Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

Organomineralization of proto-dolomite by a phototrophic microbial mat extracellular polymeric substances: Control of crystal size and its implication for carbonate depositional systems

Carlos Paulo, Judith A. Mckenzie, Basirath Raoof, Jörg Bollmann, Roberta Fulthorpe, Christian J. Strohmenger and Maria Dittrich
American Journal of Science January 2020, 320 (1) 72-95; DOI: https://doi.org/10.2475/01.2020.05
Carlos Paulo
* University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mdittrich@utsc.utoronto.ca
Judith A. Mckenzie
** ETH Zürich, 8092 Zürich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Basirath Raoof
* University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jörg Bollmann
*** University of Toronto, Department of Earth Sciences, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roberta Fulthorpe
* University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian J. Strohmenger
§ ExxonMobil Research Qatar, Doha, Qatar (present address ExxonMobil Upstream Integrated Solutions, 22777 Springwoods Village Parkway, Spring, Texas, USA)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria Dittrich
* University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Altermann W.,
    2. Kazmierczak J.,
    3. Oren A.,
    4. Wright D. T.
    , 2006, Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history: Geobiology, v. 4, n. 3, p. 147–166, doi:https://doi.org/10.1111/j.1472-4669.2006.00076.x
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Aloisi G.
    , 2008, The calcium carbonate saturation state in cyanobacterial mats throughout Earth's history: Geochimica et Cosmochimica Acta, v. 72, n. 24, p. 6037–6060, doi:https://doi.org/10.1016/j.gca.2008.10.007
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Aloisi G.,
    2. Gloter A.,
    3. Kroger M.,
    4. Wallmann K.,
    5. Guyot F.,
    6. Zuddas P.
    , 2006, Nucleation of calcium carbonate on bacterial nanoglobules: Geology, v. 34, n. 12, p. 1017–1020, doi:https://doi.org/10.1130/G22986A.1
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Arias J. L.,
    2. Fernández M. S.
    , 2008, Polysaccharides and Proteoglycans in Calcium Carbonate-Based Biomineralization: Chemical Reviews, v. 108, n. 11, p. 4475–82, doi:https://doi.org/10.1021/cr078269p
    OpenUrlCrossRefPubMedWeb of Science
  5. ↵
    1. Arvidson R. S.,
    2. Mackenzie F. T.
    , 1999, The dolomite problem: Control of precipitation kinetics by temperature and saturation state: American Journal of Science, v. 299, n. 4, p. 257–288, doi:https://doi.org/10.2475/ajs.299.4.257
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Baker P. A.,
    2. Burns S. J.
    , 1985, Ocurrence of and formation of dolomite in organic-rich continental margin sediments: AAPG Bulletin, v. 69, n. 11, p. 1917–1930, doi:https://doi.org/10.1306/94885570-1704-11D7-8645000102C1865D
    OpenUrlAbstract
  7. ↵
    1. Balskus E. P.,
    2. Case R. J.,
    3. Walsh C. T.
    , 2011, The Biosynthesis of Cyanobacterial Sunscreen Scytonemin in Intertidal Microbial Mat Communities: FEMS Microbiology Ecology, v. 77, n. 2, p. 322–32, doi:https://doi.org/10.1111/j.1574-6941.2011.01113.x
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    1. Bentov S.,
    2. Weil S.,
    3. Glazer L.,
    4. Sagi A.,
    5. Berman A.
    , 2010, Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids: Journal of Structural Biology, v. 171, n. 2, p. 207–215, doi:https://doi.org/10.1016/j.jsb.2010.04.007
    OpenUrlCrossRefPubMed
  9. ↵
    1. Bischoff W. D.,
    2. Sharma S. K.,
    3. Mackenzie F. T.
    , 1985, Carbonate ion disorder in synthetic and biogenic magnesian calcites: A Raman spectral study: American Mineralogist, v. 70, n. 5–6, p. 581–589.
    OpenUrlAbstract
  10. ↵
    1. Bontognali T. R. R.,
    2. Vasconcelos C.,
    3. Warthmann R. J.,
    4. Lundberg R.,
    5. McKenzie J. A.
    , 2012, Dolomite-mediating bacterium isolated from the sabkha of Abu Dhabi (UAE): Terra Nova, v. 24, n. 3, p. 248–254, doi:https://doi.org/10.1111/j.1365-3121.2012.01065.x
    OpenUrlCrossRefGeoRef
  11. ↵
    1. Braissant O.,
    2. Decho A. W.,
    3. Dupraz C.,
    4. Glunk C.,
    5. Przekop K. M.,
    6. Visscher P. T.
    , 2007, Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals: Geobiology, v. 5, n. 4, p. 401–411, doi:https://doi.org/10.1111/j.1472-4669.2007.00117.x
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Brauchli M.,
    2. McKenzie J. A.,
    3. Strohmenger C. J.,
    4. Sadooni F.,
    5. Vasconcelos C.,
    6. Bontognali T. R.
    , 2016, The importance of microbial mats for dolomite formation in the Dohat Faishakh sabkha, Qatar: Carbonates and Evaporites, v. 31, n. 3, p. 339–345, doi:https://doi.org/10.1007/s13146-015-0275-0
    OpenUrlCrossRef
  13. ↵
    1. Budd D. A.
    , 1997, Cenozoic dolomites of carbonate islands: Their attributes and origin: Earth-Science Reviews, v. 42, n. 1–2, p. 1–47, doi:https://doi.org/10.1016/S0012-8252(96)00051-7
    OpenUrlCrossRefGeoRef
  14. ↵
    1. Decho A. W.,
    2. Visscher P. T.,
    3. Reid R. P.
    , 2005, Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite: Geobiology: Objectives, Concepts, Perspectives, p. 71–86, doi:https://doi.org/10.1016/B978-0-444-52019-7.50008-5
    OpenUrlCrossRef
  15. ↵
    1. Deng S.,
    2. Dong H.,
    3. Lv G.,
    4. Jiang H.,
    5. Yu B.,
    6. Bishop M. E.
    , 2010, Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China: Chemical Geology, v. 278, n. 3–4, p. 151–159, doi:https://doi.org/10.1016/j.chemgeo.2010.09.008
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. DiLoreto Z. A.,
    2. Bontognali T. R. R.,
    3. Al Disi Z. A.,
    4. Al-Kuwari H. A. S.,
    5. Williford K. H.,
    6. Strohmenger C. J.,
    7. Sadooni F.,
    8. Palermo C.,
    9. Rivers J. M.,
    10. McKenzie J. A.,
    11. Tuite M.,
    12. Dittrich M
    , 2019, Microbial Community Composition and Dolomite Formation in the Hypersaline Microbial Mats of the Khor Al-Adaid Sabkhas, Qatar: Extremophiles, v. 23, n. 2, p. 201–18, doi:https://doi.org/10.1007/s00792-018-01074-4
    OpenUrlCrossRef
  17. ↵
    1. Dupraz C.,
    2. Reid R. P.,
    3. Braissant O.,
    4. Decho A. W.,
    5. Norman R. S.,
    6. Visscher P. T.
    , 2009, Processes of carbonate precipitation in modern microbial mats: Earth-Science Reviews, v. 96, n. 3, p. 141–162, doi:https://doi.org/10.1016/j.earscirev.2008.10.005
    OpenUrlCrossRefGeoRef
  18. ↵
    1. Edwards H. G. M.,
    2. Jorge S. E.,
    3. Jehlicka J.,
    4. Munshi T.
    , 2005a, FT – Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals: Spectrochimica acta Part A: Molecular and Biomolecular Spectroscopy, v. 61, n. 10, p. 2273–2280, doi:https://doi.org/10.1016/j.saa.2005.02.026
    OpenUrlCrossRef
    1. Edwards H. G. M.,
    2. Moody C. D.,
    3. Newton E. M.,
    4. Villar S. E. J.,
    5. Russell M. J.
    , 2005b, Raman spectroscopic analysis of cyanobacterial colonization of hydromagnesite, a putative martian extremophile: ICARUS, v. 175, n. 2, p. 372–381, doi:https://doi.org/10.1016/j.icarus.2004.12.006
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Gallagher K. L.,
    2. Braissant O.,
    3. Kading T. J.,
    4. Dupraz C.,
    5. Visscher P. T.
    , 2013, Phosphate-Related Artifacts In Carbonate Mineralization Experiments: Journal of Sedimentary Research, v. 83, n. 1, p. 37–49, doi:https://doi.org/10.2110/jsr.2013.9
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Gebauer D.,
    2. Völkel A.,
    3. Cölfen H.
    , 2008, Stable Prenucleation Calcium Carbonate Clusters: Science, v. 322, n. 5909, p. 1819–1822, doi:https://doi.org/10.1126/science.1164271
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Gregg J. M.,
    2. Bish D. L.,
    3. Kaczmarek S. E.,
    4. Machel H. G.
    , 2015, Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review: Sedimentology, v. 62, n. 6, p. 1749–1769, doi:https://doi.org/10.1111/sed.12202
    OpenUrlCrossRefGeoRef
    1. Jiang W.,
    2. Saxena A.,
    3. Song B.,
    4. Ward B. B.,
    5. Beveridge T. J.,
    6. Myneni S. C. B.
    , 2004, Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy: Langmuir, v. 20, n. 26, p. 11433–11442, doi:https://doi.org/10.1021/la049043+
    OpenUrlCrossRefPubMedWeb of Science
    1. Kansiz M.,
    2. Heraud P.,
    3. Wood B.,
    4. Burden F.,
    5. Beardall J.,
    6. McNaughton D.
    , 1999, Fourier Transform Infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains: Phytochemistry, v. 52, n. 3, p. 407–417, doi:https://doi.org/10.1016/S0031-9422(99)00212-5
    OpenUrlCrossRefWeb of Science
  22. ↵
    1. Kazmierczak J.,
    2. Fenchel T.,
    3. Kuhl M.,
    4. Kempe S.,
    5. Kremer B.,
    6. Lacka B.,
    7. Malkowski K.
    , 2015, CaCO3 precipitation in multilayered cyanobacterial mats: Clues to explain the alternation of micrite and sparite layers in calcareous stromatolites: Life (Basel), v. 5, n. 1, p. 744–769, doi:https://doi.org/10.3390/life5010744
    OpenUrlCrossRef
  23. ↵
    1. Kenward P. A.,
    2. Goldstein R. H.,
    3. Gonzalez L. A.,
    4. Roberts J. A.
    , 2009, Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic Archaea: Geobiology, v. 7, n. 5, p. 556–65, doi:https://doi.org/10.1111/j.1472-4669.2009.00210.x
    OpenUrlCrossRefPubMedWeb of Science
  24. ↵
    1. Klock J-H,
    2. Wieland A.,
    3. Seifert R.,
    4. Michaelis W.
    , 2007, Extracellular polymeric substances (EPS) from cyanobacterial mats: Characterisation and isolation method optimisation: Marine Biology, v. 152, n. 5, p. 1077–1085, doi:https://doi.org/10.1007/s00227-007-0754-5
    OpenUrlCrossRef
  25. ↵
    1. Krause S.,
    2. Liebetrau V.,
    3. Gorb S.,
    4. Sánchez-Roman M.,
    5. McKenzie J. A.,
    6. Treude T.
    , 2012, Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma: Geology, v. 40, n. 7, p. 587–590, doi:https://doi.org/10.1130/G32923.1
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Land L. S.
    , 1998, Failure to Precipitate Dolomite at 25 °C from Dilute Solution Despite 1000-Fold Oversaturation after 32 Years: Aquatic Geochemistry, v. 4, n. 3–4, p. 361–368, doi:https://doi.org/10.1023/A:1009688315854
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Loste E.,
    2. Wilson R. M.,
    3. Seshadri R.,
    4. Meldrum F. C.
    , 2003, The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies: Journal of Crystal Growth, v. 254, n. 1–2, p. 206–218, doi:https://doi.org/10.1016/S0022-0248(03)01153-9
    OpenUrlCrossRefWeb of Science
  28. ↵
    1. Muller D. W.,
    2. McKenzie J. A.,
    3. Weissert H.
    1. McKenzie J. A.
    , 1991, The dolomite problem: An outstanding controversy, in Muller D. W., McKenzie J. A., Weissert H., editors, Controversies in Modern Geology: Evolution of Geological Theories in Sedimentology, Earth History and Tectonics: London, Academic Press, p. 35–54.
  29. ↵
    1. McKenzie J. A,
    2. Vasconcelos C.
    , 2009, Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives: Sedimentology, v. 56, n. 1, p. 205–219, doi:https://doi.org/10.1111/j.1365-3091.2008.01027.x
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Meldrum F. C.,
    2. Cölfen H.
    , 2008, Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems: Chemical Reviews, v. 108, n. 11, p. 4332–4432, doi:https://doi.org/10.1021/cr8002856
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    1. Meldrum F. C.,
    2. Hyde S. T.
    , 2001, Morphological influence of magnesium and organic additives on the precipitation of calcite: Journal of Crystal Growth, v. 231, n. 4, p. 544–558, doi:https://doi.org/10.1016/S0022-0248(01)01519-6
    OpenUrlCrossRefWeb of Science
  32. ↵
    1. Mucci A.,
    2. Morse J. W.
    , 1984, The solubility of calcite in seawater solutions of various magnesium concentration, It = 0.697 m at 25 °C and one atmosphere total pressure: Geochimica et Cosmochimica Acta, v. 48, n. 4, p. 815–822, doi:https://doi.org/10.1016/0016-7037(84)90103-0
    OpenUrlCrossRefGeoRefWeb of Science
  33. ↵
    1. Ning M.,
    2. Huang K.,
    3. Lang X.,
    4. Ma H.,
    5. Yuan H.,
    6. Peng Y.,
    7. Shen B.
    , 2019, Can crystal morphology indicate different generations of dolomites? Evidence from magnesium isotopes: Chemical Geology, v. 516, p. 1–17, doi:https://doi.org/10.1016/j.chemgeo.2019.04.007
    OpenUrlCrossRef
  34. ↵
    1. Obst M.,
    2. Dynes J. J.,
    3. Lawrence J. R.,
    4. Swerhone G. D. W.,
    5. Benzerara K.,
    6. Karunakaran C.,
    7. Kaznatcheev K.,
    8. Tyliszczak T.,
    9. Hitchcock A. P.
    , 2009a, Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process: Geochimica et Cosmochimica Acta, v. 73, n. 14, p. 4180–4198, doi:https://doi.org/10.1016/j.gca.2009.04.013
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Obst M.,
    2. WehrlI B.,
    3. Dittrich M.
    , 2009b, CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface-induced mechanism: Geobiology, v. 7, n. 3, p. 324–47, doi:https://doi.org/10.1111/j.1472-4669.2009.00200.x
    OpenUrlCrossRefPubMedWeb of Science
  36. ↵
    1. Navid A.
    1. Ojeda J. J.,
    2. Dittrich M.
    , 2012, Fourier transform infrared spectroscopy for molecular analysis of microbial cells, in Navid A., Microbial Systems Biology: Clifton, New Jersey, Methods in Molecular Biology, v. 881, p. 187–211, doi:https://doi.org/10.1007/978-1-61779-827-6_8
    OpenUrlCrossRef
  37. ↵
    1. Ojeda J. J.,
    2. Romero-González M. E.,
    3. Bachmann R. T.,
    4. Edyvean R. G. J.,
    5. Banwart S. A.
    , 2008, Characterization of the Cell Surface and Cell Wall Chemistry of Drinking Water Bacteria by Combining XPS, FTIR Spectroscopy, Modeling, and Potentiometric Titrations: Langmuir, v. 24, n. 8, p. 4032–4040, doi:https://doi.org/10.1021/la702284b
    OpenUrlCrossRefPubMedWeb of Science
  38. ↵
    1. Omoike A.,
    2. Chorover J.
    , 2004, Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: Aqueous chemistry and adsorption effects: Biomacromolecules, v. 5, n. 4, p. 1219–30, doi:https://doi.org/10.1021/bm034461z
    OpenUrlCrossRefPubMedWeb of Science
  39. ↵
    1. Se-Kwon K.
    1. Pathak J.,
    2. Rajneesh Richa,
    3. Sonker A. S.,
    4. Kannaujiya V. K.,
    5. Sinha R. P.
    , 2016, Cyanobacterial extracellular polysaccharide sheath pigment, scytonemin: A novel multipurpose pharmacophore, in Se-Kwon K., editor, Marine Glycobiology: Principles and Applications, 1st edition: Boca Raton, Florida, Taylor & Francis Group, CRC Press, p. 323–337.
  40. ↵
    1. Paulo C.,
    2. Dittrich M.
    , 2013, 2D Raman spectroscopy study of dolomite and cyanobacterial extracellular polymeric substances from Khor Al-Adaid sabkha (Qatar): Journal of Raman Spectroscopy, v. 44, n. 11, p. 1563–1569, doi:https://doi.org/10.1002/jrs.4368
    OpenUrlCrossRef
  41. ↵
    1. Perrin J.,
    2. Vielzeuf D.,
    3. Laporte D.,
    4. Ricolleau A.,
    5. Rossman G. R.,
    6. Floquet N.
    , 2016, Raman characterization of synthetic magnesian calcites: American Mineralogist, v. 101, n. 11, p. 2525–2538, doi:https://doi.org/10.2138/am-2016-5714
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Petrash D. A.,
    2. Bialik,
    3. Or M.,
    4. Bontognali T. R. R.,
    5. Vasconcelos C.,
    6. Roberts J. A.,
    7. McKenzie J. A.,
    8. Konhauser K.
    , 2017, Microbially Catalyzed Dolomite Formation: From near-Surface to Burial: Earth-Science Reviews, v. 171, p. 558–82, doi:https://doi.org/10.1016/j.earscirev.2017.06.015
    OpenUrlCrossRef
  43. ↵
    1. Purgstaller B.,
    2. Konrad F.,
    3. Dietzel M.,
    4. Immenhauser A.,
    5. Mavromatis V.
    , 2017, Control of Mg2+/Ca2+ Activity Ratio on the Formation of Crystalline Carbonate Minerals via an Amorphous Precursor: Crystal Growth & Design, v. 17, n. 3, p. 1069–1078, doi:https://doi.org/10.1021/acs.cgd.6b01416
    OpenUrlCrossRef
    1. Rippka R.
    , 1988, Isolation and purification of cyanobacteria: Methods in Enzymology, v. 167, p. 3–27, doi:https://doi.org/10.1016/0076-6879(88)67004-2
    OpenUrlCrossRefPubMedWeb of Science
  44. ↵
    1. Roberts J. A.,
    2. Bennett P. C.,
    3. González L. A,
    4. Macpherson G. L.,
    5. Milliken K. L.
    , 2004, Microbial precipitation of dolomite in methanogenic groundwater: Geology, v. 32, n. 4, p. 277–280, doi:https://doi.org/10.1130/G20246.2
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Roberts J. A.,
    2. Kenward P. A.,
    3. Fowle D. A.,
    4. Goldstein R. H.,
    5. González L. A.,
    6. Moore D. S.
    , 2013, Surface chemistry allows for abiotic precipitation of dolomite at low temperature: Proceedings of the National Academy of Sciences of the United States of America, v. 110, n. 36, p. 14540–14545, doi:https://doi.org/10.1073/pnas.1305403110
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Rodriguez-Blanco J. D.,
    2. Shaw S.,
    3. Benning L. G.
    , 2015, A route for the direct crystallization of dolomite: American Mineralogist, v. 100, n. 5–6, p. 1172–1181, doi:https://doi.org/10.2138/am-2015-4963
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Van Driessche A. E. S.,
    2. Kellermeier M.,
    3. Benning L. G.,
    4. Gebauer D.
    1. Rodriguez-Blanco J. D.,
    2. Sand K. K.,
    3. Benning L. G.
    , 2017, ACC and Vaterite as Intermediates in the Solution-Based Crystallization of CaCO3, in Van Driessche A. E. S., Kellermeier M., Benning L. G., Gebauer D., editors, New Perspectives on Mineral Nucleation and Growth: Cham, Switzerland, Springer, p. 93–111, doi:https://doi.org/10.1007/978-3-319-45669-0_5
    OpenUrlCrossRef
  48. ↵
    1. Rossi F.,
    2. De Philippis R.
    , 2015, Role of Cyanobacterial Exopolysaccharides in Phototrophic Biofilms and in Complex Microbial Mats: Life, v. 5, n. 2, p. 1218–1238, doi:https://doi.org/10.3390/life5021218
    OpenUrlCrossRefPubMed
  49. ↵
    1. Sánchez-Román M.,
    2. McKenzie J. A.,
    3. Wagener A. L. R.,
    4. Rivadeneyra M. A.,
    5. Vasconcelos C.
    , 2009, Presence of sulfate does not inhibit low-temperature dolomite precipitation: Earth and Planetary Science Letters, v. 285, n. 1–2, p. 131–139, doi:https://doi.org/10.1016/j.epsl.2009.06.003
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Sánchez-Román M.,
    2. Vasconcelos C.,
    3. Schmid T.,
    4. Dittrich M.,
    5. McKenzie J. A.,
    6. Zenobi R.,
    7. Rivadeneyra M. A.
    , 2008, Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record: Geology, v. 36, n. 11, p. 879–882, doi:https://doi.org/10.1130/G25013A.1
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Shen Z.,
    2. Szlufarska I.,
    3. Brown P. E.,
    4. Xu H.
    , 2015, Investigation of the Role of Polysaccharide in the Dolomite Growth at Low Temperature by Using Atomistic Simulations: Langmuir, v. 31, n. 38, p. 10435–10442, doi:https://doi.org/10.1021/acs.langmuir.5b02025
    OpenUrlCrossRefPubMed
  52. ↵
    1. Schindelin J.,
    2. Arganda-Carreras I.,
    3. Frise E.,
    4. Kaynig V.,
    5. Longair M.,
    6. Pietzsch T.,
    7. Preibisch S.,
    8. Rueden C.,
    9. Saalfeld S.,
    10. Schmid B.,
    11. Tinevez J. Y.,
    12. White D. J.,
    13. Hartenstein V.,
    14. Eliceiri K.,
    15. Tomancak P.,
    16. Cardona A.
    , 2012, Fiji: An open-source platform for biological-image analysis: Nature Methods, v. 9, p. 676–682, doi:https://doi.org/10.1038/nmeth.2019
    OpenUrlCrossRef
  53. ↵
    1. Schultze-Lam S.,
    2. Beveridge T. J.
    , 1994, Nucleation of celestite and strontianite on a cyanobacterial S-layer: Applied and Environmental Microbiology, v. 60, n. 2, p. 447–453.
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Shtukenberg A. G.,
    2. Punin Y. O.,
    3. Gunn E.,
    4. Kahr B.
    , 2012, Spherulites: Chemical Reviews, v. 112, n. 3, p. 1805–38, doi:https://doi.org/10.1021/cr200297f
    OpenUrlCrossRefPubMedWeb of Science
  55. ↵
    1. Spadafora A.,
    2. Perri E.,
    3. McKenzie J. A.,
    4. Vasconcelos C.
    , 2010, Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites: Sedimentology, v. 57, n. 1, p. 27–40, doi:https://doi.org/10.1111/j.1365-3091.2009.01083.x
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Strohmenger C. J.,
    2. Al-Mansoori A.,
    3. Al-Jeelani O.,
    4. Al-Shamry A.,
    5. Al-Hosani I.,
    6. Al-Mehsin K.,
    7. Shebl H.
    , 2010, The sabkha sequence at Mussafah Channel (Abu Dhabi, United Arab Emirates): Facies stacking patterns, microbial-mediated dolomite and evaporite overprint: GeoArabia, v. 15, n. 1, p. 49–90.
    OpenUrl
  57. ↵
    1. Stuart R. K.,
    2. Mayali X.,
    3. Lee J. Z.,
    4. Everroad R. C.,
    5. Hwang M.,
    6. Bebout B. M.,
    7. Weber P. K.,
    8. Pett-Ridge J.,
    9. Thelen M. P.
    , 2016, Cyanobacterial reuse of extracellular organic carbon in microbial mats: The ISME Journal, v. 10, p. 1240–1251, doi:https://doi.org/10.1038/ismej.2015.180
    OpenUrlCrossRef
  58. ↵
    1. Sun J.,
    2. Wu Z.,
    3. Cheng H.,
    4. Zhang Z.,
    5. Frost R. L.
    , 2014, A Raman spectroscopic comparison of calcite and dolomite: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 117, p. 158–162, doi:https://doi.org/10.1016/j.saa.2013.08.014
    OpenUrlCrossRef
  59. ↵
    1. Sun W.,
    2. Jayaraman S.,
    3. Chen W.,
    4. Persson K. A.,
    5. Ceder G.
    , 2015, Nucleation of metastable aragonite CaCO3 in seawater: Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 11, p. 3199–3204, doi:https://doi.org/10.1073/pnas.1423898112
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Tang H.,
    2. Yu J.,
    3. Zhao X.
    , 2009, Controlled synthesis of crystalline calcium carbonate aggregates with unusual morphologies involving the phase transformation from amorphous calcium carbonate: Materials Research Bulletin, v. 44, n. 4, p. 831–835, doi:https://doi.org/10.1016/j.materresbull.2008.09.002
    OpenUrlCrossRef
  61. ↵
    1. Teng H. H.,
    2. Dove P. M.,
    3. Orme C. A.,
    4. De Yoreo J. J
    , 1998, Thermodynamics of Calcite Growth: Baseline for Understanding Biomineral Formation: Science, v. 282, n. 5389, p. 724–7, doi:https://doi.org/10.1126/science.282.5389.724
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. Van Lith Y.,
    2. Warthmann R.,
    3. Vasconcelos C.,
    4. McKenzie J. A.
    , 2003, Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation: Geobiology, v. 1, n. 1, p. 71–79, doi:https://doi.org/10.1046/j.1472-4669.2003.00003.x
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Van Tuyl F. M.
    , 1914, The origin of dolomite. Annual Report 1914: Iowa Geological Survey, XXV, p. 257–421
  64. ↵
    1. Vasconcelos C.,
    2. McKenzie J. A.
    , 1997, Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil): Journal of Sedimentary Research, v. 67, n. 3, p. 378–390, doi:https://doi.org/10.1306/D4268577-2B26-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Vasconcelos C.,
    2. McKenzie J. A.
    2008, Dolomite as a Biomineral and Possible Implications: Macla, v. 9, p. 21–22.
    OpenUrl
  66. ↵
    1. Vasconcelos C.,
    2. McKenzie J. A.,
    3. Bernasconi S.,
    4. Grujic D.,
    5. Tiens A. J.
    , 1995, Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures: Nature, v. 377, n. 6546, p. 220–22, doi:https://doi.org/10.1038/377220a0
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Wang D.,
    2. Wallace A. F.,
    3. De Yoreo J. J.,
    4. Dove P. M.
    , 2009, Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification: Proceedings of the National Academy of Sciences of the United States of America, v. 106, p. 21511–21516, doi:https://doi.org/10.1073/pnas.0906741106
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Wang D.,
    2. Hamm L. M.,
    3. Bodnar R. J.,
    4. Dove P. M.
    , 2012, Raman spectroscopic characterization of the magnesium content in amorphous calcium carbonates: Journal of Raman Spectroscopy, v. 43, n. 4, p. 543–548, doi:https://doi.org/10.1002/jrs.3057
    OpenUrlCrossRef
  69. ↵
    1. Warren J.
    , 2000, Dolomite: Occurrence, evolution and economically important associations: Earth-Science Reviews, v. 52, n. 1–3, p. 1–81, doi:https://doi.org/10.1016/S0012-8252(00)00022-2
    OpenUrlCrossRefGeoRef
  70. ↵
    1. Warthmann R.,
    2. Lith Y.V.,
    3. Vasconcelos C.,
    4. McKenzie J. A.,
    5. Karpoff A. M.
    , 2000, Bacterially induced dolomite precipitation in anoxic culture experiments: Geology, v. 28, n. 12, p. 1091–1094, doi:https://doi.org/10.1130/0091-7613(2000)028<1091:BIDPIA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Warthmann R.,
    2. Vasconcelos C.,
    3. Sass H.,
    4. McKenzie J. A.
    , 2005, Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation: Extremophiles: life under extreme conditions, v. 9, n. 3, p. 255–261, doi:https://doi.org/10.1007/s00792-005-0441-8
    OpenUrlCrossRef
  72. ↵
    1. Xiao J.,
    2. Yang S.
    , 2011, Unveiling the critical process in which organic molecules control the polymorphism of magnesium-containing calcium carbonate: The early nucleation of amorphous precursors or the subsequent amorphous to crystalline transformations?: CrystEngComm, v. 13, p. 6223–6230, doi:https://doi.org/10.1039/c1ce05472d
    OpenUrlCrossRef
  73. ↵
    1. Zhang F.,
    2. Xu H.,
    3. Konishi H.,
    4. Shelobolina E. S.,
    5. Roden E. E.
    , 2012, Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite: American Mineralogist, v. 97, n. 4, p. 556–567, doi:https://doi.org/10.2138/am.2012.3979
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 320 (1)
American Journal of Science
Vol. 320, Issue 1
1 Jan 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Organomineralization of proto-dolomite by a phototrophic microbial mat extracellular polymeric substances: Control of crystal size and its implication for carbonate depositional systems
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Organomineralization of proto-dolomite by a phototrophic microbial mat extracellular polymeric substances: Control of crystal size and its implication for carbonate depositional systems
Carlos Paulo, Judith A. Mckenzie, Basirath Raoof, Jörg Bollmann, Roberta Fulthorpe, Christian J. Strohmenger, Maria Dittrich
American Journal of Science Jan 2020, 320 (1) 72-95; DOI: 10.2475/01.2020.05

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Organomineralization of proto-dolomite by a phototrophic microbial mat extracellular polymeric substances: Control of crystal size and its implication for carbonate depositional systems
Carlos Paulo, Judith A. Mckenzie, Basirath Raoof, Jörg Bollmann, Roberta Fulthorpe, Christian J. Strohmenger, Maria Dittrich
American Journal of Science Jan 2020, 320 (1) 72-95; DOI: 10.2475/01.2020.05
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX A1
    • APPENDIX A2
    • APPENDIX A3
    • APPENDIX A4
    • APPENDIX A5
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Reconstruction of the original extent of the Tertiary pre-volcanic gravels in the northern Sierra Nevada (CA): Implications for the range's Paleotopography
  • Zn2+-Pb2+-doped calcite shrub fabrics: Abiotic morphogenesis of travertine-like dripstone encrustation at the Jersey Zinc Mine, southeastern British Columbia
  • Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
Show more Articles

Similar Articles

Keywords

  • microbial carbonates
  • cyanobacteria
  • extrapolymeric substances
  • Raman spectroscopy
  • carboxyl
  • spherulites

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2021 American Journal of Science

Powered by HighWire