Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

The effect of soil temperature seasonality on climate reconstructions from paleosols

Timothy M. Gallagher, Michael Hren and Nathan D. Sheldon
American Journal of Science September 2019, 319 (7) 549-581; DOI: https://doi.org/10.2475/07.2019.02
Timothy M. Gallagher
* Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA
** Department of Geological Sciences, University of Texas at Austin, Austin, Texas, 78712, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gallagher@jsg.utexas.edu
Michael Hren
*** Center for Integrative Geosciences, University of Connecticut, Storrs, Connecticut, 06269, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan D. Sheldon
* Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Arguez A.,
    2. Durre I.,
    3. Applequist S.,
    4. Vose R. S.,
    5. Squires M. F.,
    6. Yin X.,
    7. Heim R. R.,
    8. Owen T. W.
    , 2012, NOAA's 1981–2010 U.S. climate normals-An Overview: Bulletin of the American Meteorological Society, v. 93, p. 1687–1697, doi:https://doi.org/10.1175/BAMS-D-11-00197.1
    OpenUrlCrossRef
  2. ↵
    1. Barberà X.,
    2. Cabrera L.,
    3. Marzo M.,
    4. Parés J. M.,
    5. Agustí J.
    , 2001, A complete terrestrial Oligocene magnetobiostratigraphy from the Ebro Basin, Spain: Earth and Planetary Science Letters, v. 187, n. 1–2, p. 1–16, doi:https://doi.org/10.1016/S0012-821X(01)00270-9
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Brand W. A.,
    2. Assonov S. S.,
    3. Coplen T. B.
    , 2010, Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report): Pure and Applied Chemistry, v. 82, n. 8, p. 1719–1733, doi:https://doi.org/10.1351/PAC-REP-09-01-05
    OpenUrlCrossRef
  4. ↵
    1. Breecker D. O.,
    2. Sharp Z. D.,
    3. McFadden L. D.
    , 2009, Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA: GSA Bulletin, v. 121, n. 3–4, p. 630–640, doi:https://doi.org/10.1130/B26413.1
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Breshears D. D.,
    2. Nyhan J. W.,
    3. Heil C. E.,
    4. Wilcox B. P.
    , 1998, Effects of Woody Plants on Microclimate in a Semiarid Woodland: Soil Temperature and Evaporation in Canopy and Intercanopy Patches: International Journal of Plant Sciences, v. 159, n. 6, p. 1010–1017, doi:https://doi.org/10.1086/314083
    OpenUrlCrossRefWeb of Science
  6. ↵
    1. Brooks P. D.,
    2. Schmidt S. K.,
    3. Williams M. W.
    , 1997, Winter production of CO2 and N2O from alpine tundra: Environmental controls and relationship to inter-system C and N fluxes: Oecologia, v. 110, n. 3, p. 403–413, doi:https://doi.org/10.1007/PL00008814
    OpenUrlCrossRefWeb of Science
  7. ↵
    1. Thiry M.,
    2. Simon-Coincon R.
    1. Cerling T. E.
    , 1999, Stable Carbon Isotopes in Paleosol Carbonates, in Thiry M., Simon-Coincon R., editors, Palaeoweathering, Palaeosurfaces and Related Continental Deposits: International Association of Sedimentologists Special Publication 27, p. 43–60, doi:https://doi.org/10.1002/9781444304190.ch2
    OpenUrlCrossRef
  8. ↵
    1. Colwyn D. A.,
    2. Hren M. T.
    , 2019, An abrupt decrease in Southern Hemisphere terrestrial temperature during the Eocene–Oligocene transition: Earth and Planetary Science Letters, v. 512, p. 227–235, doi:https://doi.org/10.1016/j.epsl.2019.01.052
    OpenUrlCrossRef
  9. ↵
    1. Costa E.,
    2. Garcés M.,
    3. Sáez A.,
    4. Cabrera L.,
    5. López-Blanco M.
    , 2011, The age of the “Grande Coupure” mammal turnover: New constraints from the Eocene-Oligocene record of the Eastern Ebro Basin (NE Spain): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 301, n. 1–4, p. 97–107, doi:https://doi.org/10.1016/j.palaeo.2011.01.005
    OpenUrlCrossRefGeoRef
  10. ↵
    1. Coxall H. K.,
    2. Wilson P. A.
    , 2011, Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling: Paleoceanography, v. 26, n. 2, p. 1–18, doi:https://doi.org/10.1029/2010PA002021
    OpenUrlCrossRef
  11. ↵
    1. Coxall H. K.,
    2. Wilson P. A.,
    3. Pälike H.,
    4. Lear C. H.,
    5. Backman J.
    , 2005, Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean: Nature, v. 433, p. 53–57, doi:https://doi.org/10.1038/nature03135
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  12. ↵
    1. Cramer B. S.,
    2. Toggweiler J. R.,
    3. Wright J. D.,
    4. Katz M. E.,
    5. Miller K. G.
    , 2009, Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation: Paleoceanography, v. 24, n. 4, p. 1–14, doi:https://doi.org/10.1029/2008PA001683
    OpenUrlCrossRef
  13. ↵
    1. Daëron M.,
    2. Blamart D.,
    3. Peral M.,
    4. Affek H. P.
    , 2016, Absolute isotopic abundance ratios and the accuracy of Δ47 measurements: Chemical Geology, v. 442, p. 83–96, doi:https://doi.org/10.1016/j.chemgeo.2016.08.014
    OpenUrlCrossRef
  14. ↵
    1. Decker K. L. M.,
    2. Wang D.,
    3. Waite C.,
    4. Scherbatskoy T.
    , 2003, Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont: Soil Science Society of America Journal, v. 67, n. 4, p. 1234–1243, doi:https://doi.org/10.2136/sssaj2003.1234
    OpenUrlCrossRefWeb of Science
  15. ↵
    1. Defliese W. F.,
    2. Hren M. T.,
    3. Lohmann K. C.
    , 2015, Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations: Chemical Geology, v. 396, p. 51–60, doi:https://doi.org/10.1016/j.chemgeo.2014.12.018
    OpenUrlCrossRef
  16. ↵
    1. Delgado A.,
    2. Reyes E.
    , 1996, Oxygen and hydrogen isotope compositions in clay minerals: A potential single-mineral geothermometer: Geochimica et Cosmochimica Acta, v. 60, p. 4285–4289, doi:https://doi.org/10.1016/S0016-7037(96)00260-8
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Dennis K. J.,
    2. Affek H. P.,
    3. Passey B. H.,
    4. Schrag D. P.,
    5. Eiler J. M.
    , 2011, Defining an absolute reference frame for “clumped” isotope studies of CO2: Geochimica et Cosmochimica Acta, v. 75, n. 22, p. 7117–7131, doi:https://doi.org/10.1016/j.gca.2011.09.025
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Dworkin S. I.,
    2. Nordt L.,
    3. Atchley S.
    , 2005, Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate: Earth and Planetary Science Letters, v. 237, n. 1–2, p. 56–68, doi:https://doi.org/10.1016/j.epsl.2005.06.054
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Edwards E. J.,
    2. Osborne C. P.,
    3. Stromberg C. A. E.,
    4. Smith S. A.,
    5. Bond W. J.,
    6. Christin P. A.,
    7. Cousins A. B.,
    8. Duvall M. R.,
    9. Fox D. L.,
    10. Freckleton R. P.,
    11. Ghannoum O.,
    12. Hartwell J.,
    13. Huang Y.,
    14. Janis C. M.
    , and others, 2010, The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science: Science, v. 328, n. 5978, p. 587–591, doi:https://doi.org/10.1126/science.1177216
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Eiler J. M.
    , 2011, Paleoclimate reconstruction using carbonate clumped isotope thermometry: Quaternary Science Reviews, v. 30, n. 25–26, p. 3575–3588, doi:https://doi.org/10.1016/j.quascirev.2011.09.001
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Fan M.,
    2. Hough B. G.,
    3. Passey B. H.
    , 2014, Middle to late Cenozoic cooling and high topography in the central Rocky Mountains: Constraints from clumped isotope geochemistry: Earth and Planetary Science Letters, v. 408, p. 35–47, doi:https://doi.org/10.1016/j.epsl.2014.09.050
    OpenUrlCrossRefGeoRef
  22. ↵
    1. Fan M.,
    2. Ayyash S. A.,
    3. Tripati A.,
    4. Passey B. H.,
    5. Griffith E. M.
    , 2017, Terrestrial cooling and changes in hydroclimate in the continental interior of the United States across the Eocene-Oligocene boundary: GSA Bulletin, v. 130, n. 7–8, p. 1073–1084, doi:https://doi.org/10.1130/B31732.1
    OpenUrlCrossRef
  23. ↵
    1. Fick S. E.,
    2. Hijmans R. J.
    , 2017, WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas: International Journal of Climatology, v. 37, n. 12, p. 4302–4315, doi:https://doi.org/10.1002/joc.5086
    OpenUrlCrossRef
  24. ↵
    1. Fuchs M.,
    2. Campbell G. S.,
    3. Papendick R. I.
    , 1978, An Analysis of Sensible and Latent Heat Flow in a Partially Frozen Unsaturated Soil: Soil Science Society of America Journal, v. 42, n. 3, p. 379–385, doi:https://doi.org/10.2136/sssaj1978.03615995004200030001x
    OpenUrlCrossRefWeb of Science
  25. ↵
    1. Galeotti S.,
    2. DeConto R.,
    3. Naish T.,
    4. Stocchi P.,
    5. Florindo F.,
    6. Pagani M.,
    7. Barrett P.,
    8. Bohaty S. M.,
    9. Lanci L.,
    10. Pollard D.,
    11. Sandroni S.,
    12. Talarico F. M.,
    13. Zachos J. C.
    , 2016, Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition: Science, v. 352, n. 6281, p. 76–80, doi:https://doi.org/10.1126/science.aab0669
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Gallagher T. M.,
    2. Sheldon N. D.
    , 2013, A new paleothermometer for forest paleosols and its implications for Cenozoic climate: Geology, v. 41, n. 6, p. 647–650, doi:https://doi.org/10.1130/G34074.1
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Gallagher T. M.,
    2. Sheldon N. D.
    2016, Combining soil water balance and clumped isotopes to understand the nature and timing of pedogenic carbonate formation: Chemical Geology, v. 435, p. 79–91, doi:https://doi.org/10.1016/j.chemgeo.2016.04.023
    OpenUrlCrossRef
  28. ↵
    1. Gallagher T. M.,
    2. Sheldon N. D.,
    3. Mauk J. L.,
    4. Petersen S. V.,
    5. Gueneli N.,
    6. Brocks J. J.
    , 2017, Constraining the thermal history of the North American Midcontinent Rift System using carbonate clumped isotopes and organic thermal maturity indices: Precambrian Research, v. 294, p. 53–66, doi:https://doi.org/10.1016/j.precamres.2017.03.022
    OpenUrlCrossRef
  29. ↵
    1. Garcés M.,
    2. López-Blanco M.,
    3. Valero L.,
    4. Beamud E.,
    5. Oliva B.,
    6. Vinyoles A.,
    7. Arbués P.,
    8. Cabello P.,
    9. Cabrera L.
    , 2018, Sedimentary trends, shifts and breaks across the South-Pyrenean Foreland Syste: 20th EGU General Assembly, p. 15846.
  30. ↵
    1. Garcia-Castellanos D.,
    2. Vergés J.,
    3. Gaspar-Escribano J.,
    4. Cloetingh S.
    , 2003, Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia): Journal of Geophysical Research-Solid Earth, v. 108, n. B7, p. 1–18, doi:https://doi.org/10.1029/2002JB002073
    OpenUrlCrossRef
  31. ↵
    1. Garzione C. N.,
    2. Auerbach D. J.,
    3. Jin-Sook Smith J.,
    4. Rosario J. J.,
    5. Passey B. H.,
    6. Jordan T. E.,
    7. Eiler J. M.
    , 2014, Clumped isotope evidence for diachronous surface cooling of the Altiplano and pulsed surface uplift of the Central Andes: Earth and Planetary Science Letters, v. 393, p. 173–181, doi:https://doi.org/10.1016/j.epsl.2014.02.029
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. Geiger R.,
    2. Aron R. H.,
    3. Todhunter P.
    , 1995, The Climate Near the Ground: Braunschweig, Germany, Vieweg, 358 p., doi:https://doi.org/10.1007/978-3-322-86582-3
  33. ↵
    1. Ghosh P.,
    2. Adkins J.,
    3. Affek H.,
    4. Balta B.,
    5. Guo W.,
    6. Schauble E. A.,
    7. Schrag D.,
    8. Eiler J. M.
    , 2006a, 13C–18O bonds in carbonate minerals: A new kind of paleothermometer: Geochimica et Cosmochimica Acta, v. 70, n. 6, p. 1439–1456, doi:https://doi.org/10.1016/j.gca.2005.11.014
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Ghosh P.,
    2. Garzione C. N.,
    3. Eiler J. M.
    , 2006b, Rapid Uplift of the Altiplano Revealed Through 13C-18O Bonds in Paleosol Carbonates: Science, v. 311, n. 5760, p. 511–515, doi:https://doi.org/10.1126/science.1119365
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Grujic D.,
    2. Govin G.,
    3. Barrier L.,
    4. Bookhagen B.,
    5. Coutand I.,
    6. Cowan B.,
    7. Hren M. T.,
    8. Najman Y.
    , 2018, Formation of a Rain Shadow: O and H Stable Isotope Records in Authigenic Clays From the Siwalik Group in Eastern Bhutan: Geochemistry, Geophysics, Geosystems, v. 19, n. 9, p. 3430–3447, doi:https://doi.org/10.1029/2017GC007254
    OpenUrlCrossRef
  36. ↵
    1. Hardy J. P.,
    2. Groffman P. M.,
    3. Fitzhugh R. D.,
    4. Henry K. S.,
    5. Welman A. T.,
    6. Demers J. D.,
    7. Fahey T. J.,
    8. Driscoll C. T.,
    9. Tierney G. L.,
    10. Nolan S.
    , 2001, Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest: Biogeochemistry, v. 56, n. 2, p. 151–174, doi:https://doi.org/10.1023/A:1013036803050
    OpenUrlCrossRefGeoRef
  37. ↵
    1. Henkes G. A.,
    2. Passey B. H.,
    3. Grossman E. L.,
    4. Shenton B. J.,
    5. Pérez-Huerta A.,
    6. Yancey T. E.
    , 2014, Temperature limits for preservation of primary calcite clumped isotope paleotemperatures: Geochimica et Cosmochimica Acta, v. 139, p. 362–382, doi:https://doi.org/10.1016/j.gca.2014.04.040
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Hentschel K.,
    2. Borken W.,
    3. Zuber T.,
    4. Bogner C.,
    5. Huwe B.,
    6. Matzner E.
    , 2009, Effects of soil frost on nitrogen net mineralization, soil solution chemistry and seepage losses in a temperate forest soil: Global Change Biology, v. 15, n. 4, p. 825–836, doi:https://doi.org/10.1111/j.1365-2486.2008.01753.x
    OpenUrlCrossRefWeb of Science
  39. ↵
    1. Hillel D.
    , 1980, Fundamentals of Soil Physics: New York, Academic Press, 413 p., doi:https://doi.org/10.1016/B978-0-08-091870-9.50006-6
  40. ↵
    1. Hough B. G.,
    2. Fan M.,
    3. Passey B. H.
    , 2014, Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction: Earth and Planetary Science Letters, v. 391, p. 110–120, doi:https://doi.org/10.1016/j.epsl.2014.01.008
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Hren M. T.,
    2. Sheldon N. D.,
    3. Grimes S. T.,
    4. Collinson M. E.,
    5. Hooker J. J.,
    6. Bugler M.,
    7. Lohmann K. C.
    , 2013, Terrestrial cooling in Northern Europe during the Eocene-Oligocene transition: Proceedings of the National Academy of Sciences of the United States of America, v. 110, n. 19, p. 7562–7567, doi:https://doi.org/10.1073/pnas.1210930110
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Huber M.,
    2. Caballero R.
    , 2011, The early Eocene equable climate problem revisited: Climate of the Past, v. 7, n. 2, p. 603–633, doi:https://doi.org/10.5194/cp-7-603-2011
    OpenUrlCrossRefWeb of Science
  43. ↵
    1. Huntington K. W.,
    2. Budd D. A.,
    3. Wernicke B. P.,
    4. Eiler J. M.
    , 2011, Use of Clumped-Isotope Thermometry To Constrain the Crystallization Temperature of Diagenetic Calcite: Journal of Sedimentary Research, v. 81, n. 9, p. 656–669, doi:https://doi.org/10.2110/jsr.2011.51
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Hyland E. G.,
    2. Huntington K. W.,
    3. Sheldon N. D.,
    4. Reichgelt T.
    , 2018, Temperature seasonality in the North American continental interior during the Early Eocene Climatic Optimum: Climate of the Past, v. 14, n. 10, p. 1391–1404, doi:https://doi.org/10.5194/cp-14-1391-2018
    OpenUrlCrossRef
  45. ↵
    1. Kelson J. R.,
    2. Watford D.,
    3. Bataille C.,
    4. Huntington K. W.,
    5. Hyland E.,
    6. Bowen G. J.
    , 2018, Warm Terrestrial Subtropics During the Paleocene and Eocene: Carbonate Clumped Isotope (Δ47) Evidence From the Tornillo Basin, Texas (USA): Paleoceanography and Paleoclimatology, v. 33, n. 11, p. 1230–1249, doi:https://doi.org/10.1029/2018PA003391
    OpenUrlCrossRef
  46. ↵
    1. Kluge T.,
    2. John C. M.,
    3. Jourdan A. L.,
    4. Davis S.,
    5. Crawshaw J.
    , 2015, Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25-250 °C temperature range: Geochimica et Cosmochimica Acta, v. 157, p. 213–227, doi:https://doi.org/10.1016/j.gca.2015.02.028
    OpenUrlCrossRefGeoRef
  47. ↵
    1. Wing S.,
    2. Gingerich P. D.,
    3. Schmitz B.,
    4. Thomas E.
    1. Koch P. L.,
    2. Clyde W. C.,
    3. Hepple R. P.,
    4. Fogel M. L.,
    5. Wing S. L.,
    6. Zachos J. C.
    , 2003, Carbon and oxygen isotope records from Paleosols spanning the Paleocene-Eocene boundary, Bighorn Basin, Wyoming, in Wing S., Gingerich P. D., Schmitz B., Thomas E., editors, Causes and consequences of globally warm climates in the early Paleogene: Geological Society of America Special Paper 369, p. 49–64, doi:https://doi.org/10.1130/0-8137-2369-8.49
    OpenUrlCrossRef
  48. ↵
    1. Kohn M. J.,
    2. Strömberg C. A. E.,
    3. Madden R. H.,
    4. Dunn R. E.,
    5. Evans S.,
    6. Palacios A.,
    7. Carlini A. A.
    , 2015, Quasi-static Eocene-Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 435, p. 24–37, doi:https://doi.org/10.1016/j.palaeo.2015.05.028
    OpenUrlCrossRefGeoRef
  49. ↵
    1. Lear C. H.,
    2. Bailey T. R.,
    3. Pearson P. N.,
    4. Coxall H. K.,
    5. Rosenthal Y.
    , 2008, Cooling and ice growth across the Eocene-Oligocene transition: Geology, v. 36, n. 3, p. 251–254, doi:https://doi.org/10.1130/G24584A.1
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Liu Z.,
    2. Pagani M.,
    3. Zinniker D.,
    4. Deconto R. M.,
    5. Huber M.,
    6. Brinkhuis H.,
    7. Shah S. R.,
    8. Leckie R. M.,
    9. Pearson A.
    , 2009, Global Cooling During the Eocene-Oligocene Climate Transition: Science, v. 323, n. 5918, p. 1187–1190, doi:https://doi.org/10.1126/science.1166368
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. James N. P.,
    2. Choquette P. W.
    1. Lohmann K. C.
    , 1988, Geochemical Patterns of Meteoric Diagenetic Systems and Their Application to Studies of Paleokarst, in James N. P., Choquette P. W., editors, Paleokarst: New York, Springer-Verlag, p. 58–80, doi:https://doi.org/10.1007/978-1-4612-3748-8[lowen]3
    OpenUrlCrossRef
  52. ↵
    1. McElwain J. C.,
    2. Beerling D. J.,
    3. Woodward F. I.
    , 1999, Fossil Plants and Global Warming at the Triassic-Jurassic Boundary: Science, v. 285, n. 5432, p. 1386–1390, doi:https://doi.org/10.1126/science.285.5432.1386
    OpenUrlAbstract/FREE Full Text
  53. ↵
    NCDC, 2012, U.S. Climate Normals, accessed July 20, 2005, at https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data.
  54. ↵
    1. Nordt L. C.,
    2. Driese S. D.
    , 2010, New weathering index improves paleorainfall estimates from Vertisols: Geology, v. 38, n. 5, p. 407–410, doi:https://doi.org/10.1130/G30689.1
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Nordt L.,
    2. Orosz M.,
    3. Driese S.,
    4. Tubbs J.
    , 2006, Vertisol Carbonate Properties in Relation to Mean Annual Precipitation: Implications for Paleoprecipitation Estimates: The Journal of Geology, v. 114, n. 4, p. 501–510, doi:https://doi.org/10.1086/504182
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    NRCS, 2016, Soil climate analysis network, accessed June 1, 2016, at https://www.wcc.nrcs.usda.gov/scan/.
  57. ↵
    1. Oliver S. A.,
    2. Oliver H. R.,
    3. Wallace J. S.,
    4. Roberts A. M.
    , 1987, Soil heat flux and temperature variation with vegetation, soil type and climate: Agricultural and Forest Meteorology, v. 39, n. 2–3, p. 257–269, doi:https://doi.org/10.1016/0168-1923(87)90042-6
    OpenUrlCrossRefWeb of Science
  58. ↵
    1. Óskarsson B. V.,
    2. Riishuus M. S.,
    3. Arnalds Ó.
    , 2012, Climate-dependent chemical weathering of volcanic soils in Iceland: Geoderma, v. 189–190, p. 635–651, doi:https://doi.org/10.1016/j.geoderma.2012.05.030
    OpenUrlCrossRef
  59. ↵
    1. Passey B. H.,
    2. Levin N. E.,
    3. Cerling T. E.,
    4. Brown F. H.,
    5. Eiler J. M.
    , 2010, High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates: Proceedings of the National Academy of Sciences of the United States of America, v. 107, p. n. 25, 11245–11249, doi:https://doi.org/10.1073/pnas.1001824107
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Pearson P. N.,
    2. McMillan I. K.,
    3. Wade B. S.,
    4. Jones T. D.,
    5. Coxall H. K.,
    6. Bown P. R.,
    7. Lear C. H.
    , 2008, Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania: Geology, v. 36, n. 2, p. 179–182, doi:https://doi.org/10.1130/G24308A.1
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Pearson P. N.,
    2. Foster G. L.,
    3. Wade B. S.
    , 2009, Atmospheric carbon dioxide through the Eocene-Oligocene climate transition: Nature, v. 461, p. 1110–1113, doi:https://doi.org/10.1038/nature08447
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  62. ↵
    1. Peppe D. J.,
    2. Royer D. L.,
    3. Cariglino B.,
    4. Oliver S. Y.,
    5. Newman S.,
    6. Leight E.,
    7. Enikolopov G.,
    8. Fernandez-Burgos M.,
    9. Herrera F.,
    10. Adams J. M.,
    11. Correa E.,
    12. Currano E. D.,
    13. Erickson J. M.,
    14. Hinojosa L. F.,
    15. Hoganson J. W.,
    16. Iglesias A.,
    17. Jaramillo C. A.,
    18. Johnson K. R.,
    19. Jordan G J.,
    20. Kraft N. J. B.,
    21. Lovelock E. C.,
    22. Lusk C. H.,
    23. Niinemets U.,
    24. Peñuelas J.,
    25. Rapson G.,
    26. Wing S. L.,
    27. Wright I. J.
    , 2011, Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications: New Phytologist, v. 190, n. 3, p. 724–739, doi:https://doi.org/10.1111/j.1469-8137.2010.03615.x
    OpenUrlCrossRefPubMedWeb of Science
  63. ↵
    1. Peters N. A.,
    2. Huntington K. W.,
    3. Hoke G. D.
    , 2013, Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry: Earth and Planetary Science Letters, v. 361, p. 208–218., doi:https://doi.org/10.1016/j.epsl.2012.10.024
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Petersen S. V.,
    2. Winkelstern I. Z.,
    3. Lohmann K. C.,
    4. Meyer K. W.
    , 2016, The effects of PorapakTM trap temperature on δ18O, δ13C, and Δ47 values in preparing samples for clumped isotope analysis: Rapid Communications in Mass Spectrometry, v. 30, n. 1, p. 199–208, doi:https://doi.org/10.1002/rcm.7438
    OpenUrlCrossRefPubMed
  65. ↵
    PRISM Climate Group, O. S. U., 2015, 30-year normals: precipitation at 800 m resolution, 1980–2010, accessed April 1, 2017, at http://prism.oregonstate.edu/normals/
  66. ↵
    1. Qashu H. K.,
    2. Zinke P. J.
    , 1964, The influence of vegetation on soil thermal regime at the San Dimas lysimeters: Soil Science Society of America, Proceedings, v. 28, n. 5, p. 703–706, doi:https://doi.org/10.2136/sssaj1964.03615995002800050035x
    OpenUrlCrossRef
  67. ↵
    1. Quade J.,
    2. Eiler J.,
    3. Daëron M.,
    4. Achyuthan H.
    , 2013, The clumped isotope geothermometer in soil and paleosol carbonate: Geochimica et Cosmochimica Acta, v. 105, p. 92–107, doi:https://doi.org/10.1016/j.gca.2012.11.031
    OpenUrlCrossRefWeb of Science
  68. ↵
    1. Retallack G. J.
    , 2007, Cenozoic Paleoclimate on Land in North America: The Journal of Geology, v. 115, n. 3, p. 271–294, doi:https://doi.org/10.1086/512753
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Retallack G. J.,
    2. Smith R. M. H.,
    3. Ward P. D.
    , 2003, Vertebrate extinction across Permian–Triassic boundary in Karoo Basin, South Africa: GSA Bulletin, v. 115, n. 9, p. 1133, doi:https://doi.org/10.1130/B25215.1
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Royer D. L.
    , 1999, Depth to pedogenic carbonate horizon as a paleoprecipitation indicator?: Geology, v. 27, n. 12, p. 1123–1126, doi:https://doi.org/10.1130/0091-7613(1999)027<1123:DTPCHA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Sanborn P. T.,
    2. Smith C. A. S.,
    3. Froese D. G.,
    4. Zazula G. D.,
    5. Westgate J. A.
    , 2006, Full-glacial paleosols in perennially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada: Quaternary Research, v. 66, n. 1, p. 147–157, doi:https://doi.org/10.1016/j.yqres.2006.02.008
    OpenUrlCrossRefGeoRef
  72. ↵
    1. Schaefer G. L.,
    2. Cosh M. H.,
    3. Jackson T. J.
    , 2007, The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN): Journal of Atmospheric and Oceanic Technology, v. 24, p. 2073–2077, doi:https://doi.org/10.1175/2007JTECHA930.1
    OpenUrlCrossRef
  73. ↵
    1. Schauer A. J.,
    2. Kelson J.,
    3. Saenger C.,
    4. Huntington K. W.
    , 2016, Choice of 17O correction affects clumped isotope (Δ47) values of CO2 measured with mass spectrometry: Rapid Communications in Mass Spectrometry, v. 30, n. 24, p. 2607–2616, doi:https://doi.org/10.1002/rcm.7743
    OpenUrlCrossRef
  74. ↵
    1. Sheldon N. D.
    , 2018, Using Carbon Isotope Equilibrium to Screen Pedogenic Carbonate Oxygen Isotopes: Implications for Paleoaltimetry and Paleotectonic Studies: Geofluids, v. 2018, p. 1–11, doi:https://doi.org/10.1155/2018/5975801
    OpenUrlCrossRef
  75. ↵
    1. Sheldon N. D.,
    2. Tabor N. J.
    , 2009, Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols: Earth-Science Reviews, v. 95, n. 1–2, p. 1–52, doi:https://doi.org/10.1016/j.earscirev.2009.03.004
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Sheldon N. D.,
    2. Retallack G. J.,
    3. Tanaka S.
    , 2002, Geochemical Climofunctions from North American Soils and Application to Paleosols across the Eocene–Oligocene Boundary in Oregon: The Journal of Geology, v. 110, n. 6, p. 687–696, doi:https://doi.org/10.1086/342865
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    1. Sheldon N. D.,
    2. Costa E.,
    3. Cabrera L.,
    4. Garcés M.
    , 2012, Continental Climatic and Weathering Response to the Eocene-Oligocene Transition: The Journal of Geology, v. 120, n. 2, p. 227–236, doi:https://doi.org/10.1086/663984
    OpenUrlCrossRefWeb of Science
  78. ↵
    1. Shenton B. J.,
    2. Grossman E. L.,
    3. Passey B. H.,
    4. Henkes G. A.,
    5. Becker T. P.,
    6. Laya J. C.,
    7. Perez-Huerta A.,
    8. Becker S. P.,
    9. Lawson M.
    , 2015, Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization: GSA Bulletin, v. 127, n. 7–8, p. 1036–1051, doi:https://doi.org/10.1130/B31169.1
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Shukla M. K.
    , 2014, Soil Physics: an Introduction: Boca Raton, Florida, CRC Press, 478 p.
  80. ↵
    1. Sjostrom D. J.,
    2. Hren M. T.,
    3. Chamberlain C. P.
    , 2004, Oxygen isotope records of goethite from ferricrete deposits indicate regionally varying holocene climate change in the Rocky Mountain region, U.S.A.: Quaternary Research, v. 61, p. 64–71, doi:https://doi.org/10.1016/j.yqres.2003.08.008
    OpenUrlCrossRefGeoRef
  81. ↵
    1. Willett S. D.,
    2. Hovius N.,
    3. Brandon M. T.,
    4. Fisher D. M.
    1. Sjostrom D. J.,
    2. Hren M. T.,
    3. Horton T. W.,
    4. Waldbauer J. R.,
    5. Chamberlain C. P.
    , 2006, Stable isotopic evidence for a pre–late Miocene elevation gradient in the Great Plains–Rocky Mountain region, USA, in Willett S. D., Hovius N., Brandon M. T., Fisher D. M., editors, Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398, p. 309–319, doi:https://doi.org/10.1130/2006.2398(19)
    OpenUrlCrossRef
  82. ↵
    1. Smith G. D.,
    2. Newhall F.,
    3. Robinson L. H.,
    4. Swanson D.
    , 1964, Soil-Temperature Regimes: their characteristics and predictability: Soil Conservation Service, U.S. Departament of Agriculture, SCS-TP-144.
  83. ↵
    1. Snell K. E.,
    2. Thrasher B. L.,
    3. Eiler J. M.,
    4. Koch P. L.,
    5. Sloan L. C.,
    6. Tabor N. J.
    , 2013, Hot summers in the Bighorn Basin during the early Paleogene: Geology, v. 41, n. 1, p. 55–58, doi:https://doi.org/10.1130/G33567.1
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Solomon D. K.,
    2. Cerling T. E.
    , 1987, The annual carbon dioxide cycle in a montane soil: Observations, modeling, and implications for weathering: Water Resources Research, v. 23, n. 12, p. 2257–2265, doi:https://doi.org/10.1029/WR023i012p02257
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Sommerfeld R. A.,
    2. Mosier A. R.,
    3. Musselman R. C.
    , 1993, CO2, CH4 and N20 flux through a Wyoming snowpack and implications for global budgets: Nature, p. 140–142, doi:https://doi.org/10.1038/361140a0
    OpenUrlCrossRef
  86. ↵
    1. Spicer R. A.,
    2. Valdes P. J.,
    3. Spicer T. E. V.,
    4. Craggs H. J.,
    5. Srivastava G.,
    6. Mehrotra R. C.,
    7. Yang J.
    , 2009, New developments in CLAMP: Calibration using global gridded meteorological data: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 283, n. 1–2, p. 91–98, doi:https://doi.org/10.1016/j.palaeo.2009.09.009
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Steppuhn A.,
    2. Micheels A.,
    3. Bruch A. A.,
    4. Uhl D.,
    5. Utescher T.,
    6. Mosbrugger V.
    , 2007, The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data: Global and Planetary Change, v. 57, n. 3–4, p. 189–212, doi:https://doi.org/10.1016/j.gloplacha.2006.09.003
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Stinchcomb G. E.,
    2. Nordt L. C.,
    3. Driese S. G.,
    4. Lukens W. E.,
    5. Williamson F. C.,
    6. Tubbs J. D.
    , 2016, A data-driven spline model designed to predict paleoclimate using paleosol geochemistry: American Journal of Science, v. 316, n. 8, p. 746–777, doi:https://doi.org/10.2475/08.2016.02
    OpenUrlAbstract/FREE Full Text
  89. ↵
    1. Stolper D. A.,
    2. Eiler J. M.
    , 2015, The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples: American Journal of Science, v. 315, n. 5, p. 363–411, doi:https://doi.org/10.2475/05.2015.01
    OpenUrlAbstract/FREE Full Text
  90. ↵
    1. Tabor N. J.,
    2. Montañez I. P.
    , 2005, Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: Development of modern surface domain arrays and implications for paleotemperature reconstructions: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, n. 1–2, p. 127–146, doi:https://doi.org/10.1016/j.palaeo.2005.04.009
    OpenUrlCrossRefGeoRef
  91. ↵
    1. Tabor N. J.,
    2. Myers T. S.
    , 2015, Paleosols as Indicators of Paleoenvironment and Paleoclimate: Annual Review of Earth and Planetary Sciences, v. 43, p. 333–361, doi:https://doi.org/10.1146/annurev-earth-060614-105355
    OpenUrlCrossRef
  92. ↵
    1. Van Vliet-Lanoë B.
    , 1998, Frost and soils: Implications for paleosols, paleoclimates and stratigraphy: Catena, v. 34, n. 1–2, p. 157–183, doi:https://doi.org/10.1016/S0341-8162(98)00087-3
    OpenUrlCrossRefGeoRef
  93. ↵
    1. Van Vliet-Lanoë B.,
    2. Coutard J.-P.,
    3. Pissart A.
    , 1984, Structures caused by repeated freezing and thawing in various loamy sediments: A comparison of active, fossil and experimental data: Earth Surface Processes and Landforms, v. 9, n. 6, p. 553–565, doi:https://doi.org/10.1002/esp.3290090609
    OpenUrlCrossRef
  94. ↵
    1. Kimble J. M.
    1. Van Vliet-Lanoë B.,
    2. Fox C. A.,
    3. Gubin S. V.
    , 2004, Micromorphology of Cryosols, in Kimble J. M., editor, Cryosols: Berlin, Heidelberg, Springer Berlin Heidelberg, p. 365–390, doi:https://doi.org/10.1007/978-3-662-06429-0_18
    OpenUrlCrossRef
  95. ↵
    1. Waltham D.,
    2. Docherty C.,
    3. Taberner C.
    , 2000, Decoupled flexure in the South Pyrenean Foreland: Journal of Geophysical Research: Solid Earth, v. 105, n. B7, p. 16329–16339, doi:https://doi.org/10.1029/2000JB900064
    OpenUrlCrossRef
  96. ↵
    1. Wing S. L.,
    2. Harrington G. J.,
    3. Smith F. A.,
    4. Bloch J. I.,
    5. Boyer D. M.,
    6. Freeman K. H.
    , 2005, Transient Floral Change and Rapid Global Warming at the Paleo-Eocene Boundary: Science, v. 310, n. 5750, p. 993–996, doi:https://doi.org/10.1126/science.1116913
    OpenUrlAbstract/FREE Full Text
  97. ↵
    1. Yapp C. J.
    , 1987, Oxygen and hydrogen isotope variations among goethites (α-FeOOH) and the determination of palotemperatures: Geochimica et Cosmochimica Acta, v. 51, n. 2, p. 355–364, doi:https://doi.org/10.1016/0016-7037(87)90247-X
    OpenUrlCrossRefGeoRefWeb of Science
  98. ↵
    1. Yapp C. J.
    2000, Climatic implications of surface domains in arrays of δD and δ18O from hydroxyl minerals: Goethite as an example: Geochimica et Cosmochimica Acta, v. 64, n. 12, p. 2009–2025, doi:https://doi.org/10.1016/S0016-7037(00)00347-1
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Zachos J. C.,
    2. Dickens G. R.,
    3. Zeebe R. E.
    , 2008, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics: Nature, v. 451, p. 279–283, doi:https://doi.org/10.1038/nature06588
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  100. ↵
    1. Zanazzi A.,
    2. Kohn M. J.,
    3. MacFadden B. J.,
    4. Terry D. O.
    , 2007, Large temperature drop across the Eocene-Oligocene transition in central North America: Nature, v. 445, p. 639–642, doi:https://doi.org/10.1038/nature05551
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  101. ↵
    1. Zhang T.
    , 2005, Influence of seasonal snow cover on the ground thermal regime: an overview: Reviews in Geophysics, v. 43, p. 1–23, doi:https://doi.org/10.1029/2004RG000157
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 319 (7)
American Journal of Science
Vol. 319, Issue 7
1 Sep 2019
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The effect of soil temperature seasonality on climate reconstructions from paleosols
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
16 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The effect of soil temperature seasonality on climate reconstructions from paleosols
Timothy M. Gallagher, Michael Hren, Nathan D. Sheldon
American Journal of Science Sep 2019, 319 (7) 549-581; DOI: 10.2475/07.2019.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The effect of soil temperature seasonality on climate reconstructions from paleosols
Timothy M. Gallagher, Michael Hren, Nathan D. Sheldon
American Journal of Science Sep 2019, 319 (7) 549-581; DOI: 10.2475/07.2019.02
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Multiproxy strategy for determining palaeoclimate parameters in the Ruby Ranch Member of the Cedar Mountain Formation
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • clumped isotopes
  • thermal damping
  • ground heating
  • pedotransfer function
  • Eocene

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire