2013.05.016
    OpenUrlCrossRefGeoRefWeb of Science
  89. ↵
    1. Liégeois J. P.,
    2. Stern R. J.
    , 2010, Sr-Nd isotopes and geochemistry of granite-gneiss complexes from the Meatiq and Hafafit domes, Eastern Desert, Egypt: No evidence for pre-Neoproterozoic crust: Journal of African Earth Sciences, v. 57, n. 1–2, p. 31–40, doi:https://doi.org/10.1016/j.jafrearsci.2009.07.006
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Malusà M. G.,
    2. Resentini A.,
    3. Garzanti E.
    , 2016, Hydraulic sorting and mineral fertility bias in detrital geochronology: Gondwana Research, v. 31, p. 1–19, doi:https://doi.org/10.1016/j.gr.2015.09.002
    OpenUrlCrossRef
  91. ↵
    1. McKenzie N. R.,
    2. Horton B. K.,
    3. Loomis S. E.,
    4. Stockli D. F.,
    5. Planavsky N. J.,
    6. Lee C. T. A.
    , 2016, Continental arc volcanism as the principal driver of icehouse-greenhouse variability: Science, v. 352, n. 6284, p. 444–447, doi:https://doi.org/10.1126/science.aad5787
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. McLennan S. M.,
    2. Taylor S. R.
    , 1983, Continental freeboard, sedimentation rates and growth of continental crust: Nature, v. 306, p. 169–172, doi:https://doi.org/10.1038/306169a0
    OpenUrlCrossRefGeoRef
  93. ↵
    1. McMahon W. J.,
    2. Davies N. S.
    , 2018, Evolution of alluvial mudrock forced by early land plants: Science, v. 359, n. 6379, p. 1022–1024, doi:https://doi.org/10.1126/science.aan4660
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Mills B.,
    2. Watson A. J.,
    3. Goldblatt C.,
    4. Boyle R.,
    5. Lenton T. M.
    , 2011, Timing of Neoproterozoic glaciations linked to transport-limited global weathering: Nature Geoscience, v. 4, p. 861, doi:https://doi.org/10.1038/ngeo1305
    OpenUrlCrossRef
  95. ↵
    1. Moecher D. P.,
    2. Samson S. D.
    , 2006, Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis: Earth and Planetary Science Letters, v. 247, n. 3–4, p. 252–266, doi:https://doi.org/10.1016/j.epsl.2006.04.035
    OpenUrlCrossRefGeoRefWeb of Science
  96. ↵
    1. Mojzsis S. J.,
    2. Harrison T. M.
    , 2000, Vestiges of a beginning: Clues to the emergent biosphere recorded in the oldest known sedimentary rocks: GSA Today, v. 10, p. 1–6.
    OpenUrlGeoRef
  97. ↵
    1. Moores E. M.
    , 1993, Neoproterozoic oceanic crustal thinning, emergence of continents, and origin of the Phanerozoic ecosystem: A model: Geology, v. 21, n. 1, p. 5–8, doi:https://doi.org/10.1130/0091-7613(1993)021<0005:NOCTEO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  98. ↵
    1. Moores E. M.
    2002, Pre–1 Ga (pre-Rodinian) ophiolites: Their tectonic and environmental implications: GSA Bulletin, v. 114, n, 1, p. 80–95, doi:https://doi.org/10.1130/0016-7606(2002)114<0080:PGPROT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  99. ↵
    1. Mvondo H.,
    2. Lentz D.,
    3. Bardoux M.
    , 2017, Crustal shortening and thickening in Neoarchean granite-greenstone belts: A case study from the link between the ∼ 2.7 Ga Elu and Hope Bay belts, northeast Slave craton, Canada: Journal of Structural Geology, v. 104, p. 6–20, doi:https://doi.org/10.1016/j.jsg.2017.10.004
    OpenUrlCrossRef
  100. ↵
    1. Myrow P. M.,
    2. Lamb M. P.,
    3. Ewing R. C.
    , 2018, Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth: Science, v. 360, n. 6289, p. 649–651, doi:https://doi.org/10.1126/science.aap8612
    OpenUrlAbstract/FREE Full Text
  101. ↵
    1. Nance R. D.,
    2. Murphy J. B.
    , 2013, Origins of the supercontinent cycle: Geoscience Frontiers, v. 4, n. 4, p. 439–448, doi:https://doi.org/10.1016/j.gsf.2012.12.007
    OpenUrlCrossRef
  102. ↵
    1. Nance R. D.,
    2. Worsley T. R.,
    3. Moody J. B.
    , 1988, The supercontinent cycle: Scientific American, v. 259, p. 72–79, doi:https://doi.org/10.1038/scientificamerican0788-72
    OpenUrlCrossRefPubMedWeb of Science
  103. ↵
    1. Nance R. D.,
    2. Murphy J. B.,
    3. Santosh M.
    , 2014, The supercontinent cycle: A retrospective essay: Gondwana Research, v. 25, n. 1, p. 4–29, doi:https://doi.org/10.1016/j.gr.2012.12.026
    OpenUrlCrossRefGeoRefWeb of Science
  104. ↵
    1. Nordsvan A. R.,
    2. Collins W. J.,
    3. Li Z. X.,
    4. Spencer C. J.,
    5. Pourteau A.,
    6. Withnall I. W.,
    7. Betts P. G.,
    8. Volante S.
    , 2018, Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna: Geology, v. 46, n. 3, p. 251–254, doi:https://doi.org/10.1130/G39980.1
    OpenUrlCrossRef
  105. ↵
    1. Nutman A. P.,
    2. McGregor V. R.,
    3. Friend C. R. L.,
    4. Bennett V. C.,
    5. Kinny P. D.
    , 1996, The Itsaq gneiss complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900–3600 Ma): Precambrian Research, v. 78, n. 1–3, p. 1–39, doi:https://doi.org/10.1016/0301-9268(95)00066-6
    OpenUrlCrossRefGeoRefWeb of Science
  106. ↵
    1. Nutman A. P.,
    2. Friend C. R. L.,
    3. Barker S. L. L.,
    4. McGregor V. R.
    , 2004, Inventory and assessment of Palaeoarchaean gneiss terrains and detrital zircons in southern West Greenland: Precambrian Research, v. 135, n. 4, p. 281–314, doi:https://doi.org/10.1016/j.precamres.2004.09.002
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. Parman S. W.
    , 2015, Time-lapse zirconography: Imaging punctuated continental evolution: Geochemical Perspectives Letters, v. 1, n. 1, p. 43–52, doi:https://doi.org/10.7185/geochemlet.1505
    OpenUrlCrossRef
  108. ↵
    1. Partin C. A.,
    2. Sadler P. M.
    , 2016, Slow net sediment accumulation sets snowball Earth apart from all younger glacial episodes: Geology, v. 44, n. 12, p. 1019–1022, doi:https://doi.org/10.1130/G38350.1
    OpenUrlAbstract/FREE Full Text
  109. ↵
    1. Partin C. A.,
    2. Bekker A.,
    3. Sylvester P. J.,
    4. Wodicka N.,
    5. Stern R. A.,
    6. Chacko T.,
    7. Heaman L. M.
    , 2014, Filling in the juvenile magmatic gap: Evidence for uninterrupted Paleoproterozoic plate tectonics: Earth and Planetary Science Letters, v. 388, p. 123–133, doi:https://doi.org/10.1016/j.epsl.2013.11.041
    OpenUrlCrossRefGeoRefWeb of Science
  110. ↵
    1. Paterson S. R.,
    2. Ducea M. N.
    , 2015, Arc magmatic tempos: Gathering the evidence: Elements, v. 11, n. 2, p. 91–98, doi:https://doi.org/10.2113/gselements.11.2.91
    OpenUrlAbstract/FREE Full Text
  111. ↵
    1. Peck W. H.,
    2. Valley J. W.,
    3. Wilde S. A.,
    4. Graham C. M.
    , 2001, Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean: Geochimica et Cosmochimica Acta, v. 65, n. 22, p. 4215–4229, doi:https://doi.org/10.1016/S0016-7037(01)00711-6
    OpenUrlCrossRefGeoRefWeb of Science
  112. ↵
    1. Pehrsson S. J.,
    2. Eglington B. M.,
    3. Evans D. A. D.,
    4. Huston D.,
    5. Reddy S. M.
    , 2016, Metallogeny and its link to orogenic style during the Nuna supercontinent cycle: Geological Society, London, Special Publications, v. 424, p. 83–94, doi:https://doi.org/10.1144/SP424.5
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Perchuk A. L.,
    2. Safonov O. G.,
    3. Smit C. A.,
    4. van Reenen D. D.,
    5. Zakharov V. S.,
    6. Gerya T. V
    , 2018, Precambrian ultra-hot orogenic factory: Making and reworking of continental crust: Tectonophysics, v. 746, p. 572–586, doi:https://doi.org/10.1016/j.tecto.2016.11.041
    OpenUrlCrossRef
  114. ↵
    1. Perchuk A. L.,
    2. Zakharov V. S.,
    3. Gerya T. V,
    4. Brown M.
    , 2019, Hotter mantle but colder subduction in the Precambrian: What are the implications?: Precambrian Research, v. 330, p. 20–34, doi:https://doi.org/10.1016/j.precamres.2019.04.023
    OpenUrlCrossRef
  115. ↵
    1. Pisarevsky S. A.,
    2. Elming S. Å.,
    3. Pesonen L. J.,
    4. Li Z. X.
    , 2014, Mesoproterozoic paleogeography: Supercontinent and beyond: Precambrian Research, v. 244, p. 207–225, doi:https://doi.org/10.1016/j.precamres.2013.05.014
    OpenUrlCrossRefGeoRef
  116. ↵
    1. Puetz S. J.
    , 2018, A relational database of global U–Pb ages: Geoscience Frontiers, v. 9, n. 3, p. 877–891, doi:https://doi.org/10.1016/j.gsf.2017.12.004
    OpenUrlCrossRef
  117. ↵
    1. Puetz S. J.,
    2. Condie K. C.
    , 2019, Time series analysis of mantle cycles Part I: Periodicities and correlations among seven global isotopic databases: Geoscience Frontiers, v. 10, n. 4, p. 1305–1326, doi:https://doi.org/10.1016/j.gsf.2019.04.002
    OpenUrlCrossRef
  118. ↵
    1. Puetz S. J.,
    2. Ganade C. E.,
    3. Zimmermann U.,
    4. Borchardt G.
    , 2018, Statistical analyses of Global U-Pb Database 2017: Geoscience Frontiers, v. 9, n. 1, p. 121–145, doi:https://doi.org/10.1016/j.gsf.2017.06.001
    OpenUrlCrossRef
  119. ↵
    1. Ramos V. A.
    , 1988, Late Proterozoic-early Paleozoic of South America-a collisional history: Episodes, v. 11, n. 3, p. 168–174, doi:https://doi.org/10.18814/epiiugs/1988/v11i3/003
    OpenUrlCrossRefGeoRefWeb of Science
  120. ↵
    1. Ramos V. A.,
    2. Folguera A.
    , 2005, Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation: Geological Society, London, Special Publications, v. 252, p. 15–35, doi:https://doi.org/10.1144/GSL.SP.2005.252.01.02
    OpenUrlAbstract/FREE Full Text
  121. ↵
    1. Reddy S. M.,
    2. Evans D. A. D.
    , 2009, Palaeoproterozoic supercontinents and global evolution: Correlations from core to atmosphere: Fig. 1.: Geological Society, London, Special Publications, v. 323, p. 1–26, doi:https://doi.org/10.1144/SP323.1
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Rey P. F.,
    2. Coltice N.
    , 2008, Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs: Geology, v. 36, n. 8, p. 635–638, doi:https://doi.org/10.1130/G25031A.1;
    OpenUrlAbstract/FREE Full Text
  123. ↵
    1. Rey P. F.,
    2. Houseman G.
    , 2006, Lithospheric scale gravitational flow: The impact of body forces on orogenic processes from Archaean to Phanerozoic: Geological Society, London, Special Publications, v. 253, p. 153–167, doi:https://doi.org/10.1144/GSL.SP.2006.253.01.08
    OpenUrlAbstract/FREE Full Text
  124. ↵
    1. Rino S.,
    2. Komiya T.,
    3. Windley B. F.,
    4. Katayama I.,
    5. Motoki A.,
    6. Hirata T.
    , 2004, Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian: Physics of the Earth and Planetary Interiors, v. 146, n. 1–2, p. 369–394, doi:https://doi.org/10.1016/j.pepi.2003.09.024
    OpenUrlCrossRefGeoRefWeb of Science
  125. ↵
    1. Roberts N. M. W.
    , 2012, Increased loss of continental crust during supercontinent amalgamation: Gondwana Research, v. 21, n. 4, p. 994–1000, doi:https://doi.org/10.1016/j.gr.2011.08.001
    OpenUrlCrossRefGeoRefWeb of Science
  126. ↵
    1. Roberts N. M. W.,
    2. Spencer C. J.
    , 2015, The zircon archive of continent formation through time: Geological Society, London, Special Publications, v. 389, p. 197–225, doi:https://doi.org/10.1144/SP389.14
    OpenUrlAbstract/FREE Full Text
  127. ↵
    1. Robertson A. H. F.
    , 2003, Ophiolites: Ancient Oceanic Lithosphere?: Sedimentary Geology, v. 24, n. 1–2, p. 189–191, doi:https://doi.org/10.1016/0037-0738(79)90041-1
    OpenUrlCrossRef
  128. ↵
    1. Ronov A. B.
    , 1964, Common tendencies in the chemical evolution of the earth's crust, ocean and atmosphere: Geokhimiya, v. 1964, p. 715–743.
    OpenUrl
  129. ↵
    1. Ronov A. B.,
    2. Khain V. E.,
    3. Balukhovsky A. N.,
    4. Seslavinsky K. B.
    , 1980, Quantitative analysis of Phanerozoic sedimentation: Sedimentary Geology, v. 25, n. 4, p. 311–325, doi:https://doi.org/10.1016/0037-0738(80)90067-6
    OpenUrlCrossRefGeoRefWeb of Science
  130. ↵
    1. Rosas J. C.,
    2. Korenaga J.
    , 2018, Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics: Earth and Planetary Science Letters, v. 494, p. 42–49, doi:https://doi.org/10.1016/j.epsl.2018.04.051
    OpenUrlCrossRef
  131. ↵
    1. Samson S. D.,
    2. Moecher D. P.,
    3. Satkoski A. M.
    , 2018, Inherited, enriched, heated, or recycled? Examining potential causes of Earth's most zircon fertile magmatic episode: Lithos, v. 314–315, p. 350–359, doi:https://doi.org/10.1016/j.lithos.2018.06.015
    OpenUrlCrossRef
  132. ↵
    1. Sawada H.,
    2. Isozaki Y.,
    3. Sakata S.,
    4. Hirata T.,
    5. Maruyama S.
    , 2018, Secular change in lifetime of granitic crust and the continental growth: A new view from detrital zircon ages of sandstones: Geoscience Frontiers, v. 9, n. 4, p. 1099–1115, doi:https://doi.org/10.1016/j.gsf.2016.11.010
    OpenUrlCrossRef
  133. ↵
    1. Schidlowski M.
    , 1988, A 3,800-million-year isotopic record of life from carbon in sedimentary rocks: Nature, v. 333, p. 313, doi:https://doi.org/10.1038/333313a0
    OpenUrlCrossRefGeoRefWeb of Science
  134. ↵
    1. Scholl D. W.,
    2. von Huene R.
    , 2009, Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens: Geological Society, London, Special Publications, v. 318, p. 105–125, doi:https://doi.org/10.1144/SP318.4
    OpenUrlAbstract/FREE Full Text
  135. ↵
    1. Shiels C.,
    2. Partin C. A.,
    3. Stern R. A.
    , 2017, An integrated U-Pb, Hf, and O isotopic provenance analysis of the Paleoproterozoic Murmac Bay Group, northern Saskatchewan, Canada: Precambrian Research, v. 302, p. 18–32, doi:https://doi.org/10.1016/j.precamres.2017.09.015
    OpenUrlCrossRef
  136. ↵
    1. Shirey S. B.,
    2. Richardson S. H.
    , 2011, Start of the Wilson Cycle at 3 Ga shown by diamonds from subcontinental mantle: Science, v. 333, n. 6401, p. 434–436, doi:https://doi.org/10.1126/science.1206275
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Condie K. C.,
    2. Pease V.
    1. Shirey S. B.,
    2. Kamber B. S.,
    3. Whitehouse M. J.,
    4. Mueller P. A.,
    5. Basu A. R.
    , 2008, A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction, in Condie K. C., Pease V., editors, When Did Plate Tectonics Begin on Planet Earth?: Geological Society of America, Special Papers, v. 440, p. 1–29, doi:https://doi.org/10.1130/2008.2440(01)
    OpenUrlCrossRefWeb of Science
  138. ↵
    1. Eriksson P. G.,
    2. Altermann W.,
    3. Nelson D. R.,
    4. Mueller W. W.,
    5. Cataneanu O.
    1. Simpson E. L.,
    2. Alkmim F. F.,
    3. Bose P. K.,
    4. Bumby A. J.,
    5. Eriksson K. A.,
    6. Eriksson P. G.,
    7. Martins-Neto M. A.,
    8. Middleton L. T.,
    9. Rainbird R. H.
    , 2004, Sedimentary dynamics of Precambrian aeolianites, in Eriksson P. G., Altermann W., Nelson D. R., Mueller W. W., Cataneanu O., editors, The Precambrian Earth, Tempos and Events: Amsterdam, The Netherlands, Elsevier, v. 642, p. 657.
    OpenUrl
  139. ↵
    1. Sizova E.,
    2. Gerya T.,
    3. Brown M.,
    4. Perchuk L. L.
    , 2010, Subduction styles in the Precambrian: Insight from numerical experiments: Lithos, v. 116, n. 3–4, p. 209–229, doi:https://doi.org/10.1016/j.lithos.2009.05.028
    OpenUrlCrossRefGeoRefWeb of Science
  140. ↵
    1. Smits R. G.,
    2. Collins W. J.,
    3. Hand M.,
    4. Dutch R.,
    5. Payne J.
    , 2014, A Proterozoic Wilson Cycle identified by Hf isotopes in central Australia: Implications for the assembly of Proterozoic Australia and Rodinia: Geology, v. 42, n. 3, p. 231–234, doi:https://doi.org/10.1130/G35112.1
    OpenUrlAbstract/FREE Full Text
  141. ↵
    1. Spencer C. J.,
    2. Harris R. A.,
    3. Dorais M. J.
    , 2012, Depositional provenance of the Himalayan metamorphic core of Garhwal region, India: Constrained by U--Pb and Hf isotopes in zircons: Gondwana Research, v. 22, n. 1, p. 26–35, doi:https://doi.org/10.1016/j.gr.2011.10.004
    OpenUrlCrossRefWeb of Science
  142. ↵
    1. Spencer C. J.,
    2. Cawood P. A.,
    3. Hawkesworth C. J.,
    4. Raub T. D.,
    5. Prave A. R.,
    6. Roberts N. M. W.
    , 2014, Proterozoic onset of crustal reworking and collisional tectonics: Reappraisal of the zircon oxygen isotope record: Geology, v. 42, p. 451–454, doi:https://doi.org/10.1130/G35363.1
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Spencer C. J.,
    2. Cawood P. A.,
    3. Hawkesworth C. J.,
    4. Prave A. R.,
    5. Roberts N. M. W.,
    6. Horstwood M. S. A.,
    7. Whitehouse M. J.
    , 2015, Generation and preservation of continental crust in the Grenville Orogeny: Geoscience Frontiers, v. 6, n. 3, p. 357–372, doi:https://doi.org/10.1016/j.gsf.2014.12.001
    OpenUrlCrossRef
  144. ↵
    1. Spencer C. J.,
    2. Kirkland C. L.,
    3. Taylor R. J. M.
    , 2016, Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology: Geoscience Frontiers, v. 7, n. 4, p. 581–589, doi:https://doi.org/10.1016/j.gsf.2015.11.006
    OpenUrlCrossRef
  145. ↵
    1. Spencer C. J.,
    2. Roberts N. M. W.,
    3. Santosh M.
    , 2017, Growth, destruction, and preservation of Earth's continental crust: Earth-Science Reviews, v. 172, p. 87–106, doi:https://doi.org/10.1016/j.earscirev.2017.07.013
    OpenUrlCrossRef
  146. ↵
    1. Spencer C. J.,
    2. Kirkland C. L.,
    3. Roberts N. M. W.
    , 2018a, Implications of erosion and bedrock composition on zircon fertility: Examples from South America and Western Australia: Terra Nova, v. 30, n. 4, p. 289–295, doi:https://doi.org/10.1111/ter.12338
    OpenUrlCrossRef
  147. ↵
    1. Spencer C. J.,
    2. Murphy J. B.,
    3. Kirkland C. L.,
    4. Liu Y.,
    5. Mitchell R. N.
    , 2018b, A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle: Nature Geoscience, v. 11, p. 97–101, doi:https://doi.org/10.1038/s41561-017-0051-y
    OpenUrlCrossRef
  148. ↵
    1. Spencer C. J.,
    2. Partin C. A.,
    3. Kirkland C. L.,
    4. Raub T. D.,
    5. Liebmann J.,
    6. Stern R. A.
    , 2019, Paleoproterozoic increase in zircon δ18O driven by rapid emergence of continental crust: Geochimica et Cosmochimica Acta, v. 257, p. 16–25, doi:https://doi.org/10.1016/j.gca.2019.04.016
    OpenUrlCrossRef
  149. ↵
    1. Stern C. R.
    , 1989, Pliocene to present migration of the volcanic front, Andean Southern Volcanic Zone: Andean Geology, v. 16, n. 2, p. 145–162.
    OpenUrl
  150. ↵
    1. Stern C. R.
    1991, Isotopic composition of Late Jurassic and Early Cretaceous mafic igneous rocks from the southernmost Andes: Impllcations for Sub-Andean mantle: Andean Geology, v. 18, n. 1, p. 15–23, doi:http://dx.doi.org/10.5027/andgeoV18n1-a02
    OpenUrlCrossRef
  151. ↵
    1. Stern R. J.
    , 2005, Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time: Geology, v. 33, n. 7, p. 557–560, doi:https://doi.org/10.1130/G21365.1
    OpenUrlAbstract/FREE Full Text
  152. ↵
    1. Condie K. C.,
    2. Pease V.
    1. Stern R. J.
    2008, Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth's tectonic history, in Condie K. C., Pease V., editors, When Did Plate Tectonics Begin on Planet Earth?: GSA Special Papers, v. 440, p. 265–280, doi:https://doi.org/10.1130/2008.2440(13)
    OpenUrlCrossRef
  153. ↵
    1. Stern R. J.
    2018, The evolution of plate tectonics: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 376, p. 20170406, doi:https://doi.org/10.1098/rsta.2017.0406
    OpenUrlCrossRef
  154. ↵
    1. Stern R. J.,
    2. Leybourne M. I.,
    3. Tsujimori T.
    , 2016, Kimberlites and the start of plate tectonics: Geology, v. 44, n. 10, p. 799–802, doi:https://doi.org/10.1130/G38024.1
    OpenUrlAbstract/FREE Full Text
  155. ↵
    1. Sternai P.,
    2. Caricchi L.,
    3. Castelltort S.,
    4. Champagnac J.
    , 2016, Deglaciation and glacial erosion: A joint control on magma productivity by continental unloading: Geophysical Research Letters, v. 43, n. 4, p. 1632–1641, doi:https://doi.org/10.1002/2015GL067285
    OpenUrlCrossRef
  156. ↵
    1. Sutton J.
    , 1963, Long-term cycles in the evolution of the continents: Nature, v. 198, p. 731, doi:https://doi.org/10.1038/198731b0
    OpenUrlCrossRefGeoRef
  157. ↵
    1. Tang M.,
    2. Chen K.,
    3. Rudnick R. L.
    , 2016, Archean upper crust transition from mafic to felsic marks the onset of plate tectonics: Science, v. 351, n. 6271, p. 372–375, doi:https://doi.org/10.1126/science.aad5513
    OpenUrlAbstract/FREE Full Text
  158. ↵
    1. Thébaud N.,
    2. Rey P. F.
    , 2013, Archean gravity-driven tectonics on hot and flooded continents: Controls on long-lived mineralised hydrothermal systems away from continental margins: Precambrian Research, v. 229, p. 93–104, doi:https://doi.org/10.1016/j.precamres.2012.03.001
    OpenUrlCrossRefGeoRef
  159. ↵
    1. Valley J. W.,
    2. Lackey J. S.,
    3. Cavosie A. J.,
    4. Clechenko C. C.,
    5. Spicuzza M. J.,
    6. Basei M. A. S.,
    7. Bindeman I. N.,
    8. Ferreira V. P.,
    9. Sial A. N.,
    10. King E. M.,
    11. Peck W. H.,
    12. Sinha A. K.,
    13. Wei C. S.
    , 2005, 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon: Contributions to Mineralogy and Petrology, v. 150, p. 561–580, doi:https://doi.org/10.1007/s00410-005-0025-8
    OpenUrlCrossRefGeoRefWeb of Science
  160. ↵
    1. Valley J. W.,
    2. Cavosie A. J.,
    3. Ushikubo T.,
    4. Reinhard D. A.,
    5. Lawrence D. F.,
    6. Larson D. J.,
    7. Clifton P. H.,
    8. Kelly T. F.,
    9. Wilde S. A.,
    10. Moser D. E.,
    11. Spicuzza M. J.
    , 2014, Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography: Nature Geoscience, v. 7, p. 219, doi:https://doi.org/10.1038/ngeo2075
    OpenUrlCrossRef
  161. ↵
    1. Van Hunen J.,
    2. Moyen J.-F.
    , 2012, Archean subduction: Fact or fiction?: Annual Review of Earth and Planetary Sciences, v. 40, p. 195–219, doi:https://doi.org/10.1146/annurev-earth-042711-105255
    OpenUrlCrossRefGeoRefWeb of Science
  162. ↵
    1. Van Loon A. J.
    , 2008, Could ‘Snowball Earth’have left thick glaciomarine deposits?: Gondwana Research, v. 14, n. 1–2, p. 73–81, doi:https://doi.org/10.1016/j.gr.2007.05.009
    OpenUrlCrossRefGeoRef
  163. ↵
    1. Vermeesch P.
    , 2012, On the visualisation of detrital age distributions: Chemical Geology, v. 312–313, p. 190–194, doi:https://doi.org/10.1016/j.chemgeo.2012.04.021
    OpenUrlCrossRef
    1. Vermeesch P.,
    2. Garzanti E.
    , 2015, Making geological sense of “Big Data” in sedimentary provenance analysis: Chemical Geology, v. 409, p. 20–27, doi:https://doi.org/10.1016/j.chemgeo.2015.05.004
    OpenUrlCrossRefGeoRef
  164. ↵
    1. Vermeesch P.,
    2. Resentini A.,
    3. Garzanti E.
    , 2016, An R package for statistical provenance analysis: Sedimentary Geology, v. 336, p. 14–25, doi:https://doi.org/10.1016/j.sedgeo.2016.01.009
    OpenUrlCrossRef
  165. ↵
    1. Voice P. J.,
    2. Kowalewski M.,
    3. Eriksson K. A.
    , 2011, Quantifying the Timing and Rate of Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains: The Journal of Geology, v. 119, n. 2, p. 109–126, doi:https://doi.org/10.1086/658295
    OpenUrlCrossRefGeoRefWeb of Science
  166. ↵
    1. Woodcock N. H.
    , 2004, Life span and fate of basins: Geology, v. 32, n. 8, p. 685–688, doi:https://doi.org/10.1130/G20598.1
    OpenUrlAbstract/FREE Full Text
  167. ↵
    1. Worsley T. R.,
    2. Nance D.,
    3. Moody J. B.
    , 1984, Global tectonics and eustasy for the past 2 billion years: Marine Geology, v. 58, n. 3–4, p. 373–400, doi:https://doi.org/10.1016/0025-3227(84)90209-3
    OpenUrlCrossRefGeoRefWeb of Science
  168. ↵
    1. Yang J.,
    2. Gao S.,
    3. Chen C.,
    4. Tang Y.,
    5. Yuan H.,
    6. Gong H.,
    7. Xie S.,
    8. Wang J.
    , 2009, Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers: Geochimica et Cosmochimica Acta, v. 73, n. 9, p. 2660–2673, doi:https://doi.org/10.1016/j.gca.2009.02.007
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 320 (4)
American Journal of Science
Vol. 320, Issue 4
1 Apr 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Continuous continental growth as constrained by the sedimentary record
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Continuous continental growth as constrained by the sedimentary record
Christopher J. Spencer
American Journal of Science Apr 2020, 320 (4) 373-401; DOI: 10.2475/04.2020.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Continuous continental growth as constrained by the sedimentary record
Christopher J. Spencer
American Journal of Science Apr 2020, 320 (4) 373-401; DOI: 10.2475/04.2020.02
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • DETRITAL ZIRCON DATABASE
    • RESULTS
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • A template for an improved rock-based subdivision of the pre-Cryogenian timescale
  • Zircon U-Pb geochronology and Nd-Pb isotope geochemistry of Blue Ridge basement in the eastern Great Smoky Mountains, U.S.A.: Implications for the Proterozoic tectonic evolution of the southeastern Laurentian margin
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • zircon
  • continental growth
  • sedimentary record
  • secular change
  • plate tectonics

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire