Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

The thermochronologic record of erosion and magmatism in the Canyonlands region of the Colorado Plateau

Kendra E. Murray, Peter W. Reiners, Stuart N. Thomson, Xavier Robert and Kelin X Whipple
American Journal of Science May 2019, 319 (5) 339-380; DOI: https://doi.org/10.2475/05.2019.01
Kendra E. Murray
*Department of Geosciences, University of Arizona, Tucson, Arizona, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kemurray@hamilton.edu
Peter W. Reiners
*Department of Geosciences, University of Arizona, Tucson, Arizona, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stuart N. Thomson
*Department of Geosciences, University of Arizona, Tucson, Arizona, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xavier Robert
**Université Grenoble Alpes, CNRS, IRD IFSTARR, ISTerre, Grenoble, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kelin X Whipple
***School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES CITED

  1. ↵
    1. Armstrong R. L.
    , 1969, K-Ar Dating of Laccolithic Centers of Colorado Plateau and Vicinity: GSA Bulletin, v. 80, n. 10, p. 2081–2086, doi:https://doi.org/10.1130/0016-7606(1969)80[2081:KDOLCO]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Armstrong R. L.
    1974, Magmatism, orogenic timing, and orogenic diachronism in the Cordillera from Mexico to Canada: Nature, v. 247, n. 5440, p. 348–351, doi:https://doi.org/10.1038/247348a0
    OpenUrlCrossRefGeoRef
  3. ↵
    1. Armstrong R. L.,
    2. Ward P.
    , 1991, Evolving Geographic Patterns of Cenozoic Magmatism in the North American Cordillera: The Temporal and Spatial Association of Magmatism and Metamorphic Core Complexes: Journal of Geophysical Research-Solid Earth, v. 96, n. B8, p. 13201–13224, doi:https://doi.org/10.1029/91JB00412
    OpenUrlCrossRef
  4. ↵
    1. Ault A. K.,
    2. Flowers R. M.
    , 2012, Is apatite U-Th zonation information necessary for accurate interpretation of apatite (U-Th)/He thermochronometry data?: Geochimica et Cosmochimica Acta, v. 79, n. C, p. 60–78, doi:https://doi.org/10.1016/j.gca.2011.11.037
    OpenUrlCrossRefWeb of Science
  5. ↵
    1. Beitler B.,
    2. Chan M. A.,
    3. Parry W. T.
    , 2003, Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants?: Geology, v. 31, n. 12, p. 1041–1044, doi:https://doi.org/10.1130/G19794.1
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Best M. G.,
    2. Christiansen E. H.
    , 1991, Limited extension during peak Tertiary volcanism, Great Basin of Nevada and Utah: Journal of Geophysical Research-Solid Earth, v. 96, n. B8, p. 13509–13528, doi:https://doi.org/10.1029/91JB00244
    OpenUrlCrossRef
  7. ↵
    1. Best M. G.,
    2. Barr D. L.,
    3. Christiansen E. H.,
    4. Gromme S.,
    5. Deino A. L.,
    6. Tingey D. G.
    , 2009, The Great Basin Altiplano during the middle Cenozoic ignimbrite flareup: Insights from volcanic rocks: International Geology Review, v. 51, n. 7–8, p. 589–633, doi:https://doi.org/10.1080/00206810902867690
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Best M. G.,
    2. Christiansen E. H.,
    3. de Silva S. L.,
    4. Lipman P. W.
    , 2016, Slab-rollback ignimbrite flareups in the southern Great Basin and other Cenozoic American arcs: A distinct style of arc volcanism: Geosphere, v. 12, n. 4, p. 1097–1135, doi:https://doi.org/10.1130/GES01285.1
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Bird P.
    , 1979, Continental delamination and the Colorado Plateau: Journal of Geophysical Research-Solid Earth, v. 84, n. B13, p. 7561–7571, doi:https://doi.org/10.1029/JB084iB13p07561
    OpenUrlCrossRef
  10. ↵
    1. Bird P.
    1984, Laramide crustal thickening event in the Rocky Mountain Foreland and Great Plains: Tectonics, v. 3, n. 7, p. 741–758, doi:https://doi.org/10.1029/TC003i007p00741
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Blackett R. E.
    , 2004, Geothermal Gradient data for Utah: Utah Geological Survey, a division of Utah Department of Natural Resources, 49 p.
  12. ↵
    1. Bowring S. A.,
    2. Karlstrom K. E.
    , 1990, Growth, stabilization, and reactivation of Proterozoic lithosphere in the southwestern United States: Geology, v. 18, n. 12 p. 1203–1206, doi:https://doi.org/10.1130/0091-7613(1990)018<1203:GSAROP>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Braun J.,
    2. Robert X.,
    3. Simon-Labric T.
    , 2013, Eroding Dynamic Topography: Geophysical Research Letters, v. 40, n. 8, p. 1494–1499, doi:https://doi.org/10.1002/grl.50310
    OpenUrlCrossRef
  14. ↵
    1. Bump A. P.,
    2. Davis G. H.
    , 2003, Late Cretaceous–early Tertiary Laramide deformation of the northern Colorado Plateau, Utah and Colorado: Journal of Structural Geology, v. 25, n. 3, p. 421–440, doi:https://doi.org/10.1016/S0191-8141(02)00033-0
    OpenUrlCrossRefGeoRefWeb of Science
  15. ↵
    1. Burke D. B.,
    2. McKee E. H.
    , 1979, Mid-Cenozoic volcano-tectonic troughs in central Nevada: GSA Bulletin, v. 90, n. 2, p. 181–184, doi:https://doi.org/10.1130/0016-7606(1979)90<181:MVTICN>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Bursztyn N.,
    2. Pederson J. L.,
    3. Tressler C.,
    4. Mackley R. D.,
    5. Mitchell K. J.
    , 2015, Rock strength along a fluvial transect of the Colorado Plateau – quantifying a fundamental control on geomorphology: Earth and Planetary Science Letters, v. 429, n. C, p. 90–100, doi:https://doi.org/10.1016/j.epsl.2015.07.042
    OpenUrlCrossRefGeoRef
  17. ↵
    1. Carroll A. R.,
    2. Chetel L. M.,
    3. Smith M. E.
    , 2006, Feast to famine: Sediment supply control on Laramide basin fill: Geology, v. 34, n. 3, p. 197–4, doi:https://doi.org/10.1130/G22148.1
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Cassel E. J.,
    2. Graham S. A.,
    3. Chamberlain C. P.,
    4. Henry C. D.
    , 2012, Early Cenozoic topography, morphology, and tectonics of the northern Sierra Nevada and western Basin and Range: Geosphere, v. 8, n. 2, p. 229–249, doi:https://doi.org/10.1130/GES00671.1
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Cather S. M.,
    2. Connell S. D.,
    3. Chamberlin R. M.,
    4. McIntosh W. C.,
    5. Jones G. E.,
    6. Potochnik A. R.,
    7. Lucas S. G.,
    8. Johnson P. S.
    , 2008, The Chuska erg: Paleogeomorphic and paleoclimatic implications of an Oligocene sand sea on the Colorado Plateau: GSA Bulletin, v. 120, n. 1–2, p. 13–33, doi:https://doi.org/10.1130/B26081.1
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Cather S. M.,
    2. Chapin C. E.,
    3. Kelley S. A.
    , 2012, Diachronous episodes of Cenozoic erosion in southwestern North America and their relationship to surface uplift, paleoclimate, paleodrainage, and paleoaltimetry: Geosphere, v. 8, n. 6, p. 1177–1206, doi:https://doi.org/10.1130/GES00801.1
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Chapin C. E.
    , 2012, Origin of the Colorado Mineral Belt: Geosphere, v. 8, n. 1, p. 28–43, doi:https://doi.org/10.1130/GES00694.1
    OpenUrlAbstract/FREE Full Text
    1. Sylvester P.
    1. Chew D. M.,
    2. Donelick R. A.
    , 2012, Combined apatite fission-track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis, in Sylvester P., editor, Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks: Mineralogical Association of Canada, Short Course 42, p. 219–247.
  22. ↵
    1. Condie K. C.,
    2. Selverstone J.
    , 1999, The Crust of the Colorado Plateau: New Views of an Old Arc: The Journal of Geology, v. 107, n. 4, p. 387–397, doi:https://doi.org/10.1086/314363
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    1. Condie K. C.,
    2. Latysh N.,
    3. Van Schmus W. R.,
    4. Kozuch M.,
    5. Selverstone J.
    , 1999, Geochemistry, Nd and Sr isotopes, and U/Pb zircon ages of granitoid and metasedimentary xenoliths from the Navajo volcanic field, Four Corners area, Southwestern United States: Chemical Geology, v. 156, n. 1–4, p. 95–133, doi:https://doi.org/10.1016/S0009-2541(98)00176-4
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Coney P. J.,
    2. Reynolds S. J.
    , 1977, Cordilleran Benioff zones: Nature, v. 270, p. 403–406, doi:https://doi.org/10.1038/270403a0
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Cook K. L.,
    2. Whipple K. X.,
    3. Heimsath A. M.,
    4. Hanks T. C.
    , 2009, Rapid incision of the Colorado River in Glen Canyon - insights from channel profiles, local incision rates, and modeling of lithologic controls: Earth Surface Processes and Landforms, v. 34, n. 7, doi:https://doi.org/10.1002/esp.1790
    OpenUrlCrossRef
  26. ↵
    1. Copeland P.,
    2. Currie C. A.,
    3. Lawton T. F.,
    4. Murphy M. A.
    , 2017, Location, location, location: The variable lifespan of the Laramide orogeny: Geology, v. 45, n. 3, p. 223–226, doi:https://doi.org/10.1130/G38810.1
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Crow R.,
    2. Karlstrom K.,
    3. Asmerom Y.,
    4. Schmandt B.,
    5. Polyak V.,
    6. Dufrane S. A.
    , 2011, Shrinking of the Colorado Plateau via lithospheric mantle erosion: Evidence from Nd and Sr isotopes and geochronology of Neogene basalts: Geology, v. 39, n. 1, p. 27–30, doi:https://doi.org/10.1130/G31611.1
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Crowley J. L.,
    2. Schmitz M. D.,
    3. Bowring S. A.,
    4. Williams M. L.,
    5. Karlstrom K. E.
    , 2006, U–Pb and Hf isotopic analysis of zircon in lower crustal xenoliths from the Navajo volcanic field: 1.4 Ga mafic magmatism and metamorphism beneath the Colorado Plateau: Contributions to Mineralogy and Petrology, v. 151, n. 3, p. 313–330, doi:https://doi.org/10.1007/s00410-006-0061-z
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Darling A. L.,
    2. Karlstrom K. E.,
    3. Granger D. E.,
    4. Aslan A.,
    5. Kirby E.,
    6. Ouimet W. B.,
    7. Lazear G. D.,
    8. Coblentz D. D.,
    9. Cole R. D.
    , 2012, New incision rates along the Colorado River system based on cosmogenic burial dating of terraces: Implications for regional controls on Quaternary incision: Geosphere, v. 8, n. 5, p. 1020–1041, doi:https://doi.org/10.1130/GES00724.1
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Prichard H. M.,
    2. Alabaster T.,
    3. Harris N. B. W.,
    4. Neary C. R.
    1. Davis J. M.,
    2. Elston W. E.,
    3. Hawkesworth C. J.
    , 1993, Basic and intermediate volcanism of the Mogollon-Datil volcanic field: Implications for mid-Tertiary tectonic transitions in southwestern New Mexico, USA, in Prichard H. M., Alabaster T., Harris N. B. W., Neary C. R., editors, Magmatic Processes and Plate Tectonics: Geological Society, London, Special Publications, v. 76, p. 469–488, doi:https://doi.org/10.1144/GSL.SP.1993.076.01.25
    OpenUrlCrossRef
  31. ↵
    1. Davis S. J.,
    2. Mix H. T.,
    3. Wiegand B. A.,
    4. Carroll A. R.,
    5. Chamberlain C. P.
    , 2009, Synorogenic evolution of large-scale drainage patterns: Isotope paleohydrology of sequential Laramide basins: American Journal of Science, v. 309, n. 7, p. 549–602, doi:https://doi.org/10.2475/07.2009.02
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. DeCelles P. G.
    , 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA: American Journal of Science, v. 304, n. 2, p. 105–168, doi:https://doi.org/10.2475/ajs.304.2.105
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Dickinson W. R.
    , 2013, Rejection of the lake spillover model for initial incision of the Grand Canyon, and discussion of alternatives: Geosphere, v. 9, n. 1, p. 1–20, doi:https://doi.org/10.1130/GES00839.1
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Matthews V. III.
    1. Dickinson W. R.,
    2. Snyder W. S.
    , 1978, Plate tectonics of the Laramide orogeny, in Matthews V. III., editor, Laramide folding associated with basement block faulting in the western United States: Geological Society of America Memoir 151, p. 355–366, doi:https://doi.org/10.1130/MEM151-p355
    OpenUrlCrossRef
  35. ↵
    1. Dickinson W. R.,
    2. Klute M. A.,
    3. Hayes M. J.,
    4. Janecke S. U.,
    5. Lundin E. R.,
    6. McKittrick M. A.,
    7. Olivares M. D.
    , 1988, Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region: GSA Bulletin, v. 100, n. 7, p. 1023–1039, doi:https://doi.org/10.1130/0016-7606(1988)100<1023:PAPSOL>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Dorsey R. J.,
    2. Lazear G.
    , 2013, A post–6 Ma sediment budget for the Colorado River: Geosphere, v. 9, n. 4, p. 781–791, doi:https://doi.org/10.1130/GES00784.1
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Dorsey R. J.,
    2. Fluette A.,
    3. McDougall K.,
    4. Housen B. A.,
    5. Janecke S. U.,
    6. Axen G. J.,
    7. Shirvell C. R.
    , 2007, Chronology of Miocene–Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution: Geology, v. 35, n. 1, p. 57, doi:https://doi.org/10.1130/G23139A.1
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Dumitru T. A.,
    2. Gans P. B.,
    3. Foster D. A.,
    4. Miller E. L.
    , 1991, Refrigeration of the western Cordilleran lithosphere during Laramide shallow-angle subduction: Geology, v. 19, n. 11, p. 1145, doi:https://doi.org/10.1130/0091-7613(1991)019<1145:ROTWCL>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Dumitru T. A.,
    2. Duddy I. R.,
    3. Green P. F.
    , 1994, Mesozoic-Cenozoic burial, uplift, and erosion history of the west-central Colorado Plateau: Geology, v. 22, n. 6, p. 499–502, doi:https://doi.org/10.1130/0091-7613(1994)022<0499:MCBUAE>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Dutton C. E.
    , 1882, Tertiary history of the Grand Cañon district: United States Geological Survey Monograph 2, 315 p.
  41. ↵
    1. Elston D. P.,
    2. Young R. A.
    , 1991, Cretaceous-Eocene (Laramide) landscape development and Oligocene-Pliocene drainage reorganization of transition zone and Colorado Plateau, Arizona: Journal of Geophysical Research-Solid Earth, v. 96, n. B7, p. 12,389–12,406, doi:https://doi.org/10.1029/90JB01978
    OpenUrlCrossRef
  42. ↵
    1. Emmons S. F.
    , 1897, The origin of Green River: Science, v. 6, n. 131, p. 20–21, C doi:https://doi.org/10.1126/science.6.131.19
    OpenUrlCrossRef
  43. ↵
    1. English J. M.,
    2. Johnston S. T.,
    3. Wang K.
    , 2003, Thermal modelling of the Laramide orogeny: Testing the flat-slab subduction hypothesis: Earth and Planetary Science Letters, v. 214, n. 3–4, p. 619–632, doi:https://doi.org/10.1016/S0012-821X(03)00399-6
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Erdman M. E.,
    2. Lee C.-T.A.,
    3. Levander A.,
    4. Jiang H.
    , 2016, Role of arc magmatism and lower crustal foundering in controlling elevation history of the Nevadaplano and Colorado Plateau: A case study of pyroxenitic lower crust from central Arizona, USA: Earth and Planetary Science Letters, v. 439, n. C, p. 48–57, doi:https://doi.org/10.1016/j.epsl.2016.01.032
    OpenUrlCrossRef
  45. ↵
    1. Farley K. A.
    , 2000, Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite: Journal of Geophysical Research-Solid Earth, v. 105, n. B2, p. 2903–2914, doi:https://doi.org/10.1029/1999JB900348
    OpenUrlCrossRef
  46. ↵
    1. Farley K. A.,
    2. Shuster D. L.,
    3. Ketcham R. A.
    , 2011, U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U–Th)/He system: Geochimica et Cosmochimica Acta, n. 75, n. 16, p. 4515–4530, doi:https://doi.org/10.1016/j.gca.2011.05.020
    OpenUrlCrossRef
  47. ↵
    1. Farmer G. L.,
    2. Bailley T.,
    3. Elkins-Tanton L. T.
    , 2008, Mantle source volumes and the origin of the mid-Tertiary ignimbrite flare-up in the southern Rocky Mountains, western U.S.: Lithos, v. 102, n. 1–2, p. 279–294, doi:https://doi.org/10.1016/j.lithos.2007.08.014
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Flowers R. M.,
    2. Farley K. A.
    , 2012, Apatite 4He/3He and (U-Th)/He Evidence for an Ancient Grand Canyon: Science, v. 338, n. 6114, p. 1616–1619, doi:https://doi.org/10.1126/science.1229390
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Flowers R. M.,
    2. Kelley S. A.
    , 2011, Interpreting data dispersion and “inverted” dates in apatite (U–Th)/He and fission-track datasets: An example from the US midcontinent: Geochimica et Cosmochimica Acta, v. 75, n. 18, p. 5169–5186, doi:https://doi.org/10.1016/j.gca.2011.06.016
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Flowers R. M.,
    2. Shuster D. L.,
    3. Wernicke B. P.,
    4. Farley K. A.
    , 2007, Radiation damage control on apatite (U-Th)/He dates from the Grand Canyon region, Colorado Plateau: Geology, v. 35, n. 5, p. 447–450, doi:https://doi.org/10.1130/G23471A.1
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Flowers R. M.,
    2. Wernicke B. P.,
    3. Farley K. A.
    , 2008, Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry: GSA Bulletin, v. 120, n. 5–6, p. 571–587, doi:https://doi.org/10.1130/B26231.1
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Flowers R. M.,
    2. Ketcham R. A.,
    3. Shuster D. L.,
    4. Farley K. A.
    , 2009, Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model: Geochimica et Cosmochimica Acta, v. 73, n. 8, p. 2347–2365, doi:https://doi.org/10.1016/j.gca.2009.01.015
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Flowers R. M.,
    2. Farley K. A.,
    3. Ketcham R. A.
    , 2015, A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon: Earth and Planetary Science Letters, v. 432, n. C, p. 425–435, doi:https://doi.org/10.1016/j.epsl.2015.09.053
    OpenUrlCrossRef
  54. ↵
    1. Fox M.,
    2. Shuster D. L.
    , 2014, The influence of burial heating on the (U–Th)/He system in apatite: Grand Canyon case study: Earth and Planetary Science Letters, v. 397, p. 174–183, doi:https://doi.org/10.1016/j.epsl.2014.04.041
    OpenUrlCrossRefGeoRef
  55. ↵
    1. Fox M.,
    2. Tripathy-Lang A.,
    3. Shuster D. L.,
    4. Winn C.,
    5. Karlstrom K.,
    6. Kelley S.
    , 2017, Westernmost Grand Canyon incision: Testing thermochronometric resolution: Earth and Planetary Science Letters, v. 474, p. 248–256, doi:https://doi.org/10.1016/j.epsl.2017.06.049
    OpenUrlCrossRef
  56. ↵
    1. Galbraith R. F.
    , 1981, On statistical models for fission track counts: Mathematical Geology, v. 13, n. 6, p. 471–478, doi:https://doi.org/10.1007/BF01034498
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Galbraith R. F.
    2005, Statistics for Fission Track Analysis: Boca Raton, Florida, Chapman & Hall/CRC, 240 p., doi:https://doi.org/10.1201/9781420034929
    OpenUrlCrossRef
  58. ↵
    1. Galloway W. E.,
    2. Whiteaker T. L.,
    3. Ganey-Curry P.
    , 2011, History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin: Geosphere, v. 7, n. 4, p. 938–973, doi:https://doi.org/10.1130/GES00647.1
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Gautheron C.,
    2. Tassan-Got L.,
    3. Barbarand J.,
    4. Pagel M.
    , 2009, Effect of alpha-damage annealing on apatite (U–Th)/He thermochronology: Chemical Geology, v. 266, n. 3–4, p. 157–170, doi:https://doi.org/10.1016/j.chemgeo.2009.06.001
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Gautheron C.,
    2. Tassan-Got L.,
    3. Ketcham R. A.,
    4. Dobson K. J.
    , 2012, Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion: Geochimica et Cosmochimica Acta, v. 96, n. 96, p. 44–56, doi:https://doi.org/10.1016/j.gca.2012.08.016
    OpenUrlCrossRefWeb of Science
  61. ↵
    1. Gautheron C.,
    2. Barbarand J.,
    3. Ketcham R. A.,
    4. Tassan-Got L.,
    5. van der Beek P.,
    6. Pagel M.,
    7. Pinna-Jamme R.,
    8. Couffignal F.,
    9. Fialin M.
    , 2013, Chemical influence on α-recoil damage annealing in apatite: Implications for (U–Th)/He dating: Chemical Geology, v. 351, n. C, p. 257–267, doi:https://doi.org/10.1016/j.chemgeo.2013.05.027
    OpenUrlCrossRefGeoRef
  62. ↵
    1. Gehrels G. E.,
    2. Valencia V. A.,
    3. Ruiz J.
    , 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry: Geochemistry, Geophysics, Geosystems, v. 9, n. 3, p. 1–13, doi:https://doi.org/10.1029/2007GC001805
    OpenUrlCrossRefGeoRef
  63. ↵
    1. Gilbert G. K.
    , 1877, Report on the Geology of the Henry Mountains: Washington, D. C., Government Printing Office, 169 p., doi:https://doi.org/10.3133/70039916
  64. ↵
    1. Gleadow A .J. W.
    , 1981, Fission-Track Dating Methods: What Are the Real Alternatives: Nuclear Tracks and Radiation Measurements, v. 5, n. 1–2, p. 3–14, doi:https://doi.org/10.1016/0191-278X(81)90021-4
    OpenUrlCrossRefWeb of Science
  65. ↵
    1. Goldstrand P.
    , 1994, Tectonic development of Upper Cretaceous to Eocene strata of southwestern Utah: GSA Bulletin, v. 106, n. 1, p. 145, doi:https://doi.org/10.1130/0016-7606(1994)106<0145:TDOUCT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Gonzales D. A.,
    2. Lake E. T.
    , 2017, Geochemical constraints on mantle-melt sources for Oligocene to Pleistocene mafic rocks in the Four Corners region, USA: Geosphere, v. 13, n. 1, p. 201–226, doi:https://doi.org/10.1130/GES01314.1
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Green P. F.,
    2. Duddy I. R.,
    3. Laslett G. M.,
    4. Hegarty K. A.,
    5. Gleadow A. J. W.,
    6. Lovering J. F.
    , 1989, Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales: Chemical Geology, v. 79, n. 2, p. 155–182, doi:https://doi.org/10.1016/0168-9622(89)90018-3
    OpenUrlCrossRefWeb of Science
  68. ↵
    1. Hansen W. R.
    , 1986, Neogene Tectonic and Geomorphology of the Eastern Uinta Mountains in Utah, Colorado, and Wyoming: USGS Professional Paper, v. 1356, p. 78, doi:https://doi.org/10.3133/pp1356
    OpenUrlCrossRef
  69. ↵
    1. Hintze L. F.,
    2. Kowallis B. J.
    , 2009, Geologic History of Utah: A Fieldguide to Utah's Rocks: Provo, Utah, Brigham Young University Department of Geology, 181 p.
  70. ↵
    1. Hintze L. F.,
    2. Willis G. C.,
    3. Laes D. Y. M.,
    4. Sprinkel D. A.,
    5. Brown K. D.
    , 2000, Digital Geologic Map of Utah: Utah Geological Survey, scale 1:500,000.
  71. ↵
    1. Hoffman M. D.
    , ms, 2009, Mio-Pliocene erosional exhumation of the central Colorado Plateau, eastern Utah: New insights from apatite (U-Th)/He thermochronometry: Lawrence, Kansas, University of Kansas, M. S. thesis, 185 p.
  72. ↵
    1. Beard L. S.,
    2. Karlstrom K. E.,
    3. Young R. A.,
    4. Billingsley G. H.
    1. Hoffman M. D.,
    2. Stockli D. F.,
    3. Kelley S. A.,
    4. Pederson J. L.,
    5. Lee J.
    , 2011, Mio-Pliocene Erosional Exhumation of the Central Colorado Plateau, Eastern Utah—New Insights from Apatite (U-Th)/He Thermochronometry, in Beard L. S., Karlstrom K. E., Young R. A., Billingsley G. H., editors, CRevolution 2—Origin and Evolution of the Colorado River System, Workshop Abstracts: US. Geological Survey Open File Report 2011-1210, p. 132–136.
  73. ↵
    1. Holm R. F.
    , 2001, Cenozoic paleogeography of the central Mogollon Rim-southern Colorado Plateau region, Arizona, revealed by Tertiary gravel deposits, Oligocene to Pleistocene lava flows, and incised streams: GSA Bulletin, v. 113, n. 11, p. 1467–1485, doi:https://doi.org/10.1130/0016-7606(2001)113<1467:CPOTCM>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. House M. A.,
    2. Kelley S. A.,
    3. Roy M.
    , 2003, Refining the footwall cooling history of a rift flank uplift, Rio Grande rift, New Mexico: Tectonics, v. 22, n. 5, p. 1–14, doi:https://doi.org/10.1029/2002TC001418
    OpenUrlCrossRef
  75. ↵
    1. Kay S. M.,
    2. Ramos V. A,
    3. Dickinson W. R.
    1. Humphreys E.
    , 2009, Relation of flat subduction to magmatism and deformation in the western United States, in Kay S. M., Ramos V. A, Dickinson W. R., editors, Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision: Geological Society of America Memoir 204, p. 85–98, doi:https://doi.org/10.1130/2009.1204(04)
    OpenUrlCrossRef
  76. ↵
    1. Humphreys E.,
    2. Hessler E.,
    3. Dueker K.,
    4. Farmer C. L.,
    5. Erslev E.,
    6. Atwater T.
    , 2003, How Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United States: International Geology Review, v. 45, n. 7, p. 575–595, doi:https://doi.org/10.2747/0020-6814.45.7.575
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    1. Humphreys E. D.
    , 1995, Post-Laramide removal of the Farallon slab, western United States: Geology, v. 23, n. 11, p. 987–990, doi:https://doi.org/10.1130/0091-7613(1995)023<0987:PLROTF>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Hunt C. B.
    , 1956, Cenozoic Geology of the Colorado Plateau: Geological Survey Professional Paper 279, 97 p., doi:https://doi.org/10.3133/pp279
  79. ↵
    1. Hunt C. B.
    1958, Structural and Igneous Geology of theLa Sal Mountains, Utah: Geological Survey Professional Paper 294-I, 68 p., doi:https://doi.org/10.3133/pp294I
  80. ↵
    1. Hunt C. B.
    1969, Geologic History of the Colorado River, in The Colorado River Region and John Wesley Powell: United States Geological Survey Professional Paper 669-C, p. 59–130, doi:https://doi.org/10.3133/pp669C
    OpenUrlCrossRef
  81. ↵
    1. Hunt C. B.,
    2. Averitt P.,
    3. Miller R. L.
    , 1953, Geology and geography of the Henry Mountains region, Utah: A survey and restudy of one of the classic areas in geology: United States Geologic Survey Professional Paper 228, 234 p., doi:https://doi.org/10.3133/pp228
    OpenUrlCrossRef
  82. ↵
    1. Huntington K. W.,
    2. Wernicke B. P.,
    3. Eiler J. M.
    , 2010, Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry: Tectonics v. 29, n. 3, doi:https://doi.org/10.1029/2009TC002449
    OpenUrlCrossRef
  83. ↵
    1. Huntoon J. E.,
    2. Hansley P. L.,
    3. Naeser N. D.
    , 1999, The search for a source rock for the giant Tar Sand Triangle accumulation, southeastern Utah: AAPG Bulletin, v. 83, n. 3, p. 467–495.
    OpenUrlAbstract
  84. ↵
    1. Hurford A. J.
    , 1990, Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology: Chemical Geology; Isotope Geoscience Section, v. 80, n. 2, p. 171–178, doi:https://doi.org/10.1016/0168-9622(90)90025-8
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Hurford A. J.,
    2. Green P. F.
    , 1983, The zeta age calibration of fission-track dating: Isotope Geoscience, v. 1, p. 285–317, doi:https://doi.org/10.1016/S0009-2541(83)80026-6
    OpenUrlCrossRef
  86. ↵
    1. Jackson M. D.,
    2. Pollard D. D.
    , 1988, The laccolith-stock controversy: New results from the southern Henry Mountains, Utah: GSA Bulletin, v. 100, n. 1, p. 117–139, doi:https://doi.org/10.1130/0016-7606(1988)100<0117:TLSCNR>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  87. ↵
    1. Johnson A. M.,
    2. Pollard D. D.
    , 1973, Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, I: Field observations, Gilbert's model, physical properties and flow of the magma: Tectonophysics, v. 18, n. 3–4, p. 261–309, doi:https://doi.org/10.1016/0040-1951(73)90050-4
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Johnson C. M.
    , 1991, Large-scale crust formation and lithosphere modification beneath Middle to Late Cenozoic calderas and volcanic fields, western North America: Journal of Geophysical Research-Solid Earth, v. 96, n. B8, p. 13,485–13,507, doi:https://doi.org/10.1029/91JB00304
    OpenUrlCrossRef
  89. ↵
    1. Johnson J. P. L.,
    2. Whipple K. X.,
    3. Sklar L. S.
    , 2010, Contrasting bedrock incision rates from snowmelt and flash floods in the Henry Mountains, Utah: Geological Society of America Bulletin, v. 122, n. 9–10, p. 1600–1615, doi:https://doi.org/10.1130/B30126.1
    OpenUrlAbstract/FREE Full Text
  90. ↵
    1. Johnstone S.,
    2. Hourigan J.,
    3. Gallagher C.
    , 2013, LA-ICP-MS depth profile analysis of apatite: Protocol and implications for (U–Th)/He thermochronometry: Geochimica et Cosmochimica Acta, n. 109, p. 143–161, doi:https://doi.org/10.1016/j.gca.2013.01.004
    OpenUrlCrossRef
  91. ↵
    1. Jones C. H.,
    2. Farmer G. L.,
    3. Sageman B.,
    4. Zhong S.
    , 2011, Hydrodynamic mechanism for the Laramide orogeny: Geosphere, v. 7, n. 1, p. 183–201, doi:https://doi.org/10.1130/GES00575.1
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Jones C. H.,
    2. Mahan K. H.,
    3. Butcher L. A.,
    4. Levandowski W. B.,
    5. Farmer G. L.
    , 2015, Continental uplift through crustal hydration: Geology, v. 43, n. 4, p. 355–358, doi:https://doi.org/10.1130/G36509.1
    OpenUrlAbstract/FREE Full Text
  93. ↵
    1. Karlstrom K. E.,
    2. Coblentz D.,
    3. Dueker K.,
    4. Ouimet W.,
    5. Kirby E.,
    6. Van Wijk J.,
    7. Schmandt B.,
    8. Kelley S.,
    9. Lazear G.,
    10. Crossey L. J.,
    11. Crow R.,
    12. Aslan A.,
    13. Darling A.,
    14. Aster R.,
    15. MacCarthy J.,
    16. Hansen S. M.,
    17. Stachnik J.,
    18. Stockli D. F.,
    19. Garcia R. V.,
    20. Hoffman M.,
    21. McKeon R.,
    22. Feldman J.,
    23. Heizler M.,
    24. Donahue M. S.
    , and the CREST Working Group, 2012, Mantle-driven dynamic uplift of the Rocky Mountains and Colorado Plateau and its surface response: Toward a unified hypothesis: Lithosphere, v. 4, n. 1, p. 3–22, doi:https://doi.org/10.1130/L150.1
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Karlstrom K. E.,
    2. Lee J. P.,
    3. Kelley S. A.,
    4. Crow R. S.,
    5. Crossey L. J.,
    6. Young R. A.,
    7. Lazear G.,
    8. Beard L. S.,
    9. Ricketts J. W.,
    10. Fox M.,
    11. Shuster D. L.
    , 2014, Formation of the Grand Canyon 5 to 6 million years ago through integration of older palaeocanyons: Nature Geoscience, v. 7, p. 239–244, doi:https://doi.org/10.1038/ngeo2065
    OpenUrlCrossRef
  95. ↵
    1. Karlstrom K. E.,
    2. Crossey L. J.,
    3. Embid E.,
    4. Crow R.,
    5. Heizler M.,
    6. Hereford R.,
    7. Beard L. S.,
    8. Ricketts J. W.,
    9. Cather S.,
    10. Kelley S.
    , 2017, Cenozoic incision history of the Little Colorado River: Its role in carving Grand Canyon and onset of rapid incision in the past ca. 2 Ma in the Colorado River System: Geosphere, v. 13, n. 1, p. 49–81, doi:https://doi.org/10.1130/GES01304.1
    OpenUrlAbstract/FREE Full Text
  96. ↵
    1. Timmons J. M.,
    2. Karlstrom K. E.
    1. Kelley S. A.,
    2. Karlstrom K. E.
    , 2012, The Laramide and post-Laramide uplift and erosional history of the eastern Grand Canyon: Evidence from apatite fission-track thermochronology, in Timmons J. M., Karlstrom K. E. editors., Grand Canyon Geology: Two Billion Years of Earth's History: Geological Society of America Special Paper 489, p. 109–117, doi:https://doi.org/10.1130/2012.2489(07)
    OpenUrlCrossRef
  97. ↵
    1. Ketcham R. A.
    , 2005, Forward and inverse modeling of low-temperature thermochronometry data: Reviews in Mineralogy and Geochemistry, v. 58, n. 1, p. 275–314, doi:https://doi.org/10.2138/rmg.2005.58.11
    OpenUrlFREE Full Text
  98. ↵
    1. Ketcham R. A.,
    2. Carter A.,
    3. Donelick R. A.,
    4. Barbarand J.,
    5. Hurford A. J.
    , 2007, Improved modeling of fission-track annealing in apatite: American Mineralogist, v. 92, n. 5–6, p. 799–810, doi:https://doi.org/10.2138/am.2007.2281
    OpenUrlAbstract/FREE Full Text
  99. ↵
    1. Ketcham R. A.,
    2. Gautheron C.,
    3. Tassan-Got L.
    , 2011, Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: Refinement of the baseline case: Geochimica et Cosmochimica Acta, v. 75, n. 24, p. 7779–7791, doi:https://doi.org/10.1016/j.gca.2011.10.011
    OpenUrlCrossRefGeoRefWeb of Science
  100. ↵
    1. Kimbrough D. L.,
    2. Grove M.,
    3. Gehrels G. E.,
    4. Dorsey R. J.,
    5. Howard K. A.,
    6. Lovera O.,
    7. Aslan A.,
    8. House P. K.,
    9. Pearthree P. A.
    , 2015, Detrital zircon U-Pb provenance of the Colorado River: A 5 m.y. record of incision into cover strata overlying the Colorado Plateau and adjacent regions: Geosphere, v. 11, n. 6, p. 1719–1748, doi:https://doi.org/10.1130/GES00982.1
    OpenUrlAbstract/FREE Full Text
  101. ↵
    1. Lake E. T.,
    2. Farmer G. L.
    , 2015, Oligo-Miocene mafic intrusions of the San Juan Volcanic Field, southwestern Colorado, and their relationship to voluminous, caldera-forming magmas: Geochimica et Cosmochimica Acta, v. 157, p. 86–108, doi:https://doi.org/10.1016/j.gca.2015.02.020
    OpenUrlCrossRefGeoRef
  102. ↵
    1. Landman R. L.,
    2. Flowers R. M.,
    3. Kelley S. A.
    , 2016, Lithospheric hydration gradient and elevated Oligocene heat flow across the transition between the North American cordillera and cratonic interior: Geological Society of America Abstracts with Programs, v. 48, n. 7, doi:https://doi.org/10.1130/abs/2016AM-283290
    OpenUrlCrossRef
  103. ↵
    1. Laughlin A. W.,
    2. Aldrich M. J. Jr..,
    3. Shafiquallah M.,
    4. Husler J.
    , 1986, Tectonic implications of the age, composition, and orientation of lamprophyre dikes, Navajo volcanic field, Arizona: Earth and Planetary Science Letters, v. 76, n. 3–4, p. 361–374, doi:https://doi.org/10.1016/0012-821X(86)90087-7
    OpenUrlCrossRefGeoRefWeb of Science
  104. ↵
    1. Lazear G.,
    2. Karlstrom K.,
    3. Aslan A.,
    4. Kelley S.
    , 2013, Denudation and flexural isostatic response of the Colorado Plateau and southern Rocky Mountains region since 10 Ma: Geosphere, v. 9, n. 4, p. 792–814, doi:https://doi.org/10.1130/GES00836.1
    OpenUrlAbstract/FREE Full Text
  105. ↵
    1. Lee C. T.,
    2. Yin Q. Z.,
    3. Rudnick R. L.,
    4. Jacobsen S. B.
    , 2001, Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States: Nature, v. 411, n. 6833, p. 69–73, doi:https://doi.org/10.1038/35075048
    OpenUrlCrossRefGeoRefPubMed
  106. ↵
    1. Lee J. P.,
    2. Stockli D. F.,
    3. Kelley S. A.,
    4. Pederson J. L.,
    5. Karlstrom K. E.,
    6. Ehlers T. A.
    , 2013, New thermochronometric constraints on the Tertiary landscape evolution of the central and eastern Grand Canyon, Arizona: Geosphere, v. 9, n. 2, p. 216–228, doi:https://doi.org/10.1130/GES00842.1
    OpenUrlAbstract/FREE Full Text
  107. ↵
    1. Leonard E. M.,
    2. Hubbard M. S.,
    3. Kelley S. A.,
    4. Evanoff E.,
    5. Siddoway C. S.,
    6. Oviatt C. G.,
    7. Heizler M.,
    8. Timmons M.
    , 2002, High Plains to Rio Grande rift: Late Cenozoic evolution of central Colorado: GSA Field Guides, v. 3, p. 59–93, doi:https://doi.org/10.1130/0-8137-0003-5.59
    OpenUrlCrossRef
  108. ↵
    1. Levander A.,
    2. Schmandt B.,
    3. Miller M. S.,
    4. Liu K.,
    5. Karlstrom K. E.,
    6. Crow R. S.,
    7. Lee C.-T.A.,
    8. Humphreys E. D.
    , 2011, Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling: Nature, v. 472, p. 461–465, doi:https://doi.org/10.1038/nature10001
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  109. ↵
    1. Lipman P. W.
    , 2007, Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field: Geosphere, v. 3, n. 1, p. 42–70, doi:https://doi.org/10.1130/GES00061.1
    OpenUrlAbstract/FREE Full Text
  110. ↵
    1. Lipman P. W.,
    2. Glazner A. F.
    , 1991, Introduction to middle Tertiary cordilleran volcanism: Magma sources and relations to regional tectonics: Journal of Geophysical Research-Solid Earth, v. 96, n. B8, p. 13193–13199, doi:https://doi.org/10.1029/91JB01397
    OpenUrlCrossRef
  111. ↵
    1. Liu L.,
    2. Gurnis M.
    , 2010, Dynamic subsidence and uplift of the Colorado Plateau: Geology, v. 38, n. 7, p. 663–666, doi:https://doi.org/10.1130/G30624.1
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Liu L.,
    2. Gurnis M.,
    3. Seton M.,
    4. Saleeby J.,
    5. Müller R. D.,
    6. Jackson J. M.
    , 2010, The role of oceanic plateau subduction in the Laramide orogeny: Nature Geoscience, v. 3, n. 4, p. 353–357, doi:https://doi.org/10.1038/ngeo829
    OpenUrlCrossRef
  113. ↵
    1. Ludwig K. R.
    , 2008, Isoplot 3.60: Berkeley, California, Berkeley Geochronology Center, Special Publication, 77 p.
  114. ↵
    1. McIntosh W. C.,
    2. Chapin C. E.,
    3. Ratté J. C.,
    4. Sutter J. F.
    , 1992, Time-stratigraphic framework for the Eocene-Oligocene Mogollon-Datil volcanic field, southwest New Mexico: GSA Bulletin, v. 104, n. 7, p. 851–871, doi:https://doi.org/10.1130/0016-7606(1992)104<0851:TSFFTE>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  115. ↵
    1. McKeon R. E.,
    2. Zeitler P. K.,
    3. Pazzaglia F. J.,
    4. Idleman B. D.,
    5. Enkelmann E.
    , 2013, Decay of an old orogen: Inferences about Appalachian landscape evolution from low-temperature thermochronology: GSA Bulletin, v. 126, n. 1–2, p. 31–46, doi:https://doi.org/10.1130/B30808.1
    OpenUrlCrossRef
  116. ↵
    1. McQuarrie N.,
    2. Chase C.
    , 2000, Raising the Colorado plateau: Geology, v. 28, n. 1, p. 91–94, doi:https://doi.org/10.1130/0091-7613(2000)028<0091:RTCP>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  117. ↵
    1. Minder J. R.,
    2. Mote P. W.,
    3. Lundquist J. D.
    , 2010, Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains: Journal of Geophysical Research-Atmospheres, v. 115, n. D14, doi:https://doi.org/10.1029/2009JD013493
    OpenUrlCrossRef
  118. ↵
    1. Morgan P.,
    2. Swanberg C. A.
    , 1985, On the Cenozoic uplift and tectonic stability of the Colorado Plateau: Journal of Geodynamics, v. 3, n. 1–2, p. 39–63, doi:https://doi.org/10.1016/0264-3707(85)90021-3
    OpenUrlCrossRefGeoRefWeb of Science
  119. ↵
    1. Moucha R.,
    2. Forte A. M.,
    3. Rowley D. B.,
    4. Mitrovica J. X.,
    5. Simmons N. A.,
    6. Grand S. P.
    , 2009, Deep mantle forces and the uplift of the Colorado Plateau: Geophysical Research Letters, v. 36, n. 19, p. L19310, doi:https://doi.org/10.1029/2009GL039778
    OpenUrlCrossRef
  120. ↵
    1. Murray K. E.,
    2. Orme D. A.,
    3. Reiners P. W.
    , 2014, Effects of U–Th-rich grain boundary phases on apatite helium ages: Chemical Geology, v. 390, p. 135–151, doi:https://doi.org/10.1016/j.chemgeo.2014.09.023
    OpenUrlCrossRefGeoRef
  121. ↵
    1. Murray K. E.,
    2. Reiners P. W.,
    3. Thomson S. N.
    , 2016, Rapid Pliocene–Pleistocene erosion of the central Colorado Plateau documented by apatite thermochronology from the Henry Mountains: Geology, v. 44, n. 6, p. 483–486, doi:https://doi.org/10.1130/G37733.1
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Murray K. E.,
    2. Braun J.,
    3. Reiners P. W.
    , 2018, Toward Robust Interpretation of Low-Temperature Thermochronometers in Magmatic Terranes: Geochemistry, Geophysics, Geosystems, v. 19, n. 10, p. 3739–3763, doi:https://doi.org/10.1029/2018GC007595
    OpenUrlCrossRef
  123. ↵
    1. Elston D. P.,
    2. Billingsley G. H.,
    3. Young R. A.
    1. Naeser C. W.,
    2. Duddy I. R.,
    3. Elston D. P.,
    4. Dumitru T. A.,
    5. Green P. F.
    , 1989, Fission-track dating: Ages for Cambrian strata and Laramide and post-Middle Eocene cooling events from the Grand Canyon, Arizona, in Elston D. P., Billingsley G. H., Young R. A. editors, Geology of Grand Canyon, Northern Arizona (with Colorado River Guides): Lee Ferry to Pierce Ferry, Arizona: Washington, D. C., American Geophysical Union, Field Trip Guidebooks, v. 115, p. 139–144, doi:https://doi.org/10.1029/FT115p0139
    OpenUrlCrossRef
  124. ↵
    1. Nelson S. T.,
    2. Davidson J. P.
    , 1993, Interactions Between Mantle-Derived Magmas and Mafic Crust, Henry Mountains, Utah: Journal of Geophysical Research-Solid Earth, v. 98, n. B2, p. 1837–1852, doi:https://doi.org/10.1029/92JB02689
    OpenUrlCrossRef
  125. ↵
    1. Nelson S. T.,
    2. Davidson J. P.,
    3. Sullivan K. R.
    , 1992, New age determinations of central Colorado Plateau laccoliths, Utah: Recognizing disturbed K-Ar systematics and re-evaluating tectonomagmatic relationships: Geological Society of America Bulletin, v. 104, n. 12, p. 1547–1560, doi:https://doi.org/10.1130/0016-7606(1992)104<1547:NADOCC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  126. ↵
    1. Pederson J. L.,
    2. Tressler C.
    , 2012, Colorado River long-profile metrics, knickzones and their meaning: Earth and Planetary Science Letters, v. 345–348, n. C, p. 171–179, doi:https://doi.org/10.1016/j.epsl.2012.06.047
    OpenUrlCrossRef
  127. ↵
    1. Pederson J. L.,
    2. Mackley R. D.,
    3. Eddleman J. L.
    , 2002, Colorado Plateau uplift and erosion evaluated using GIS: GSA Today, v. 12, n. 8, doi:https://doi.org/10.1130/1052-5173(2002)012<0004:CPUAEE>2.0.CO;2
    OpenUrlCrossRef
  128. ↵
    1. Pederson J. L.,
    2. Cragun W. S.,
    3. Hidy A. J.,
    4. Rittenour T. M.,
    5. Gosse J. C.
    , 2013, Colorado River chronostratigraphy at Lee“s Ferry, Arizona, and the Colorado Plateau bull's-eye of incision: Geology, v. 41, n. 4, p. 427–430, doi:https://doi.org/10.1130/G34051.1
    OpenUrlAbstract/FREE Full Text
  129. ↵
    1. Peirce H. W.,
    2. Damon P. E.,
    3. Shafiquallah M.
    , 1979, An Oligocene (?) Colorado Plateau edge in Arizona: Tectonophysics, v. 61, n. 1–3, p. 1–24, doi:https://doi.org/10.1016/0040-1951(79)90289-0
    OpenUrlCrossRefGeoRefWeb of Science
  130. ↵
    1. Pelletier J. D.
    , 2009, The impact of snowmelt on the late Cenozoic landscape of the southern Rocky Mountains, USA: GSA Today, v. 19, n. 7, p. 4–11, doi:https://doi.org/10.1130/GSATG44A.1
    OpenUrlCrossRefGeoRef
  131. ↵
    1. Perry F. V.,
    2. DePaolo D. J.,
    3. Baldridge W. S.
    , 1993, Neodymium isotopic evidence for decreasing crustal contributions to Cenozoic ignimbrites of the western United States: Implications for the thermal evolution of the Cordilleran crust: GSA Bulletin, v. 105, n. 7, p. 872–882, doi:https://doi.org/10.1130/0016-7606(1993)105<0872:NIEFDC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  132. ↵
    1. Pollard D.,
    2. Johnson A. M.
    , 1973, Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, II: Bending and failure of overburden layers and sill formation: Tectonophysics, v. 18, n. 3–4, p. 311–354, doi:https://doi.org/10.1016/0040-1951(73)90051-6
    OpenUrlCrossRefGeoRefWeb of Science
  133. ↵
    1. Porter R.,
    2. Hoisch T.,
    3. Holt W. E.
    , 2017, The role of lower-crustal hydration in the tectonic evolution of the Colorado Plateau: Tectonophysics, v. 712–713, p. 221–231, doi:https://doi.org/10.1016/j.tecto.2017.05.025
    OpenUrlCrossRef
  134. ↵
    1. Powell J. W.
    , 1875, The Exploration of the Colorado River of the West and Its Tributaries: Washington, D. C., U.S. Government Printing Office, Monograph, 291 p., doi:https://doi.org/10.3133/70039238
  135. ↵
    1. Reiners P. W.
    , 2005, Zircon (U-Th)/He thermochronometry: Reviews in Mineralogy and Geochemistry, v. 58, p. 151–179, doi:https://doi.org/10.2138/rmg.2005.58.6
    OpenUrlFREE Full Text
  136. ↵
    1. Reiners P. W.,
    2. Farley K. A.
    , 2001, Influence of crystal size on apatite (U-Th)/He thermochronology: An example from the Bighorn Mountains, Wyoming: Earth and Planetary Science Letters, v. 188, n. 3–4, p. 413–420, doi:https://doi.org/10.1016/S0012-821X(01)00341-7
    OpenUrlCrossRefGeoRefWeb of Science
  137. ↵
    1. Reiners P. W.,
    2. Spell T. L.,
    3. Nicolescu S.,
    4. Zanetti K. A.
    , 2004, Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating: Geochimica et Cosmochimica Acta, v. 68, n. 8, p. 1857–1887, doi:https://doi.org/10.1016/j.gca.2003.10.021
    OpenUrlCrossRefGeoRefWeb of Science
  138. ↵
    1. Reiners P. W.,
    2. Chan M. A.,
    3. Evenson N. S.
    , 2014, (U-Th)/He geochronology and chemical compositions of diagenetic cement, concretions, and fracture-filling oxide minerals in Mesozoic sandstones of the Colorado Plateau: GSA Bulletin, v. 126, n. 9–10, p. 1363–1383, doi:https://doi.org/10.1130/B30983.1
    OpenUrlAbstract/FREE Full Text
  139. ↵
    1. Ricketts J. W.,
    2. Kelley S. A.,
    3. Karlstrom K. E.,
    4. Schmandt B.,
    5. Donahue M. S.,
    6. van Wijk J.
    , 2016, Synchronous opening of the Rio Grande rift along its entire length at 25–10 Ma supported by apatite (U-Th)/He and fission-track thermochronology, and evaluation of possible driving mechanisms: Geological Soceity of America Bulletin, v. 128, n. 3–4, p. 397–424, doi:https://doi.org/10.1130/B31223.1
    OpenUrlCrossRef
  140. ↵
    1. Roberts G. G.,
    2. White N. J.,
    3. Martin-Brandis G. L.,
    4. Crosby A. G.
    , 2012, An uplift history of the Colorado Plateau and its surroundings from inverse modeling of longitudinal river profiles: Tectonics, v. 31, n. 4, p. n/a–n/a, doi:https://doi.org/10.1029/2012TC003107
    OpenUrlCrossRef
  141. ↵
    1. Roden M. F.,
    2. Smith D.,
    3. McDowell F. W.
    , 1979, Age and extent of potassic volcanism on the Colorado Plateau: Earth and Planetary Science Letters, v. 43, n. 2, p. 279–284, doi:https://doi.org/10.1016/0012-821X(79)90212-7
    OpenUrlCrossRefGeoRefWeb of Science
  142. ↵
    1. Friedman J. D.,
    2. Huffman A. C. Jr..
    1. Rowley P.,
    2. Cunningham C.,
    3. Steven T.,
    4. Mehnert H.,
    5. Naeser C.
    , 1998, Cenozoic igneous and tectonic setting of the Marysvale volcanic field and its relation to other igneous centers in Utah and Nevada, in Friedman J. D., Huffman A. C. Jr.., coordinators, Laccolith complexes of southeastern Utah—Time of emplacement and tectonic setting—Workshop proceedings: US Geological Survey Bulletin, v. 2158, p. 167–202.
    OpenUrl
  143. ↵
    1. Roy M.,
    2. Kelley S.,
    3. Pazzaglia F.,
    4. Cather S.,
    5. House M.
    , 2004, Middle Tertiary buoyancy modification and its relationship to rock exhumation, cooling, and subsequent extension at the eastern margin of the Colorado Plateau: Geology, v. 32, n. 10, p. 925–928, doi:https://doi.org/10.1130/G20561.1
    OpenUrlAbstract/FREE Full Text
  144. ↵
    1. Roy M.,
    2. Jordan T. H.,
    3. Pederson J.
    , 2009, Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere: Nature, v. 459, n. 7249, p. 978–982, doi:https://doi.org/10.1038/nature08052
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  145. ↵
    1. Rønnevik C.,
    2. Ksienzyk A. K.,
    3. Fossen H.,
    4. Jacobs J.
    , 2017, Thermal evolution and exhumation history of the Uncompahgre Plateau (northeastern Colorado Plateau), based on apatite fission track and (U-Th)-He thermochronology and zircon U-Pb dating: Geosphere, v. 13, n. 2, p. 518–537, doi:https://doi.org/10.1130/GES01415.1
    OpenUrlAbstract/FREE Full Text
  146. ↵
    1. Schulze D. J.,
    2. Davis D. W.,
    3. Helmstaedt H.,
    4. Joy B.
    , 2015, Timing of the Cenozoic “Great Hydration” event beneath the Colorado Plateau: Th-Pb dating of monazite in Navajo volcanic field metamorphic eclogite xenoliths: Geology, v. 43, n. 8, p. 727–730, doi:https://doi.org/10.1130/G36932.1
    OpenUrlAbstract/FREE Full Text
  147. ↵
    1. Sears J. W.
    , 2013, Late Oligocene–early Miocene Grand Canyon: A Canadian connection?: GSA Today, v. 23, n. 11, p. 4–10, doi:https://doi.org/10.1130/GSATG178A.1
    OpenUrlCrossRefGeoRef
  148. ↵
    1. Semken S.
    , 2003, Black rocks protruding up: the Navajo Volcanic Field, in Geology of the Zuni Plateau: New Mexico Geological Society Guidebook, 54th Field Conference, p. 133–138.
  149. ↵
    1. Shuster D. L.,
    2. Flowers R. M.,
    3. Farley K. A.
    , 2006, The influence of natural radiation damage on helium diffusion kinetics in apatite: Earth and Planetary Science Letters, n. 249, n. 3–4, p. 148–161, doi:https://doi.org/10.1016/j.epsl.2006.07.028
    OpenUrlCrossRef
  150. ↵
    1. Snyder W. S.,
    2. Dickinson W. R.,
    3. Silberman M. L.
    , 1976, Tectonic implications of space-time patterns of Cenozoic magmatism in the western United States: Earth and Planetary Science Letters, v. 32, n. 1, p. 91–106, doi:https://doi.org/10.1016/0012-821X(76)90189-8
    OpenUrlCrossRefGeoRefWeb of Science
  151. ↵
    1. Spencer J. E.
    , 1996, Uplift of the Colorado Plateau due to lithosphere attenuation during laramide low-angle subduction: Journal of Geophysical Research-Solid Earth, v. 101, n. B6, p. 13595–13609, doi:https://doi.org/10.1029/96JB00818
    OpenUrlCrossRef
  152. ↵
    1. Spiegel C.,
    2. Kohn B.,
    3. Belton D.,
    4. Berner Z.,
    5. Gleadow A.
    , 2009, Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation: Earth and Planetary Science Letters, v. 285, n. 1–2, p. 105–114, doi:https://doi.org/10.1016/j.epsl.2009.05.045
    OpenUrlCrossRefGeoRefWeb of Science
  153. ↵
    1. Stern T. W.,
    2. Newell M. F.,
    3. Kistler R. W.,
    4. Shawe D. R.
    , 1965, Zircon Uranium-Lead and Thorium-Lead Ages and Mineral Potassium-Argon Ages of La Sal Mountains Rocks, Utah: Journal of Geophysical Research, v. 70, n. 6, p. 1503–1507, doi:https://doi.org/10.1029/JZ070i006p01503
    OpenUrlCrossRefGeoRef
  154. ↵
    1. Tork Qashqai M.,
    2. Carlos Afonso J.,
    3. Yang Y.
    , 2016, The crustal structure of the Arizona Transition Zone and southern Colorado Plateau from multiobservable probabilistic inversion: Geochemistry, Geophysics, Geosystems, v. 17, n. 11, p. 4308–4332, doi:https://doi.org/10.1002/2016GC006463
    OpenUrlCrossRef
  155. ↵
    1. Van Wijk J. W.,
    2. Baldridge W. S.,
    3. van Hunen J.,
    4. Goes S.,
    5. Aster R.,
    6. Coblentz D. D.,
    7. Grand S. P.,
    8. Ni J.
    , 2010, Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic: Lithosphere, v. 38, n. 7, p. 611–614, doi:https://doi.org/10.1130/G31031.1
    OpenUrlCrossRef
  156. ↵
    1. Vermeesch P.,
    2. Tian Y.
    , 2014, Thermal history modelling: HeFTy vs. QTQt: Earth Science Reviews, v. 139, n. C, p. 279–290, doi:https://doi.org/10.1016/j.earscirev.2014.09.010
    OpenUrlCrossRef
  157. ↵
    1. Wernicke B.
    , 2011, The California River and its role in carving Grand Canyon: GSA Bulletin, v. 123, n. 7-8, p. 1288–1316, doi:https://doi.org/10.1130/B30274.1
    OpenUrlAbstract/FREE Full Text
  158. ↵
    1. Whipp D. M. Jr..,
    2. Ehlers T. A.
    , 2007, Influence of groundwater flow on thermochronometer-derived exhumation rates in the central Nepalese Himalaya: Geology, v. 35, n. 9, p. 851–854, doi:https://doi.org/10.1130/G23788A.1
    OpenUrlAbstract/FREE Full Text
  159. ↵
    1. Winn C.,
    2. Karlstrom K. E.,
    3. Shuster D. L.,
    4. Kelley S.,
    5. Fox M.
    , 2017, 6 Ma age of carving Westernmost Grand Canyon: Reconciling geologic data with combined AFT, (U–Th)/He, and 4He/3He thermochronologic data: Earth and Planetary Science Letters, v. 474, p. 257–271, doi:https://doi.org/10.1016/j.epsl.2017.06.051
    OpenUrlCrossRef
  160. ↵
    1. Witkind I. J.
    , 1964, Geology of the Abajo Mountains Area San Juan County, Utah: United States Geological Survey Professional Paper 453, 117 p., doi:https://doi.org/10.3133/pp453
  161. ↵
    1. Young R. A.,
    2. Spamer E. E.
    1. Young R. A.
    , 2001, The Laramide-Paleogene history of the western Grand Canyon region: Setting the stage, in Young R. A., Spamer E. E. editors, Colorado River Origin and Evolution: Grand Canyon, Arizona, Grand Canyon Association Monograph 12, p. 7–16.
  162. ↵
    1. Young R. A.,
    2. Hartman J. H.
    , 2014, Paleogene rim gravel of Arizona: Age and significance of the Music Mountain Formation: Geosphere, v. 10, n. 5, p. 870–891, doi:https://doi.org/10.1130/GES00971.1
    OpenUrlAbstract/FREE Full Text
  163. ↵
    1. Zhang P.,
    2. Molnar P.,
    3. Downs W. R.
    , 2001, Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates: Nature, v. 410, p. 891–897, doi:https://doi.org/10.1038/35073504
    OpenUrlCrossRefGeoRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 319 (5)
American Journal of Science
Vol. 319, Issue 5
1 May 2019
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The thermochronologic record of erosion and magmatism in the Canyonlands region of the Colorado Plateau
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The thermochronologic record of erosion and magmatism in the Canyonlands region of the Colorado Plateau
Kendra E. Murray, Peter W. Reiners, Stuart N. Thomson, Xavier Robert, Kelin X Whipple
American Journal of Science May 2019, 319 (5) 339-380; DOI: 10.2475/05.2019.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The thermochronologic record of erosion and magmatism in the Canyonlands region of the Colorado Plateau
Kendra E. Murray, Peter W. Reiners, Stuart N. Thomson, Xavier Robert, Kelin X Whipple
American Journal of Science May 2019, 319 (5) 339-380; DOI: 10.2475/05.2019.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGIC SETTING
    • STUDY AREA
    • METHODS
    • RESULTS
    • DIAGNOSING APATITE He AGE VARIABILITY
    • THERMAL HISTORY MODELING
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Colorado Plateau
  • apatite thermochronology
  • (U-Th)/He age variability
  • erosion
  • flare-up magmatism
  • middle Cenozoic rock cooling

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire