Abstract
Water isotopes are an important tool for reconstructing the amount of atmospheric lifting related to high topography in the geologic past. However, our capacity for meaningful interpretation requires understanding the climatic setting and isolating the influence of orography on water isotopes. Patagonia's simple, steady climatology and location within the Southern Westerlies makes it an ideal setting for successful application of water isotopes to measuring topography through time. Here we use hydrated volcanic glass to construct a new record of the size of the Patagonian Andes during the Cenozoic. We also utilize a novel method for identifying the contribution of orography in regional climate records. Our results show that variation in the observed record can largely be explained by variations in climate. Thus we conclude that the mountain range has maintained a size similar to modern since at least Paleocene. This result is in agreement with geologic data, which constrain the bulk of the surface uplift of the Andes to the Cretaceous. The reconstruction of the Patagonian Andes, which grew in the Cretaceous and remained high through the Cenozoic, is markedly different from the widely held view of Miocene formation of this mountain range. In particular, the topography appears to remain stable during the northward propagation and collision of offshore spreading centers.
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.