Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Shallow water redox conditions of the mid-Proterozoic Muskwa Assemblage, British Columbia, Canada

Eric J. Bellefroid, Noah J. Planavsky, Ashleigh V. S. Hood, Galen P. Halverson and Kasparas Spokas
American Journal of Science February 2019, 319 (2) 122-157; DOI: https://doi.org/10.2475/02.2019.03
Eric J. Bellefroid
* Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, USA 06511
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: eric.bellefroid@yale.edu noah.planavsky@yale.edu
Noah J. Planavsky
* Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, USA 06511
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: eric.bellefroid@yale.edu noah.planavsky@yale.edu
Ashleigh V. S. Hood
* Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, USA 06511
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Galen P. Halverson
** Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec, Canada H3A 0E8
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kasparas Spokas
** Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec, Canada H3A 0E8
*** Department of Civil and Environmental Engineering, Princeton University, E-208 E-Quad, Princeton, New Jersey, USA 08544
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES CITED

  1. ↵
    1. Gabrielse H.,
    2. Yorath C.
    1. Aitken J. D.,
    2. McMechan M. E.
    , 1991, Middle Proterozoic Assemblages, in Gabrielse H., Yorath C., editors, Geology of the Cordilleran Orogeny in Canada: Geological Survey of Canada, Geology of Canada, n. 4, p. 97–124.
  2. ↵
    1. Bailey T. R.,
    2. McArthur J. M.,
    3. Prince H.,
    4. Thirlwall M. F.
    , 2000, Dissolution methods for strontium isotope stratigraphy: Whole rock analysis: Chemical Geology, v. 167, n. 3–4, p. 313–319, doi:https://doi.org/10.1016/S0009-2541(99)00235-1
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Banner J. L.,
    2. Hanson G. N.,
    3. Meyers W. J.
    , 1988a, Determination of initial Sr isotopic compositions of dolostones from the Burlington-Keokuk Formation (Mississippian): Constraints from cathodoluminescence, glauconite paragenesis and analytical methods: Journal of Sedimentary Research, v. 58, n. 4, p. 673–687, doi:https://doi.org/10.2110/jsr.58.673
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Banner J. L.,
    2. Hanson G. N.,
    3. Meyers W. J.
    1988b, Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis: Journal of Sedimentary Research, v. 58, n. 3, p. 415–432, doi:https://doi.org/10.1306/212F8DAA-2B24-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Bartley J. K.,
    2. Kah L. C.
    , 2004, Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle: Geology, v. 32, n. 2, p. 129–132, doi:https://doi.org/10.1130/G19939.1
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Bau M.
    , 1999, Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect: Geochimica et Cosmochimica Acta, v. 63, n. 1, p. 67–77, doi:https://doi.org/10.1016/S0016-7037(99)00014-9
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Bau M.,
    2. Alexander B.
    , 2006, Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential re-establishment of marine anoxia immediately after the “Great Oxidation Event”: South African Journal of Geology, v. 109, n. 1–2, p. 81–86, doi:https://doi.org/10.2113/gssajg.109.1-2.81
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Bau M.,
    2. Koschinsky A.
    , 2009, Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts: Geochemical Journal, v. 43, n. 1, p. 37–47, doi:https://doi.org/10.2343/geochemj.1.0005
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Bau M.,
    2. Koschinsky A.,
    3. Dulski P.,
    4. Hein J. R.
    , 1996, Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater: Geochimica et Cosmochimica Acta, v. 60, n. 10, p. 1709–1725, doi:https://doi.org/10.1016/0016-7037(96)00063-4
    OpenUrlCrossRefGeoRefWeb of Science
  10. ↵
    1. Bau M.,
    2. Möller P.,
    3. Dulski P.
    , 1997, Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling: Marine Chemistry, v. 56, n. 1–2, p. 123–131, doi:https://doi.org/10.1016/S0304-4203(96)00091-6
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Bekker A.,
    2. Planavsky N. J.,
    3. Krapež B.,
    4. Rasmussen B.,
    5. Hofmann A.,
    6. Slack J. F.,
    7. Rouxel O. J.,
    8. Konhauser K. O.
    , 2014, 9.18 - Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry: Oxford, Elsevier, Treatise on Geochemistry (Second Edition), v. 9, p. 561–628, doi:https://doi.org/10.1016/B978-0-08-095975-7.00719-1
    OpenUrlCrossRef
  12. ↵
    1. Bell R. T.
    , ms, 1966, Precambrian rocks of the Tuchodi Lakes map-area, northeastern British Columbia: Princeton, New Jersey, Princeton University, Ph. D. thesis, 130 p.
  13. ↵
    1. Bell R. T.
    1968, Proterozoic Stratigraphy of North-Eastern British Columbia: Geological Survey of Canada Paper 67–68, 75 p., doi:https://doi.org/10.4095/104736
    OpenUrlCrossRef
  14. ↵
    1. Bellefroid E. J.,
    2. Hood A. v. S.,
    3. Hoffman P. F.,
    4. Thomas M. D.,
    5. Reinhard C. T.,
    6. Planavsky N. J.
    , 2018, Constraints on Paleoproterozoic atmospheric oxygen levels: Proceedings of the National Academy of Sciences of the United States of America, v. 115, n. 32, p. 8104–8109, doi:https://doi.org/10.1073/pnas.1806216115
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Brasier M. D.,
    2. Lindsay J. F.
    , 1998. A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia: Geology, v. 26, n. 6, p. 555–558, doi:https://doi.org/10.1130/0091-7613(1998)026<0555:ABYOES>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Brocks J. J.,
    2. Jarrett A. J. M.,
    3. Sirantoine E.,
    4. Hallmann C.,
    5. Hoshino Y.,
    6. Liyanage T.
    , 2017, The rise of algae in Cryogenian oceans and the emergence of animals: Nature, v. 548, p. 578–581, doi:https://doi.org/10.1038/nature23457
    OpenUrlCrossRef
  17. ↵
    1. Butterfield N. J.
    , 2000, Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes: Paleobiology, v. 26, n. 3, p. 386–404, doi:https://doi.org/10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Butterfield N. J.
    2011, Animals and the invention of the Phanerozoic Earth system: Trends in Ecology & Evolution, v. 26, n. 2, p. 81–87, doi:https://doi.org/10.1016/j.tree.2010.11.012
    OpenUrlCrossRef
  19. ↵
    1. Canfield D. E.,
    2. Poulton S. W.,
    3. Knoll A. H.,
    4. Narbonne G. M.,
    5. Ross G.,
    6. Goldberg T.,
    7. Strauss H.
    , 2008, Ferruginous conditions dominated later Neoproterozoic deep-water chemistry: Science, v. 321, n. 5891, p. 949–952, doi:https://doi.org/10.1126/science.1154499
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Canfield D. E.,
    2. Zhang S.,
    3. Frank A. B.,
    4. Wand X.,
    5. Wang H.,
    6. Su J.,
    7. Ye Y.,
    8. Frei R.
    , 2018, Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen: Nature Communications, v. 9, n. 1, article number 2871, doi:https://doi.org/10.1038/s41467-018-05263-9
    OpenUrlCrossRef
  21. ↵
    1. Chen J.,
    2. Algeo T. J.,
    3. Zhao L.,
    4. Chen Z.,
    5. Cao L.,
    6. Zhang L.,
    7. Li Y.
    , 2015, Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China: Earth-Science Reviews, v. 149, p. 181–202, doi:https://doi.org/10.1016/j.earscirev.2015.01.013
    OpenUrlCrossRefGeoRef
  22. ↵
    1. Cole D. B.,
    2. Reinhard C. T.,
    3. Wang X.,
    4. Gueguen B.,
    5. Halverson G. P.,
    6. Gibson T.,
    7. Hodgskiss M. S. W.,
    8. McKenzie N. R.,
    9. Lyons T. W.,
    10. Planavsky N. J.
    , 2016, A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic: Geology, v. 44, n. 7, p. 555–558, doi:https://doi.org/10.1130/G37787.1
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Colpron M.,
    2. Logan J. M.,
    3. Mortensen J. K.
    , 2002, U-Pb zircon age constraint for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia: Canadian Journal of Earth Sciences, v. 39, n. 2, p. 133–143, doi:https://doi.org/10.1139/e01-069
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Cook F. A.,
    2. Van der Velden A. J.
    , 1993, Proterozoic crustal transition beneath the Western Canada sedimentary basin: Geology, v. 21, n. 9, p. 785–788, doi:https://doi.org/10.1130/0091-7613(1993)021<0785:PCTBTW>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Cook F. A.,
    2. Clowes R. M.,
    3. Snyder D. B.,
    4. van der Velden A. J.,
    5. Hall K. W.,
    6. Erdmer P.,
    7. Evenchick C. A.
    , 2004, Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling: Tectonics, v. 23, n. 2, p. TC2010, doi:https://doi.org/10.1029/2002TC001412
    OpenUrlCrossRef
  26. ↵
    1. Crowe S. A.,
    2. Dossing L. N.,
    3. Beukes N. J.,
    4. Bau M.,
    5. Kruger S. J.,
    6. Frei R.,
    7. Canfield D. E.
    , 2013, Atmospheric oxygenation three billion years ago: Nature, v. 501, p. 535–538, doi:https://doi.org/10.1038/nature12426
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  27. ↵
    1. D'Arcy J.,
    2. Babechuk M. G.,
    3. Døssing L. N.,
    4. Gaucher C.,
    5. Frei R.
    , 2016, Processes controlling the chromium isotopic composition of river water: Constraints from basaltic river catchments: Geochimica et Cosmochimica Acta, v. 186, p. 296–315, doi:https://doi.org/10.1016/j.gca.2016.04.027
    OpenUrlCrossRef
  28. ↵
    1. De Baar H. J. W.,
    2. German C. R.,
    3. Elderfield H.,
    4. van Gaans P.
    , 1988, Rare earth element distributions in anoxic waters of the Cariaco Trench: Geochimica et Cosmochimica Acta, v. 52, p. 1203–1219, doi:https://doi.org/10.1016/0016-7037(88)90275-X
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Derry L. A.
    , 2010, A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly: Earth and Planetary Science Letters, v. 294, n. 1–2, p. 152–162, doi:https://doi.org/10.1016/j.epsl.2010.03.022
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Elderfield H.,
    2. Sholkovitz E. R.
    , 1987, Rare earth elements in the pore waters of reducing nearshore sediments: Earth and Planetary Science Letters, v. 82, n. 3–4, p. 280–288, doi:https://doi.org/10.1016/0012-821X(87)90202-0
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Evans D. A. D.
    , 2003, A fundamental Precambrian–Phanerozoic shift in earth's glacial style?: Tectonophysics, v. 375, p. 353–385, doi:https://doi.org/10.1016/S0040-1951(03)00345-7
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. Evans K. V.,
    2. Aleinikoff J. N.,
    3. Obradovich J. D.,
    4. Fanning C. M.
    , 2000, SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana: Evidence for rapid deposition of sedimentary strata: Canadian Journal of Earth Sciences, v. 37, n. 9, p. 1287–1300, doi:https://doi.org/10.1139/e00-036
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Evenchick C. A.,
    2. Gabrielse H.,
    3. Snyder D.
    , 2005, Crustal structure and lithology of the northern Canadian Cordillera: Alternative interpretations of SNORCLE seismic reflection lines 2a and 2b: Canadian Journal of Earth Sciences, v. 42, n. 6, p. 1149–1161, doi:https://doi.org/10.1139/e05-009
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Ferri F.,
    2. Rees C.,
    3. Nelson J.,
    4. Legun A.,
    5. Orchard M. J.,
    6. Norford B. S.,
    7. Fritz W. H.,
    8. Mortensen J. K.,
    9. Gabites J. E.
    , 1999, Geology and mineral deposits of the northern Kechika Trough between Gataga River and the 60th parallel: Bulletin-British Columbia Ministry of Energy and Mines, Energy and Minerals Division, Geological Survey Branch, v. 107, p. 2.
    OpenUrl
  35. ↵
    1. Frimmel H. E.
    , 2009, Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator: Chemical Geology, v. 258, n. 3-4, p. 338–353, doi:https://doi.org/10.1016/j.chemgeo.2008.10.033
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Fry B.,
    2. Jannasch H. W.,
    3. Molyneaux S. J.,
    4. Wirsen C. O.,
    5. Muramoto J. A.,
    6. King S.
    , 1991, Stable isotope studies of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench: Deep Sea Research Part A. Oceanographic Research Papers, v. 38, Supplement 2, p. S1003–S1019, doi:https://doi.org/10.1016/S0198-0149(10)80021-4
    OpenUrlCrossRef
  37. ↵
    1. Furlanetto F.,
    2. Thorkelson D. J.,
    3. Rainbird R. H.,
    4. Davis W. J.,
    5. Gibson H. D.,
    6. Marshall D. D.
    , 2016, The Paleoproterozoic Wernecke Supergroup of Yukon, Canada: Relationships to orogeny in northwestern Laurentia and basins in North America, East Australia, and China: Gondwana Research, v. 39, p. 14–40, doi:https://doi.org/10.1016/j.gr.2016.06.007
    OpenUrlCrossRef
  38. ↵
    1. German C. R.,
    2. Elderfield H.
    , 1989, Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin: Geochimica et Cosmochimica Acta, v. 53, n. 10, p. 2561–2571, doi:https://doi.org/10.1016/0016-7037(89)90128-2
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. German C. R.,
    2. Elderfield H.
    1990, Application of the Ce anomaly as a paleoredox indicator: The ground rules: Paleoceanography, v. 5, n. 5, p. 823–833, doi:https://doi.org/10.1029/PA005i005p00823
    OpenUrlCrossRefGeoRef
  40. ↵
    1. German C. R.,
    2. Holliday B. P.,
    3. Elderfield H.
    , 1991, Redox cycling of rare earth elements in the suboxic zone of the Black Sea: Geochimica et Cosmochimica Acta, v. 55, n. 12, p. 3553–3558, doi:https://doi.org/10.1016/0016-7037(91)90055-A
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Gilleaudeau G. J.,
    2. Kah L. C.
    , 2013, Carbon isotope records in a Mesoproterozoic epicratonic sea: Carbon cycling in a low-oxygen world: Precambrian Research, v. 228, p. 85–101, doi:https://doi.org/10.1016/j.precamres.2013.01.006
    OpenUrlCrossRefGeoRef
  42. ↵
    1. Gilleaudeau G. J.,
    2. Kah L. C.
    2015, Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: Evidence from carbon–sulfur–iron relationships: Precambrian Research, v. 257, p. 94–108, doi:https://doi.org/10.1016/j.precamres.2014.11.030
    OpenUrlCrossRefGeoRef
  43. ↵
    1. Gilleaudeau G. J.,
    2. Frei R.,
    3. Kaufman A. J.,
    4. Kah L. C.,
    5. Azmy K.,
    6. Bartley J. K.,
    7. Chernyavskiy P.,
    8. Knoll A. H.
    , 2016, Oxygenation of the mid-Proterozoic atmosphere: Clues from chromium isotopes in carbonates: Geochemical Perspectives Letters, v. 2, n. 2, p. 178–187, doi:https://doi.org/10.7185/geochemlet.1618
    OpenUrlCrossRef
  44. ↵
    1. Greaves M. J.,
    2. Statham P. J.,
    3. Elderfield H.
    , 1994, Rare earth element mobilization from marine atmospheric dust into seawater: Marine Chemistry, v. 46, n. 3, p. 255–260, doi:https://doi.org/10.1016/0304-4203(94)90081-7
    OpenUrlCrossRefGeoRef
  45. ↵
    1. Haley B. A.,
    2. Klinkhammer G. P.,
    3. McManus J.
    , 2004, Rare earth elements in pore waters of marine sediments: Geochimica et Cosmochimica Acta, v. 68, n. 6, p. 1265–1279, doi:https://doi.org/10.1016/j.gca.2003.09.012
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Halverson G. P.,
    2. Hoffman P. F.,
    3. Schrag D. P.,
    4. Maloof A. C.,
    5. Rice A. H. N.
    , 2005, Toward a Neoproterozoic composite carbon-isotope record: Geological Society of America Bulletin, v. 117, n. 9–10, p. 1181–1207, doi:https://doi.org/10.1130/B25630.1
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Halverson G. P.,
    2. Dudás F. Ö.,
    3. Maloof A. C.,
    4. Bowring S. A.
    , 2007, Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 256, n. 3–4, p. 103–129, doi:https://doi.org/10.1016/j.palaeo.2007.02.028
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Hardisty D. S.,
    2. Lu Z.,
    3. Bekker A.,
    4. Diamond C. W.,
    5. Gill B. C.,
    6. Jiang G.,
    7. Kah L. C.,
    8. Knoll A. H.,
    9. Loyd S. J.,
    10. Osburn M. R.,
    11. Planavsky N. J.,
    12. Wang C.,
    13. Zhou X.,
    14. Lyons T. W.
    , 2017, Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate: Earth and Planetary Science Letters, v. 463, p. 159–170, doi:https://doi.org/10.1016/j.epsl.2017.01.032
    OpenUrlCrossRef
  49. ↵
    1. Hoffman P. F.,
    2. Kaufman A. J.,
    3. Halverson G. P.,
    4. Schrag D. P.
    , 1998, A Neoproterozoic Snowball Earth: Science, v. 281, n. 5381, p. 1342–1346, doi:https://doi.org/10.1126/science.281.5381.1342
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Holland H. D.
    , 2006, The oxygenation of the atmosphere and oceans: Philosophical Transactions of the Royal Society London B Biological Sciences, v. 361, issue 1470, p. 903–15, doi:https://doi.org/10.1098/rstb.2006.1838
    OpenUrlCrossRefGeoRefPubMed
  51. ↵
    1. Holmden C.,
    2. Creaser R. A.,
    3. Muehlenbachs K.,
    4. Leslie S. A.,
    5. Bergström S. M.
    , 1998, Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans: Implications for secular curves: Geology, v. 26, n. 6, p. 567–570, doi:https://doi.org/10.1130/0091-7613(1998)026<0567:IEFGDB>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Hood A. v. S.,
    2. Wallace M. W.
    , 2014, Marine cements reveal the structure of an anoxic, ferruginous Neoproterozoic ocean: Journal of the Geological Society, v. 171, n. 6, p. 741–744, doi:https://doi.org/10.1144/jgs2013-099
    OpenUrlCrossRef
  53. ↵
    1. Hood A. v. S.,
    2. Wallace M. W.
    2015, Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia: Precambrian Research, v. 261, p. 96–111, doi:https://doi.org/10.1016/j.precamres.2015.02.008
    OpenUrlCrossRefGeoRef
  54. ↵
    1. Hood A. v. S.,
    2. Planavsky N. J.,
    3. Wallace M. W.,
    4. Wang X.
    , 2018, The Effects of Diagenesis on Geochemical Paleoredox Proxies in Sedimentary Carbonates: Geochimica et Cosmochimica Acta, v. 232, p. 265–287, doi:https://doi.org/10.1016/j.gca.2018.04.022
    OpenUrlCrossRef
  55. ↵
    1. Hotinski R. M.,
    2. Kump L. R.,
    3. Arthur M. A.
    , 2004, The effectiveness of the Paleoproterozoic biological pump: A δ13C gradient from platform carbonates of the Pethei Group (Great Slave Lake Supergroup, NWT): Geological Society of America Bulletin, v. 116, n. 5–6, p. 539–554, doi:https://doi.org/10.1130/B25272.1
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Husson J. M.,
    2. Maloof A. C.,
    3. Schoene B.,
    4. Chen C. Y.,
    5. Higgins J. A.
    , 2015, Stratigraphic expression of Earth's deepest δ13C excursion in the Wonoka Formation of South Australia: American Journal of Science, v. 315, n. 1, p. 1–45, doi:https://doi.org/10.2475/01.2015.01
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. James N. P.,
    2. Narbonne G. M.,
    3. Sherman A. G.
    , 1998, Molar-tooth carbonates: Shallow subtidal facies of the Mid-to Late Proterozoic: Journal of Sedimentary Research, v. 68, n. 5, p. 716–722, doi:https://doi.org/10.2110/jsr.68.716
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Kah L. C.,
    2. Sherman A. G.,
    3. Narbonne G. M.,
    4. Knoll A. H.,
    5. Kaufman A. J.
    , 1999, δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for regional lithostratigraphic correlations: Canadian Journal of Earth Sciences, v. 36, n. 3, p. 313–332, doi:https://doi.org/10.1139/e98-100
    OpenUrlAbstract
  59. ↵
    1. Kah L. C.,
    2. Bartley J. K.,
    3. Teal D. A.
    , 2012, Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: Muted isotopic variability, facies correlation, and global isotopic trends: Precambrian Research, v. 200–203, p. 82–103, doi:https://doi.org/10.1016/j.precamres.2012.01.011
    OpenUrlCrossRef
  60. ↵
    1. Kamber B.
    , 2010, Archean mafic–ultramafic volcanic landmasses and their effect on ocean–atmosphere chemistry: Chemical Geology, v. 274, n. 1–2, p. 19–28, doi:https://doi.org/10.1016/j.chemgeo.2010.03.009
    OpenUrlCrossRefGeoRefWeb of Science
  61. ↵
    1. Kamber B. S.,
    2. Webb G. E.
    , 2001, The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history: Geochimica et Cosmochimica Acta, v. 65, n. 15, p. 2509–2525, doi:https://doi.org/10.1016/S0016-7037(01)00613-5
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Kamber B. S.,
    2. Greig A.,
    3. Collerson K. D.
    , 2005, A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia: Geochimica et Cosmochimica Acta, v. 69, n. 4, p. 1041–1058, doi:https://doi.org/10.1016/j.gca.2004.08.020
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Kenward P. A.,
    2. Goldstein R. H.,
    3. González L. A.,
    4. Roberts J. A.
    , 2009, Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic Archaea: Geobiology, v. 7, n. 5, p. 556–565, doi:https://doi.org/10.1111/j.1472-4669.2009.00210.x
    OpenUrlCrossRefPubMedWeb of Science
  64. ↵
    1. Kim J.,
    2. Torres M. E.,
    3. Haley B. A.,
    4. Kastner M.,
    5. Pohlman J. W.,
    6. Riedel M.,
    7. Lee Y.
    , 2012, The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin: Chemical Geology, v. 291, p. 152–165, doi:https://doi.org/10.1016/j.chemgeo.2011.10.010
    OpenUrlCrossRefGeoRef
  65. ↵
    1. Knauth L. P.,
    2. Kennedy M. J.
    , 2009, The late Precambrian greening of the Earth: Nature, v. 460, p. 728–732, doi:https://doi.org/10.1038/nature08213
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  66. ↵
    1. Knoll A. H.
    , 2014, Paleobiological Perspectives on Early Eukaryotic Evolution: Cold Spring Harbor Perspectives in Biology, v. 6, doi:https://doi.org/10.1101/cshperspect.a016121
    OpenUrlCrossRef
  67. ↵
    1. Kump L. R.
    , 2008, The rise of atmospheric oxygen: Nature, v. 451, p. 277–278, doi:https://doi.org/10.1038/nature06587
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  68. ↵
    1. Lamb D. M.,
    2. Awramik S. M.,
    3. Chapman D. J.,
    4. Zhu S.
    , 2009, Evidence for eukaryotic diversification in the ∼1800 million-year-old Changzhougou Formation, North China: Precambrian Research, v. 173, n. 1–4, p. 93–104, doi:https://doi.org/10.1016/j.precamres.2009.05.005
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. LaPorte D. F.,
    2. Holmden C.,
    3. Patterson W. P.,
    4. Loxton J. D.,
    5. Melchin M. J.,
    6. Mitchell C. E.,
    7. Finney S. C.,
    8. Sheets H. D.
    , 2009, Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 276, n. 1–4, p. 182–195, doi:https://doi.org/10.1016/j.palaeo.2009.03.009
    OpenUrlCrossRefGeoRefWeb of Science
    1. Lawrence M. G.,
    2. Greig A.,
    3. Collerson K. D.,
    4. Kamber B. S.
    , 2006, Rare Earth Element and Yttrium Variability in South East Queensland Waterways: Aquatic Geochemistry, v. 12, n. 1, p. 39–72, doi:https://doi.org/10.1007/s10498-005-4471-8
    OpenUrlCrossRefGeoRefWeb of Science
  70. ↵
    1. LeCheminant A. N.,
    2. Heaman L. M.
    , 1994, 779 Ma mafic magmatism in northwest Canadian Shield and Northern Cordilerra: A new regional time marker: Berkeley, California, Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology, U.S. Geological Survey Circular 1107, p. 197.
  71. ↵
    1. Liu C.,
    2. Wang Z.,
    3. Raub T. D.
    , 2013, Geochemical constraints on the origin of Marinoan cap dolostones from Nuccaleena Formation, South Australia: Chemical Geology, v. 351, p. 95–104, doi:https://doi.org/10.1016/j.chemgeo.2013.05.012
    OpenUrlCrossRefGeoRef
  72. ↵
    1. Liu X. M.,
    2. Hardisty D.,
    3. Lyons T. W.,
    4. Swart P. K.
    , 2019, Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank: Geochimica et Cosmochimica Acta, v. 248, p. 25–42, doi:https://doi.org/10.1016/j.gca.2018.12.028
    OpenUrlCrossRef
  73. ↵
    1. Liu Y. G.,
    2. Schmitt R. A.
    , 1984, Chemical profiles in sediment and basalt samples from deep-sea drilling project Leg 74, Hole 525A, Walvis Ridge: Initial Reports of the Deep Sea Drilling Project, v. 74, p. 713–730, doi:https://doi.org/10.2973/dsdp.proc.74.123.1984
    OpenUrlCrossRefGeoRef
  74. ↵
    1. Logan G. A.,
    2. Hayes J. M.,
    3. Hieshima G. B.,
    4. Summons R. E.
    , 1995, Terminal Proterozoic reorganization of biogeochemical cycles: Nature, v. 376, p. 53–56, doi:https://doi.org/10.1038/376053a0
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  75. ↵
    1. Long D. G. F.,
    2. Devaney J. R.,
    3. Pratt B. R.
    , 1999, Tectonostratigraphic framework of the Mesoproterozoic Muskwa assemblage, northern British Columbia: Proceedings of the Slave–northern Cordilleran lithospheric evolution (SNORCLE) transect and Cordilleran tectonics workshop meeting, March 5–7, University of Calgary, Calgary, Alberta, Canada, p. 5–7.
  76. ↵
    1. Lyons T. W.,
    2. Reinhard C. T.,
    3. Planavsky N. J.
    , 2014, The rise of oxygen in Earth/'s early ocean and atmosphere: Nature, v. 506, p. 307–315, doi:https://doi.org/10.1038/nature13068
    OpenUrlCrossRefPubMedWeb of Science
  77. ↵
    1. Macdonald F. A.,
    2. Schmitz M. D.,
    3. Crowley J. L.,
    4. Roots C. F.,
    5. Jones D. S.,
    6. Maloof A. C.,
    7. Strauss J. V.,
    8. Cohen P. A.,
    9. Johnston D. T.,
    10. Schrag D. P.
    , 2010, Calibrating the Cryogenian: Science, v. 327, n. 5970, p. 1241–1243, doi:https://doi.org/10.1126/science.1183325
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Maliva R. G.,
    2. Knoll A. H.,
    3. Simonson B. M.
    , 2005, Secular change in the Precambrian silica cycle: Insights from chert petrology: GSA Bulletin, v. 117, n. 7–8, p. 835–845, doi:https://doi.org/10.1130/B25555.1
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Meyer K. M.,
    2. Ridgwell A.,
    3. Payne J. L.
    , 2016, The influence of the biological pump on ocean chemistry: Implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems: Geobiology, v. 14, n. 3, p. 207–219, doi:https://doi.org/10.1111/gbi.12176
    OpenUrlCrossRefPubMed
  80. ↵
    1. Mitchell R. L.,
    2. Sheldon N. D.
    , 2009, Weathering and paleosol formation in the 1.1 Ga Keweenawan Rift: Precambrian Research, v. 168, n. 3–4, p. 271–283, doi:https://doi.org/10.1016/j.precamres.2008.09.013
    OpenUrlCrossRefGeoRefWeb of Science
  81. ↵
    1. Nothdurft L. D.,
    2. Webb G. E.,
    3. Kamber B. S.
    , 2004, Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones: Geochimica et Cosmochimica Acta, v. 68, n. 2, p. 263–283, doi:https://doi.org/10.1016/S0016-7037(03)00422-8
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. O'Connor M. P.
    , 1972, Classification and environmental interpretation of the cryptalgal organosedimentary “molar-tooth” structure from the Late Precambrian Belt-Purcell Supergroup: The Journal of Geology, v. 80, n. 5, p. 592–610, doi:https://doi.org/10.1086/627783
    OpenUrlCrossRefGeoRefWeb of Science
  83. ↵
    1. Olivier N.,
    2. Boyet M.
    , 2006, Rare earth and trace elements of microbialites in Upper Jurassic coral- and sponge-microbialite reefs: Chemical Geology, v. 230, n. 1–2, p. 105–123, doi:https://doi.org/10.1016/j.chemgeo.2005.12.002
    OpenUrlCrossRefGeoRefWeb of Science
  84. ↵
    1. Olson S. L.,
    2. Kump L. R.,
    3. Kasting J. F.
    , 2013, Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases: Chemical Geology, v. 362, p. 35–43, doi:https://doi.org/10.1016/j.chemgeo.2013.08.012
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Patterson W. P.,
    2. Walter L. M.
    , 1994, Depletion of 13C in seawater ΣCO2 on modern carbonate platforms: Significance for the carbon isotopic record of carbonates: Geology, v. 22, p. 885–888, doi:https://doi.org/10.1130/0091-7613(1994)022<0885:DOCISC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  86. ↵
    1. Pearce C. R.,
    2. Jones M. T.,
    3. Oelkers E. H.,
    4. Pradoux C.,
    5. Jeandel C.
    , 2013, The effect of particulate dissolution on the neodymium (Nd) isotope and Rare Earth Element (REE) composition of seawater: Earth and Planetary Science Letters, v. 369–370, p. 138–147, doi:https://doi.org/10.1016/j.epsl.2013.03.023
    OpenUrlCrossRef
  87. ↵
    1. Peng Y. B.,
    2. Bao H. M.,
    3. Yuan X. L.
    , 2009, New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China: Precambrian Research, v. 168, n. 3–4, p. 223–232, doi:https://doi.org/10.1016/j.precamres.2008.10.005
    OpenUrlCrossRefGeoRef
  88. ↵
    1. Reinhardt J.,
    2. Sigleo W. R.
    1. Pinto J. P.,
    2. Holland H. D.
    , 1988, Paleosols and the evolution of the atmosphere; Part II, in Reinhardt J., Sigleo W. R., editors, Paleosols and Weathering Through Geologic Time: Principles and Applications: Geological Society of America Special Papers, v. 216, doi:https://doi.org/10.1130/SPE216-p21
    OpenUrlCrossRef
  89. ↵
    1. Planavsky N.,
    2. Bekker A.,
    3. Rouxel O. J.,
    4. Kamber B.,
    5. Hofmann A.,
    6. Knudsen A.,
    7. Lyons T. W.
    , 2010, Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition: Geochimica et Cosmochimica Acta, v. 74, n. 22, p. 6387–6405, doi:https://doi.org/10.1016/j.gca.2010.07.021
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Planavsky N. J.,
    2. McGoldrick P.,
    3. Scott C. T.,
    4. Li C.,
    5. Reinhard C. T.,
    6. Kelly A. E.,
    7. Chu X. L.,
    8. Bekker A.,
    9. Love G. D.,
    10. Lyons T. W.
    , 2011, Widespread iron-rich conditions in the mid-Proterozoic ocean: Nature, v. 477, p. 448–451, doi:https://doi.org/10.1038/nature10327
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  91. ↵
    1. Planavsky N. J.,
    2. Reinhard C. T.,
    3. Wang X.,
    4. Thomson D.,
    5. McGoldrick P.,
    6. Rainbird R. H.,
    7. Johnson T.,
    8. Fischer W. W.,
    9. Lyons T. W.
    , 2014, Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals: Science, v. 346, n. 6209, p. 635–638, doi:https://doi.org/10.1126/science.1258410
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Polly P. D.,
    2. Head J. J.,
    3. Fox D. L.
    1. Planavsky N. J.,
    2. Tarhan L. G.,
    3. Bellefroid E. J.,
    4. Evans D. A. D.,
    5. Reinhard C. T.,
    6. Love G. D.,
    7. Lyons T. W.
    , 2015, Late Proterozoic transitions in climate, oxygen, and tectonics, and the rise of complex life, in Polly P. D., Head J. J., Fox D. L., editors, Earth-life transitions: Paleobiology in the context of earth system evolution: Boulder, Colorado, Paleontological Society Papers, v. 21, p. 47–82.
    OpenUrl
  93. ↵
    1. Poulton S. W.,
    2. Canfield D. E.
    , 2011, Ferruginous conditions: A dominant feature of the ocean through Earth's history: Elements, v. 7, n. 2, p. 107–112, doi:https://doi.org/10.2113/gselements.7.2.107
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Pourmand A.,
    2. Dauphas N.,
    3. Ireland T. J.
    , 2012, A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances: Chemical Geology, v. 291, p. 38–54, doi:https://doi.org/10.1016/j.chemgeo.2011.08.011
    OpenUrlCrossRefGeoRefWeb of Science
  95. ↵
    1. Rainbird R. H.,
    2. Stern R. A.,
    3. Rayner N.,
    4. Jefferson C. W.
    , 2007, Age, provenance, and regional correlation of the Athabasca Group, Saskatchewan and Alberta, constrained by igneous and detrital zircon geochronology: Bulletin-Geological Survey of Canada, v. 588, p. 193, doi:https://doi.org/10.4095/223761
    OpenUrlCrossRef
  96. ↵
    1. Reinhard C. T.,
    2. Planavsky N. J.,
    3. Olson S. L.,
    4. Lyons T. W.,
    5. Erwin D. H.
    , 2016, Earth's oxygen cycle and the evolution of animal life: Proceedings of the National Academy of Sciences, v. 113, n. 32, p. 8933–8938, doi:https://doi.org/10.1073/pnas.1521544113
    OpenUrlAbstract/FREE Full Text
  97. ↵
    1. Rooney A. D.,
    2. Strauss J. V.,
    3. Brandon A. D.,
    4. Macdonald F. A.
    , 2015, A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations: Geology, v. 43, p. 459–462, doi:https://doi.org/10.1130/G36511.1
    OpenUrlAbstract/FREE Full Text
  98. ↵
    1. Ross G. M.,
    2. Villeneuve M.
    , 2003, Provenance of the Mesoproterozoic (1.45 Ga) Belt basin (western North America): Another piece in the pre-Rodinia paleogeographic puzzle: Geological Society of America Bulletin, v. 115, n. 10, p. 1191–1217, doi:https://doi.org/10.1130/B25209.1
    OpenUrlAbstract/FREE Full Text
  99. ↵
    1. Ross G. M.,
    2. Villeneuve M. E.,
    3. Theriault R. J.
    , 2001, Isotopic provenance of the lower Muskwa assemblage (Mesoproterozoic, Rocky Mountains, British Columbia): New clues to correlation and source areas: Precambrian Research, v. 111, n. 1–4, p. 57–77, doi:https://doi.org/10.1016/S0301-9268(01)00156-5
    OpenUrlCrossRefGeoRefWeb of Science
  100. ↵
    1. Satkoski A. M.,
    2. Lowe D. R.,
    3. Beard B. L.,
    4. Coleman M. L.,
    5. Johnson C. M.
    , 2016, A high continental weathering flux into Paleoarchean seawater revealed by strontium isotope analysis of 3.26 Ga barite: Earth and Planetary Science Letters, v. 454, p. 28–35, doi:https://doi.org/10.1016/j.epsl.2016.08.032
    OpenUrlCrossRef
  101. ↵
    1. Shaw H. F.,
    2. Wasserburg G. J.
    , 1985, Sm-Nd in marine carbonates and phosphates: Implications for Nd isotopes in seawater and crustal ages: Geochimica et Cosmochimica Acta, v. 49, n. 2, p. 503–518, doi:https://doi.org/10.1016/0016-7037(85)90042-0
    OpenUrlCrossRefGeoRefWeb of Science
  102. ↵
    1. Shields G. A.
    , 2002, ‘Molar-tooth microspar’: A chemical explanation for its disappearance ∼ 750 Ma: Terra Nova, v. 14, n. 2, p. 108–113, doi:https://doi.org/10.1046/j.1365-3121.2002.00396.x
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Shields G. A.,
    2. Veizer J.
    , 2002, Precambrian marine carbonate isotope database: Version 1.1: Geochemistry, Geophysics, Geosystems, v. 3, n. 6, p. 1 of 12–12 of 12, doi:https://doi.org/10.1029/2001GC000266
    OpenUrlCrossRef
  104. ↵
    1. Shields G. A.,
    2. Webb G. E.
    , 2004, Has the REE composition of seawater changed over geological time?: Chemical Geology, v. 204, n. 1–2, p. 103–107, doi:https://doi.org/10.1016/j.chemgeo.2003.09.010
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Sholkovitz E. R.,
    2. Shen G. T.
    , 1995, The incorporation of rare earth elements in modern coral: Geochimica et Cosmochimica Acta, v. 59, n. 13, p. 2749–2756, doi:https://doi.org/10.1016/0016-7037(95)00170-5
    OpenUrlCrossRefGeoRefWeb of Science
  106. ↵
    1. Sholkovitz E. R.,
    2. Shaw T. J.,
    3. Schneider D. L.
    , 1992, The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay: Geochimica et Cosmochimica Acta, v. 56, n. 9, p. 3389–3402, doi:https://doi.org/10.1016/0016-7037(92)90386-W
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. Slack J. F.,
    2. Grenne T.,
    3. Bekker A.,
    4. Rouxel O. J.,
    5. Lindberg P. A.
    , 2007, Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA: Earth and Planetary Science Letters, v. 255, n. 1–2, p. 243–256, doi:https://doi.org/10.1016/j.epsl.2006.12.018
    OpenUrlCrossRefGeoRefWeb of Science
  108. ↵
    1. Smith A. G.
    , 2016, A review of molar-tooth structures with some speculations on their origin: Geological Society of America Special Papers, v. 522, doi:https://doi.org/10.1130/2016.2522(03)
    OpenUrlCrossRef
  109. ↵
    1. Sperling E. A.,
    2. Rooney A. D.,
    3. Hays L.,
    4. Sergeev V. N.,
    5. Vorob'eva N. G.,
    6. Sergeeva N. D.,
    7. Selby D.,
    8. Johnston D. T.,
    9. Knoll A. H.
    , 2014, Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean: Geobiology, v. 12, n. 5, p. 373–386, doi:https://doi.org/10.1111/gbi.12091
    OpenUrlCrossRefGeoRefPubMed
  110. ↵
    1. Swart P. K.,
    2. Eberli G.
    , 2005, The nature of the δ13C of periplatform sediments: Implications for stratigraphy and the global carbon cycle: Sedimentary Geology, v. 175, n. 1–4, p. 115–129, doi:https://doi.org/10.1016/j.sedgeo.2004.12.029
    OpenUrlCrossRefGeoRefWeb of Science
  111. ↵
    1. Tang D.,
    2. Shi X.,
    3. Wang X.,
    4. Jiang G.
    , 2016, Extremely low oxygen concentration in mid-Proterozoic shallow seawaters: Precambrian Research, v. 276, p. 145–157, doi:https://doi.org/10.1016/j.precamres.2016.02.005
    OpenUrlCrossRef
  112. ↵
    1. Taylor G. C.,
    2. Stott D. F.
    , 1973, Tuchodi Lakes map-area, British Columbia: Geological Survey of Canada, Memoir 373.
  113. ↵
    1. Taylor S. R.,
    2. McLennan S. M.
    , 1985, The continental crust: its composition and evolution: London, United Kingdom, Blackwell, 312 p.
  114. ↵
    1. Tepe N.,
    2. Bau M.
    , 2016, Behavior of rare earth elements and yttrium during simulation of arctic estuarine mixing between glacial-fed river waters and seawater and the impact of inorganic (nano-)particles: Chemical Geology, v. 438, p. 134–145, doi:https://doi.org/10.1016/j.chemgeo.2016.06.001
    OpenUrlCrossRef
  115. ↵
    1. Thompson R. I.
    , 1981, The nature and significance of large ‘blind’ thrusts within the northern Rocky Mountains of Canada: Geological Society, London, Special Publications, v. 9, p. 449–462, doi:https://doi.org/10.1144/GSL.SP.1981.009.01.40
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Tosca N. J.,
    2. Johnston D. T.,
    3. Mushegian A.,
    4. Rothman D. H.,
    5. Summons R. E.,
    6. Knoll A. H.
    , 2010, Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceans: Geochimica et Cosmochimica Acta, v. 74, n. 5, p. 1579–1592, doi:https://doi.org/10.1016/j.gca.2009.12.001
    OpenUrlCrossRefGeoRefWeb of Science
  117. ↵
    1. Tostevin R.,
    2. Shields G. A.,
    3. Tarbuck G. M.,
    4. He T.,
    5. Clarkson M. O.,
    6. Wood R. A.
    , 2016, Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings: Chemical Geology, v. 438, p. 146–162, doi:https://doi.org/10.1016/j.chemgeo.2016.06.027
    OpenUrlCrossRef
  118. ↵
    1. Tucker M. E.
    , 1983, Diagenesis, geochemistry, and origin of a Precambrian dolomite: The Beck Spring Dolomite of eastern California: Journal of Sedimentary Research, v. 53, n. 4, p. 1097–1119, doi:https://doi.org/10.1306/212F8323-2B24-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  119. ↵
    1. Villeneuve M. E.,
    2. Thériault R. J.,
    3. Ross G. M.
    , 1991, U–Pb ages and Sm–Nd signature of two subsurface granites from the Fort Simpson magnetic high, northwest Canada: Canadian Journal of Earth Sciences, v. 28, n. 7, p. 1003–1008, doi:https://doi.org/10.1139/e91-091
    OpenUrlAbstract
  120. ↵
    1. Wacey D.,
    2. Wright D. T.,
    3. Boyce A. J.
    , 2007, A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia: Chemical Geology, v. 244, n. 1–2, p. 155–174, doi:https://doi.org/10.1016/j.chemgeo.2007.06.032
    OpenUrlCrossRefGeoRefWeb of Science
  121. ↵
    1. Wallace M. W.,
    2. Hood A. v. S.,
    3. Shuster A.,
    4. Greig A.,
    5. Planavsky N. J.,
    6. Reed C. P.
    , 2017, Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants: Earth and Planetary Science Letters, v. 466, p. 12–19, doi:https://doi.org/10.1016/j.epsl.2017.02.046
    OpenUrlCrossRef
  122. ↵
    1. Wang X.,
    2. Johnson T. M.,
    3. Ellis A. S.
    , 2015, Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr(III) and Cr(VI): Geochimica et Cosmochimica Acta, v. 153, p. 72–90, doi:https://doi.org/10.1016/j.gca.2015.01.003
    OpenUrlCrossRefGeoRef
  123. ↵
    1. Weber J. N.,
    2. Woodhead P. M. J.
    , 1969, Factors affecting the carbon and oxygen isotopic composition of marine carbonate sediments—II. Heron Island, Great Barrier Reef, Australia: Geochimica et Cosmochimica Acta, v. 33, n. 1, p. 19–38, doi:https://doi.org/10.1016/0016-7037(69)90090-8
    OpenUrlCrossRefGeoRefWeb of Science
  124. ↵
    1. Wood R. A.,
    2. Poulton S. W.,
    3. Prave A. R.,
    4. Hoffmann K. H.,
    5. Clarkson M. O.,
    6. Guilbaud R.,
    7. Lyne J. W.,
    8. Tostevin R.,
    9. Bowyer F.,
    10. Penny A. M.,
    11. Curtis A.,
    12. Kasemann S. A.
    , 2015, Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia: Precambrian Research, v. 261, p. 252–271, doi:https://doi.org/10.1016/j.precamres.2015.02.004
    OpenUrlCrossRefGeoRef
  125. ↵
    1. Zhao L.,
    2. Chen Z.,
    3. Algeo T. J.,
    4. Chen J.,
    5. Chen Y.,
    6. Tong J.,
    7. Gao S.,
    8. Zhou L.,
    9. Hu Z.,
    10. Liu Y.
    , 2013, Rare-earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis?: Global and Planetary Change, v. 105, p. 135–151, doi:https://doi.org/10.1016/j.gloplacha.2012.09.001
    OpenUrlCrossRefGeoRefWeb of Science
  126. ↵
    1. Zhao M.,
    2. Zheng Y.
    , 2017, A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates: Earth and Planetary Science Letters, v. 460, p. 213–221, doi:https://doi.org/10.1016/j.epsl.2016.11.033
    OpenUrlCrossRef
  127. ↵
    1. Zhong S.,
    2. Mucci A.
    , 1995, Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25 °C and 1 atm, and high dissolved REE concentrations: Geochimica et Cosmochimica Acta, v. 59, n. 3, p. 443–453, doi:https://doi.org/10.1016/0016-7037(94)00381-U
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 319 (2)
American Journal of Science
Vol. 319, Issue 2
1 Feb 2019
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Shallow water redox conditions of the mid-Proterozoic Muskwa Assemblage, British Columbia, Canada
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 10 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Shallow water redox conditions of the mid-Proterozoic Muskwa Assemblage, British Columbia, Canada
Eric J. Bellefroid, Noah J. Planavsky, Ashleigh V. S. Hood, Galen P. Halverson, Kasparas Spokas
American Journal of Science Feb 2019, 319 (2) 122-157; DOI: 10.2475/02.2019.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Shallow water redox conditions of the mid-Proterozoic Muskwa Assemblage, British Columbia, Canada
Eric J. Bellefroid, Noah J. Planavsky, Ashleigh V. S. Hood, Galen P. Halverson, Kasparas Spokas
American Journal of Science Feb 2019, 319 (2) 122-157; DOI: 10.2475/02.2019.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL SETTING
    • METHODS
    • STRATIGRAPHY AND PETROGRAPHY
    • GEOCHEMICAL RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • REFERENCES CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Rare Earth Element
  • carbonate
  • Ce anomaly
  • carbon isotope
  • Mesoproterozoic
  • Paleoproterozoic

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire