Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle

Donald E. Canfield, Andrew H. Knoll, Simon W. Poulton, Guy M. Narbonne and Gregory R. Dunning
American Journal of Science February 2020, 320 (2) 97-124; DOI: https://doi.org/10.2475/02.2020.01
Donald E. Canfield
* Department of Biology and Nordcee, University of Southern Denmark, 5230 Odense M, Denmark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Dec@biology.sdu.dk
Andrew H. Knoll
** Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simon W. Poulton
*** School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guy M. Narbonne
§ Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory R. Dunning
§§ Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1B 3X5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Arnott R. W. C.,
    2. Ross G.
    , 2007, Overview: Outcrop analysis of an ancient, passive margin, turbidite system: Windermere Supergroup, British Columbia, Canada: AAPG Studies in Geology, v. 56, p. 81–84, doi:https://doi.org/10.1306/St561240
    OpenUrlCrossRefGeoRef
  2. ↵
    1. Berner R. A.
    , 2004, The Phanerozoic Carbon Cycle: CO2 and O2: Oxford, Oxford University Press, 150 p.
  3. ↵
    1. Berner R. A.
    2006, GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2: Geochimica et Cosmochimica Acta, v. 70, n. 23, p. 5653–5664, doi:https://doi.org/10.1016/j.gca.2005.11.032
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Berner R. A.,
    2. Canfield D. E.
    , 1989, A new model for atmospheric oxygen over Phanerozoic time: American Journal of Science, v. 289, n. 4, p. 333–361, doi:https://doi.org/10.2475/ajs.289.4.333
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Berner R. A.,
    2. Raiswell R.
    , 1983, Burial of organic carbon and pyrite sulfur in sediment over Phanerozoic time: A new theory: Geochimica et Cosmochimica Acta, v. 47, n. 5, p. 855–862, doi:https://doi.org/10.1016/0016-7037(83)90151-5
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Bjerrum C. J.,
    2. Canfield D. E.
    , 2004, New insights into the burial history of organic carbon on the early Earth: Geochemistry, Geophysics, Geosystems, v. 5, n. 8, p. Q08001, doi:https://doi.org/10.1029/2004GC000713
    OpenUrlCrossRef
  7. ↵
    1. Bjerrum C. J.,
    2. Canfield D. E.
    2011, Towards a quantitative understanding of the late Neoproterozoic carbon cycle: Proceedings of the National Academy of Sciences of the United States of America, v. 108, n. 14, p. 5542–5547, doi:https://doi.org/10.1073/pnas.1101755108
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Bobrovskiy I.,
    2. Hope J. M.,
    3. Ivantsov A.,
    4. Nettersheim B. J.,
    5. Hallmann C.,
    6. Brocks J. J.
    , 2018, Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals: Science, v. 361, n. 6408, p. 1246–1249, doi:https://doi.org/10.1126/science.aat7228
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Buick R.,
    2. Des Marias D. J.,
    3. Knoll A. H.
    , 1995, Stable isotopic composition of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia: Chemical Geology, v. 123, n. 1–4, p. 153–171, doi:https://doi.org/10.1016/0009-2541(95)00049-R
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  10. ↵
    1. Canfield D. E.
    , 2005, The early history of atmospheric oxygen: Homage to Robert M. Garrels: Annual Review of Earth and Planetary Sciences, v. 33, p. 1–36, doi:https://doi.org/10.1146/annurev.earth.33.092203.122711
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Farquhar J.
    1. Canfield D. E.
    2014, Proterozoic atmospheric oxygen, in Farquhar J., editor, The Atmosphere-History: Treatise on Geochemistry, second edition, v. 6, p. 197–216, doi:https://doi.org/10.1016/B978-0-08-095975-7.01308-5
    OpenUrlCrossRef
  12. ↵
    1. Allison P. A.,
    2. Briggs D. E. G.
    1. Canfield D. E.,
    2. Raiswell R.
    , 1991, Carbonate precipitation and dissolution: Its relevance to fossil preservation, in Allison P. A., Briggs D. E. G., editors, Taphony: Releasing the Data Locked in the Fossil Record: New York, Plenum Press, Topics in Geobiology, p. 411–453.
  13. ↵
    1. Canfield D. E.,
    2. Poulton S. W.,
    3. Narbonne G. M.
    , 2007, Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life: Science, v. 315, n. 5808, p. 92–95, doi:https://doi.org/10.1126/science.1135013
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Canfield D. E.,
    2. Poulton S. W.,
    3. Knoll A. H.,
    4. Narbonne G. M.,
    5. Ross G.,
    6. Goldberg T.,
    7. Strauss H.
    , 2008, Ferruginous conditions dominated later Neoproterozoic deep water chemistry: Science, v. 321, n. 5891, p. 949–952, doi:https://doi.org/10.1126/science.1154499
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Cochrane D. J. W.,
    2. Navarro L.,
    3. Arnott R. W. C.
    , 2019, Sedimentological and geochemical evolution of an Ediacaran mixed carbonate-siliciclastic continental slope system, Windermere Supergroup, southern Canadian Cordillera, British Columbia, Canada: Precambrian Research, v. 327, p. 47–67, doi:https://doi.org/10.1016/j.precamres.2019.02.021
    OpenUrlCrossRef
  16. ↵
    1. Condon D.,
    2. Zhu M.,
    3. Bowring S.,
    4. Wang W.,
    5. Yang A.,
    6. Jin Y.
    , 2005, U-Pb ages from the Neoproterozoic Doushantuo Formation, China: Science, v. 308, n. 5718, p. 95–98, doi:https://doi.org/10.1126/science.1107765
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Cox G. M.,
    2. Halverson G. P.,
    3. Stevenson R. K.,
    4. Vokaty M.,
    5. Poirier A.,
    6. Kunzmann M.,
    7. Li Z.-X.,
    8. Denyszyn S. W.,
    9. Strauss J. V.,
    10. Macdonald F. A.
    , 2016, Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth: Earth and Planetary Science Letters, v. 446, p. 89–99, doi:https://doi.org/10.1016/j.epsl.2016.04.016
    OpenUrlCrossRef
  18. ↵
    1. Deines P.
    , 1980, The carbon isotopic composition of diamonds: Relationship to diamond shape, color, occurrence and vapor composition: Geochimica et Cosmochimica Acta, v. 44, n. 7, p. 943–961, doi:https://doi.org/10.1016/0016-7037(80)90284-7
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Derry L. A.
    , 2010, A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly: Earth and Planetary Science Letters, v. 294, n. 1–2, p. 152–162, doi:https://doi.org/10.1016/j.epsl.2010.03.022
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Des Marais D. J.,
    2. Strauss H.,
    3. Summons R. E.,
    4. Hayes J. M.
    , 1992, Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment: Nature, v. 359, p. 605–609, doi:https://doi.org/10.1038/359605a0
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  21. ↵
    1. Eyles N.,
    2. Eyles C. H.
    , 1989, Glacially-influenced deep-marine sedimentation of the Late Precambrian Gaskiers Formation, Newfoundland, Canada: Sedimentology, v. 36, n. 4, p. 601–620, doi:https://doi.org/10.1111/j.1365-3091.1989.tb02088.x
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Fike D. A.,
    2. Grotzinger J. P.,
    3. Pratt L. M.,
    4. Summons R. E.
    , 2006, Oxidation of the Ediacaran Ocean: Nature, v. 444, p. 744–747, doi:https://doi.org/10.1038/nature05345
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  23. ↵
    1. Gardiner S.,
    2. Hiscott R. N.
    , 2003, Deep-water facies and depositional setting of the lower conception group (Hadrynian), southern Avalon Peninsula, Newfoundland: Canadian Journal of Earth Sciences, v. 25, p. 1579–1594, doi:https://doi.org/10.1139/e88-151
    OpenUrlCrossRef
  24. ↵
    1. Garrels R. M.,
    2. Lerman A.
    , 1981, Phanerozoic cycles of sedimentary carbon and sulfur: Proceedings of the National Academy of Sciences of the United States of America, v. 78, n. 8, p. 4652–4656, doi:https://doi.org/10.1073/pnas.78.8.4652
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Goldberg E. D.
    1. Garrels R. M.,
    2. Perry E. A.
    , 1974, Cycling of carbon, sulfur, and oxygen through geologic time, in Goldberg E. D., editor, The Sea: New York, John Wiley and Sons, p. 303–336.
  26. ↵
    1. Gehling J. G.,
    2. Narbonne G. M.,
    3. Anderson M. M.
    , 2000, The first named Ediacaran body fossil, Aspidella terranovica: Palaeontology, v. 43, n. 3, p. 427–456, doi:https://doi.org/10.1111/j.0031-0239.2000.00134.x
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Geyman E. C.,
    2. Maloof A. C.
    , 2019, A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen: Proceedings of the National Academy of Sciences, v. 116, n. 49, p. 24433–24439, doi:https://doi.org/10.1073/pnas.1908783116
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Grotzinger J. P.,
    2. Fike D. A.,
    3. Fischer W. W.
    , 2011, Enigmatic origin of the largest-known carbon isotope excursion in Earth's history: Nature Geoscience, v. 4, p. 285–292, doi:https://doi.org/10.1038/ngeo1138
    OpenUrlCrossRef
  29. ↵
    1. Halverson G. P.,
    2. Hoffmann P. F.,
    3. Schrag D. P.,
    4. Maloof A. C.,
    5. Rice A. H. N.
    , 2005, Toward a Neoproterozoic composite carbon isotope record: GSA Bulletin, v. 117, n. 9–10, p. 1181–1207, doi:https://doi.org/10.1130/B25630.1
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Hayes J. M.,
    2. Strauss H.,
    3. Kaufman A. J.
    , 1999, The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma: Chemical Geology, v. 161, n. 1–3, p. 103–125, doi:https://doi.org/10.1016/S0009-2541(99)00083-2
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Hoffman P. F.,
    2. Lamothe K. G.
    , 2019, Seawater-buffered diagenesis, destruction of carbon isotope excursions, and the composition of DIC in Neoproterozoic oceans: Proceedings of the National Academy of Sciences, v. 116, n. 38, p. 18874–18879, doi:https://doi.org/10.1073/pnas.1909570116
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Hoffman P. F.,
    2. Abbot D. S.,
    3. Ashkenazy Y.,
    4. Benn D. I.,
    5. Brocks J. J.,
    6. Cohen P. A.,
    7. Cox G. M.,
    8. Creveling J. R.,
    9. Donnadieu Y.,
    10. Erwin D. H.,
    11. Fairchild I. J.,
    12. Ferreira D.,
    13. Goodman J. C,
    14. Halverson G. P.,
    15. Jansen M. F.,
    16. Le Hir G.,
    17. Love G. D.,
    18. Macdonald F. A.,
    19. Maloof A. C.,
    20. Partin C. A.,
    21. Ramstein G.,
    22. Rose B. E. J.,
    23. Sadler P. M.,
    24. Tziperman E.,
    25. Voigt A.,
    26. Warren S. G.
    , 2017, Snowball Earth climate dynamics and Cryogenian geology-geobiology: Science Advances, v. 3, n. 11, p. e1600983, doi:https://doi.org/10.1126/sciadv.1600983
    OpenUrlFREE Full Text
  33. ↵
    1. Husson J. M.,
    2. Maloof A. C.,
    3. Schoene B.
    , 2012, A syn-depositional age for Earth's deepest δ13C excursion required by isotope conglomerate tests: Terra Nova, v. 24, n. 4, p. 318–325, doi:https://doi.org/10.1111/j.1365-3121.2012.01067.x
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Husson J. M.,
    2. Maloof A. C.,
    3. Schoene B.,
    4. Chen C. Y.,
    5. Higgins J. A.
    , 2015, Stratigraphic expression of Earth's deepest δ13C excursion in the Wonoka Formation of South Australia: American Journal of Science, v. 315, n. 1, p. 1–45, doi:https://doi.org/10.2475/01.2015.01
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Jaffey A.,
    2. Flynn K.,
    3. Glendenin L.,
    4. Bentley W. T.,
    5. Essling A.
    , 1971, Precision measurement of half-lives and specific activities of 235U and 238U: Physical review C, v. 4, p. 1889, doi:https://doi.org/10.1103/PhysRevC.4.1889
    OpenUrlCrossRefPubMed
  36. ↵
    1. Kaufman A. J.,
    2. Knoll A. H.,
    3. Narbonne G. M.
    , 1997, Isotopes, ice ages and terminal Proterozoic earth history: Proceedings of the National Academy of Sciences of the United States of America, v. 94, n. 13, p. 6600–6605, doi:https://doi.org/10.1073/pnas.94.13.6600
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Kendall B. S.,
    2. Creaser R. A.,
    3. Ross G. M.,
    4. Selby D.
    , 2004, Constraints on the timing of Marinoan “Snowball Earth” glaciation by 187Re-187Os dating of a Neoproterozoic, post-glacial black shale in Western Canada: Earth and Planetary Science Letters, v. 222, n. 3–4, p. 729–740, doi:https://doi.org/10.1016/S0012-821X(04)00240-7
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Knauth L. P.,
    2. Kennedy M. J.
    , 2009, The late Precambrian greening of the Earth: Nature, v. 460, p. 728–732, doi:https://doi.org/10.1038/nature08213
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  39. ↵
    1. Knoll A. H.
    , 2014, Paleobiological perspectives on early eukaryotic evolution: Cold Spring Harbor Perspectives in Biology, v. 6, n. 1, p. 1–14, doi:https://doi.org/10.1101/cshperspect.a016121
    OpenUrlCrossRef
  40. ↵
    1. Knoll A. H.,
    2. Hayes J. M.,
    3. Kaufman A. J.,
    4. Swett K.,
    5. Lambert I. B.
    , 1986, Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland: Nature, v. 321, p. 832–838, doi:https://doi.org/10.1038/321832a0
    OpenUrlCrossRefGeoRefPubMed
  41. ↵
    1. Knoll A. H.,
    2. Kaufman A. J.,
    3. Semikhatov M. A.
    , 1995, The carbon-isotopic composition of Proterozoic carbonates: Riphean successions from northwestern Siberia (Anabar Massif, Turukhansk uplift: American Journal of Science, v. 295, n. 7, p. 823–850, doi:https://doi.org/10.2475/ajs.295.7.823
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Krogh T. E.
    , 1973, A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations: Geochimica et Cosmochimica Acta, v. 37, n. 3, p. 485–494, doi:https://doi.org/10.1016/0016-7037(73)90213-5
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Liu A. G.,
    2. Kenchington C. G.,
    3. Mitchell E. G.
    , 2015, Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota: Gondwana Research, v. 27, n. 4, p. 1355–1380, doi:https://doi.org/10.1016/j.gr.2014.11.002
    OpenUrlCrossRefGeoRef
  44. ↵
    1. Macdonald F. A.,
    2. Strauss J. V.,
    3. Sperling E. A.,
    4. Halverson G. P.,
    5. Narbonne G. M.,
    6. Johnston D. T.,
    7. Kunzmann M.,
    8. Schrag D. P.,
    9. Higgins J. A.
    , 2013, The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada: Chemical Geology, v. 362, p. 250–272, doi:https://doi.org/10.1016/j.chemgeo.2013.05.032
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. MacLennan S.,
    2. Park Y.,
    3. Swanson-Hysell N.,
    4. Maloof A.,
    5. Schoene B.,
    6. Gebreslassie M.,
    7. Antilla E.,
    8. Tesema T.,
    9. Alene M.,
    10. Haileab B.
    , 2018, The arc of the Snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation: Geology, v. 46, n. 6, p. 539–542, doi:https://doi.org/10.1130/G40171.1
    OpenUrlCrossRef
  46. ↵
    1. Mattinson J. M.
    , 2005, Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages: Chemical Geology, v. 220, n. 1–2, p. 47–66, doi:https://doi.org/10.1016/j.chemgeo.2005.03.011
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. McFadden K. A.,
    2. Huang J.,
    3. Chu X. L.,
    4. Jiang G. Q.,
    5. Kaufman A. J.,
    6. Zhou C. M.,
    7. Yuan X. L.,
    8. Xiao S. H.
    , 2008, Pulsed oxidation and bioloical evolution in the Ediacaran Doushantuo Formation: Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 9, p. 3197–3202, doi:https://doi.org/10.1073/pnas.0708336105
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Mills D. B.,
    2. Francis W. R.,
    3. Canfield D. E.
    , 2018, Animal origins and the Tonian Earth system: Emerging Topics in Life Sciences, v. 2, n. 2, p. 289–298, doi:https://doi.org/10.1042/ETLS20170160
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Minguez D.,
    2. Kodama K. P.,
    3. Hillhouse J. W.
    , 2015, Paleomagnetic and cyclostratigraphic constraints on the synchroneity and duration of the Shuram carbon isotope excursion, Johnnie Formation, Death Valley Region, CA: Precambrian Research, v. 266, p. 395–408, doi:https://doi.org/10.1016/j.precamres.2015.05.033
    OpenUrlCrossRefGeoRef
  50. ↵
    1. Narbonne G. M.
    , 2005, The Ediacara biota: Neoproterozoic origin of animals and their ecosystems: Annual Review of Earth and Planetary Sciences, v. 33, p. 421–442, doi:https://doi.org/10.1146/annurev.earth.33.092203.122519
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Gradstein F. M.,
    2. Ogg J. G.,
    3. Schmitz M. D.,
    4. Ogg G. M.
    1. Narbonne G. M.,
    2. Xiao S.,
    3. Shields G. A.
    , 2012, The Ediacaran Period, in Gradstein F. M., Ogg J. G., Schmitz M. D., Ogg G. M., editors, Geologic Timescale 2012: Amsterdam, Elsevier, p. 413–435, doi:https://doi.org/10.1016/B978-0-444-59425-9.00018-4
    OpenUrlCrossRef
  52. ↵
    1. Narbonne G. M.,
    2. Laflamme M.,
    3. Trusler P. W.,
    4. Dalrymple R. W.,
    5. Greentree C.
    , 2014, Deep-water Ediacaran fossils from northwestern Canada: Taphonomy, ecology, and evolution: Journal of Paleontology, v. 88, n. 2, p. 207–223, doi:https://doi.org/10.1666/13-053
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Navarro L.,
    2. Khan Z.,
    3. Arnott R. W. C.
    , 2007, Depositional architecture and evolution of a deep-marine channel-levee complex: Isaac Formation (Windermere Supergroup), southern Canadian Cordillera: Atlas of deep-water outcrops: AAPG Studies in Geology, v. 56, p. 79–108.
    OpenUrl
  54. ↵
    1. O'Brien S. J.,
    2. King A. F.
    , 2005, Late Neoproterozoic (Ediacaran) stratigraphy of Avalon Zone sedimentary rocks, Bonavista Peninsula, Newfoundland: Current Research, Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 05-1, p. 101–113.
  55. ↵
    1. Planavsky N. J.,
    2. McGoldrick P.,
    3. Scott C. T.,
    4. Li C.,
    5. Reinhard C. T.,
    6. Kelly A. E.,
    7. Chu X.,
    8. Bekker A.,
    9. Love G. D.,
    10. Lyons T. W.
    , 2011, Widespread iron-rich conditions in the mid-Proterozoic ocean: Nature, v. 477, p. 448–451, doi:https://doi.org/10.1038/nature10327
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  56. ↵
    1. Planavsky N. J.,
    2. Reinhard C. T.,
    3. Wang X.,
    4. Thomson D.,
    5. McGoldrick P.,
    6. Rainbird R. H.,
    7. Johnson T.,
    8. Fischer W. W.,
    9. Lyons T. W.
    , 2014, Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals: Science, v. 346, n. 6209, p. 635–638, doi:https://doi.org/10.1126/science.1258410
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Poulton S. W.,
    2. Canfield D. E.
    , 2011, Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History: Elements, v. 7, n. 2, p. 107–112, doi:https://doi.org/10.2113/gselements.7.2.107
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Pu J. P.,
    2. Bowring S. A.,
    3. Ramezani J.,
    4. Myrow P.,
    5. Raub T. D.,
    6. Landing E.,
    7. Mills A.,
    8. Hodgin E.,
    9. Macdonald F. A.
    , 2016, Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota: Geology, v. 44, n. 11, p. 955–958, doi:https://doi.org/10.1130/G38284.1
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Raiswell R.,
    2. Canfield D. E.
    , 1998, Sources of iron for pyrite formation in marine sediments: American Journal of Science, v. 298, n. 3, p. 219–245, doi:https://doi.org/10.2475/ajs.298.3.219
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Raiswell R.,
    2. Canfield D. E.
    2012, The Iron Biogeochemical Cycle Past and Present Geochemical Perspectives, v. 1, n. 1, p. 1–220, doi:https://doi.org/10.7185/geochempersp.1.1
    OpenUrlCrossRef
  61. ↵
    1. Ross G. M.,
    2. Bloch J. D.,
    3. Krouse H. R.
    , 1995, Neoproterozoic strata of the southern Canadian Corillera and the isotopic evolution of seawater sulfate: Precambrian Research, v. 73, n. 1–4, p. 71–99, doi:https://doi.org/10.1016/0301-9268(94)00072-Y
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Rothman D. H.,
    2. Hayes J. M.,
    3. Summons R. E.
    , 2003, Dynamics of the Neoproterozoic carbon cycle: Proceedings of the National Academy of Sciences of the United States of America, v. 100, n. 14, p. 8124–8129, doi:https://doi.org/10.1073/pnas.0832439100
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Schrag D. P.,
    2. Higgins J. A.,
    3. Macdonald F. A.,
    4. Johnston D. T.
    , 2013, Authigenic carbonate and the history of the global carbon cycle: Science, v. 339, n. 6119, p. 540–543, doi:https://doi.org/10.1126/science.1229578
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Scott C.,
    2. Lyons T. W.,
    3. Bekker A.,
    4. Shen Y.,
    5. Poulton S. W.,
    6. Chu X.,
    7. Anbar A. D.
    , 2008, Tracing the stepwise oxygenation of the Proterozoic ocean: Nature, v. 452, p. 456–459, doi:https://doi.org/10.1038/nature06811
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  65. ↵
    1. Sperling E. A.,
    2. Stockey R. G.
    , 2018, The temporal and environmental context of early animal evolution: Considering all the ingredients of an “Explosion”: Integrative and Comparative Biology, v. 58, n. 4, p. 605–622, doi:https://doi.org/10.1093/icb/icy088
    OpenUrlCrossRefPubMed
  66. ↵
    1. Sperling E. A.,
    2. Knoll A. H.,
    3. Girguis P. R.
    , 2015, The ecological physiology af earth's second oxygen revolution: Annual Review of Ecology, Evolution, and Systematics, v. 46, p. 215–235, doi:https://doi.org/10.1146/annurev-ecolsys-110512-135808
    OpenUrlCrossRef
  67. ↵
    1. Stacey J. T.,
    2. Kramers J. D.
    , 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, n. 2, p. 207–221, doi:https://doi.org/10.1016/0012-821X(75)90088-6
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    1. Swanson-Hysell N. L.,
    2. Maloof A. C.,
    3. Condon D. J.,
    4. Jenkin G. R. T.,
    5. Alene M.,
    6. Tremblay M. M.,
    7. Tesema T.,
    8. Rooney A. D.,
    9. Haileab B.
    , 2015, Stratigraphy and geochronology of the Tambien Group, Ethiopia: Evidence for globally synchronous carbon isotope change in the Neoproterozoic: Geology, v. 43, n. 4, p. 323–326, doi:https://doi.org/10.1130/G36347.1
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Swart P. K.,
    2. Kennedy M. J.
    , 2012, Does the global stratigraphic reproducibility of δ13C in Neoproterozoic carbonates require a marine origin? A Pliocene–Pleistocene comparison: Geology, v. 40, n. 1, p. 87–90, doi:https://doi.org/10.1130/G32538.1
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Torres M. E.,
    2. Mix A. C.,
    3. Rugh W. D.
    , 2005, Precise δ13C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous–flow mass spectrometry: Limnology and Oceanography: Methods, v. 3, n. 8, p. 349–360, doi:https://doi.org/10.4319/lom.2005.3.349
    OpenUrlCrossRef
  71. ↵
    1. Von Strandmann P. A. E. P.,
    2. Stüeken E. E.,
    3. Elliott T.,
    4. Poulton S. W.,
    5. Dehler C. M.,
    6. Canfield D. E.,
    7. Catling D. C.
    , 2015, Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere: Nature Communications, v. 6, Article number 10157, doi:https://doi.org/10.1038/ncomms10157
    OpenUrlCrossRef
  72. ↵
    1. Wang X.,
    2. Zhang S.,
    3. Wang H.,
    4. Bjerrum C. J.,
    5. Hammarlund E. U.,
    6. Haxen E. R.,
    7. Su J.,
    8. Wang Y.,
    9. Canfield D. E.
    , 2017, Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting: American Journal of Science, v. 317, n. 8, p. 861–900, doi:https://doi.org/10.2475/08.2017.01
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Wilson A. M.
    , 2005, Fresh and saline groundwater discharge to the ocean: A regional perspective: Water Resources Research, v. 41, n. 2, doi:https://doi.org/10.1029/2004WR003399
    OpenUrlCrossRef
  74. ↵
    1. Wood D. A.,
    2. Dalrymple R. W.,
    3. Narbonne G. M.,
    4. Gehling J. G.,
    5. Clapham M. E.
    , 2003, Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland: Canadian Journal of Earth Sciences, v. 40, n. 10, p. 1375–1391, doi:https://doi.org/10.1139/e03-048
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. Xiao S.,
    2. Narbonne G. M.,
    3. Zhou C.,
    4. Laflamme M.,
    5. Grazhdankin D. V.,
    6. Moczydłowska-Vidal M.,
    7. Cui H.
    , 2016, Towards an Ediacaran time scale: Problems, protocols, and prospects: Episodes, v. 39, n. 4, p. 540–555, doi:https://doi.org/10.18814/epiiugs/2016/v39i4/103886
    OpenUrlCrossRef
  76. ↵
    1. Zhou M.,
    2. Luo T.,
    3. Huff W. D.,
    4. Yang Z.,
    5. Zhou G.,
    6. Gan T.,
    7. Yang H.,
    8. Zhang D.
    , 2018, Timing the termination of the Doushantuo negative carbon isotope excursion: Evidence from U-Pb ages from the Dengying and Liuchapo formations, South China: Science Bulletin, v. 63, n. 21, p. 1431–1438, doi:https://doi.org/10.1016/j.scib.2018.10.002
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 320 (2)
American Journal of Science
Vol. 320, Issue 2
1 Feb 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle
Donald E. Canfield, Andrew H. Knoll, Simon W. Poulton, Guy M. Narbonne, Gregory R. Dunning
American Journal of Science Feb 2020, 320 (2) 97-124; DOI: 10.2475/02.2020.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle
Donald E. Canfield, Andrew H. Knoll, Simon W. Poulton, Guy M. Narbonne, Gregory R. Dunning
American Journal of Science Feb 2020, 320 (2) 97-124; DOI: 10.2475/02.2020.01
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Carbon cycle evolution before and after the Great Oxidation of the atmosphere
  • Cusp tectonics: an Ediacaran megakarst landscape and bidirectional mass slides in a Pan-African syntaxis (NW Namibia)
  • Calibrating the coevolution of Ediacaran life and environment
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • carbon isotope
  • marine
  • sediment
  • diagenesis
  • Neoproterozoic
  • oxygen
  • organic carbon
  • Shuram
  • model
  • authigenic
  • carbonate

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire