Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.)

Matthew A. Malkowski, Glenn R. Sharman, Samuel A. Johnstone, Martin J. Grove, David L. Kimbrough and Stephan A. Graham
American Journal of Science December 2019, 319 (10) 846-902; DOI: https://doi.org/10.2475/10.2019.02
Matthew A. Malkowski
* Department of Geological Sciences, Stanford University, Stanford California 94305
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mamalkow@stanford.edu
Glenn R. Sharman
** Department of Geosciences, University of Arkansas, Fayetteville, Arkansas 72701
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samuel A. Johnstone
*** Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin J. Grove
* Department of Geological Sciences, Stanford University, Stanford California 94305
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David L. Kimbrough
§ Department of Geological Sciences, San Diego State University, San Diego, California 92182
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephan A. Graham
* Department of Geological Sciences, Stanford University, Stanford California 94305
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES CITED

  1. ↵
    1. Ague J. J.,
    2. Brimhall G. H.
    , 1988, Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California: GSA Bulletin, v. 100, n. 6, p. 891–911, doi:https://doi.org/10.1130/0016-7606(1988)100<0891:RVIBCM>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Alizai A.,
    2. Carter A.,
    3. Clift P. D.,
    4. VanLaningham S.,
    5. Williams J. C.,
    6. Kumar R.
    , 2011, Sediment provenance, reworking and transport processes in the Indus River by U-Pb dating of detrital zircon grains: Global and Planetary Change, v. 76, n. 1–2, p. 33–55. doi:https://doi.org/10.1016/j.gloplacha.2010.11.008
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Alpers C. N.,
    2. Hunerlach M. P.,
    3. May J. T.,
    4. Hothem R. L.
    , 2005, Mercury contamination from historical gold mining in California: U.S. Geological Survey Fact Sheet 2005–3014, 6 p. Also available at http://pubs.water.usgs.gov/fs2005-3014.
  4. ↵
    1. Amidon W. H.,
    2. Burbank D. W.,
    3. Gehrels G. E.
    , 2005a, U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya: Earth and Planetary Science Letters, v. 235, n. 1–2, p. 244–260, doi:https://doi.org/10.1016/j.epsl.2005.03.019
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Amidon W. H.,
    2. Burbank D. W.,
    3. Gehrels G. E.
    2005b, Construction of detrital mineral populations: Insights from mixing of U–Pb zircon ages in Himalayan rivers: Basin Research, v. 17, n. 4, p. 463–485, doi:https://doi.org/10.1111/j.1365-2117.2005.00279.x
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Andersen T.,
    2. Kristoffersen M.,
    3. Elburg M. A.
    , 2016, How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study: Gondwana Research, v. 34, p. 129–148, doi:https://doi.org/10.1016/j.gr.2016.03.003
    OpenUrlCrossRef
  7. ↵
    1. Winterer E. L.,
    2. Hussong D. M.,
    3. Decker R. W.
    1. Atwater T. M.
    , 1989, Plate tectonic history of the northeast Pacific and western North America, in Winterer E. L., Hussong D. M., Decker R. W., editors, The eastern Pacific Ocean and Hawaii: Boulder, Colorado, Geological Society of America, Geology of North America, v. N, p. 21–72, doi:https://doi.org/10.1130/DNAG-GNA-N.21
    OpenUrlCrossRef
  8. ↵
    1. Barnard P. L.,
    2. Foxgrover A. C.,
    3. Elias E. P.,
    4. Erikson L. H.,
    5. Hein J. R.,
    6. McGann M.,
    7. Mizell K.,
    8. Rosenbauer R. J.,
    9. Swarzenski P. W.,
    10. Takesue R. K.,
    11. Wong F. L.,
    12. Woodrow D. L.
    , 2013, Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System: Marine Geology, v. 336, p. 120–145, doi:https://doi.org/10.1016/j.margeo.2012.11.008
    OpenUrlCrossRef
  9. ↵
    1. Barth A. P.,
    2. Walker J. D.,
    3. Wooden J. L.,
    4. Riggs N. R.,
    5. Schweickert R. A.
    , 2011, Birth of the Sierra Nevada magmatic arc: Early Mesozoic plutonism and volcanism in the east-central Sierra Nevada of California: Geosphere, v. 7, n. 4, p. 877–897, doi:https://doi.org/10.1130/GES00661.1
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Barth A. P.,
    2. Wooden J. L.,
    3. Jacobson C. E.,
    4. Economos R. C.
    , 2013, Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example: Geology, v. 41, n. 2, p. 223–226, doi:https://doi.org/10.1130/G33619.1
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Steinger R. L.,
    2. Pennell B.
    1. Barton M. D.,
    2. Girardi J. D.,
    3. Kreiner D. C.,
    4. Seedorff E.,
    5. Zurcher L.,
    6. Dilles J. H.,
    7. Haxel G. B.,
    8. Johnson D. A.
    , 2011, Jurassic igneous-related metallogeny of southwestern North America, in Steinger R. L., Pennell B., editors, Great Basin Evolution and Metallogeny: Reno, Nevada, Geological Society of Nevada, p. 373–396.
  12. ↵
    1. Basu A.,
    2. Bickford M. E.,
    3. Deasy R.
    , 2016, Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: A dissent: Sedimentary Geology, v. 336, p. 26–35, doi:https://doi.org/10.1016/j.sedgeo.2015.11.013
    OpenUrlCrossRef
  13. ↵
    1. Bateman P. C.
    , 1992, Plutonism in the central part of the Sierra Nevada batholith, California: U.S. Geologic Survey Professional Paper 1483, 186 p., doi:https://doi.org/10.3133/pp1483
    OpenUrlCrossRef
  14. ↵
    1. Bea F.,
    2. Montero P.,
    3. Ortega M.
    , 2006, A LA–ICP–MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon-forming processes: Canadian Mineralogist, v. 44, n. 3, p. 693–714, doi:https://doi.org/10.2113/gscanmin.44.3.693
    OpenUrlCrossRef
  15. ↵
    1. Beinlich A.,
    2. Austrheim H.,
    3. Mavromatis V.,
    4. Grguric B.,
    5. Putnis C. V.,
    6. Putnis A.
    , 2018, Peridotite weathering is the missing ingredient of Earth's continental crust composition: Nature Communications, v. 9, article number 634, doi:https://doi.org/10.1038/s41467-018-03039-9
    OpenUrlCrossRef
  16. ↵
    1. Bernet M.,
    2. Garver J. I.
    , 2005, Fission-track analysis of detrital zircon: Reviews in Mineralogy and Geochemistry, v. 58, n. 1, p. 205–237, doi:https://doi.org/10.2138/rmg.2005.58.8
    OpenUrlFREE Full Text
  17. ↵
    1. Bernet M.,
    2. Brandon M. T.,
    3. Garver J. I.,
    4. Molitor B.
    , 2004, Downstream changes of Alpine zircon fission-track ages in the Rhône and Rhine Rivers: Journal of Sedimentary Research, v. 74, n. 1, p. 82–94, doi:https://doi.org/10.1306/041003740082
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Bhatia M. R.
    , 1983, Plate tectonics and geochemical composition of sandstones: The Journal of Geology, v. 91, n. 6, p. 611–627, doi:https://doi.org/10.1086/628815
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Bhatia M. R.,
    2. Crook K. A. W.
    , 1986, Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins: Contributions to Mineralogy and Petrology, v. 92, n. 2, p. 181–193, doi:https://doi.org/10.1007/BF00375292
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Brice J.
    , 1977, Lateral migration of the middle Sacramento River, California: U.S. Geological Survey Water-Resources Investigations Report 77–43, 51 p.
  21. ↵
    1. Bullen T. D.,
    2. Clynne M. A.
    , 1990, Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center: Journal of Geophysical Research- Solid Earth, v. 95, n. B12, p. 19671–19691, doi:https://doi.org/10.1029/JB095iB12p19671
    OpenUrlCrossRef
  22. ↵
    1. Carrapa B.,
    2. Faiz bin Hassim M.,
    3. Kapp P. A.,
    4. DeCelles P. G.,
    5. Gehrels G.
    , 2017, Tectonic and erosional history of southern Tibet recorded by detrital chronological signatures along the Yarlung River drainage: GSA Bulletin, v. 129, n. 5–6, p. 570–581, doi:https://doi.org/10.1130/B31587.1
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Cassel E. J.,
    2. Grove M.,
    3. Graham S. A.
    , 2012, Eocene drainage evolution and erosion of the Sierra Nevada batholith across northern California and Nevada: American Journal of Science, v. 312, n. 2, p. 117–144, doi:https://doi.org/10.2475/02.2012.03
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Cawood P. A.,
    2. Nemchin A. A.,
    3. Freeman M.,
    4. Sircombe K.
    , 2003, Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies: Earth and Planetary Science Letters, v. 210, n. 1–2, p. 259–268, doi:https://doi.org/10.1016/S0012-821X(03)00122-5
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Cecil M. R.,
    2. Ducea M. N.,
    3. Reiners P.,
    4. Gehrels G.,
    5. Mulch A.,
    6. Allen C.,
    7. Campbell I.
    , 2010, Provenance of Eocene river sediments from the central northern Sierra Nevada and implications for paleotopography: Tectonics, v. 29, n. 6, TC6010, 13 p., doi:https://doi.org/10.1029/2010TC002717
    OpenUrlCrossRef
  26. ↵
    1. Chapman A. D.,
    2. Saleeby J. B.,
    3. Wood D. J.,
    4. Piasecki A.,
    5. Kidder S.,
    6. Ducea M. N.,
    7. Farley K. A.
    , 2012, Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California: Geosphere, v. 8, n. 2, p. 314–341, doi:https://doi.org/10.1130/GES00740.1
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Chaudhry M. H.
    , 2008, Open-Channel Flow: New York, New York, Springer, p. 528, doi:https://doi.org/10.1007/978-0-387-68648-6
  28. ↵
    1. Chen J. H.,
    2. Moore J. G.
    , 1982, Uranium-lead isotopic ages from the Sierra Nevada Batholith, California: Journal of Geophysical Research-Solid Earth, v. 87, n. B6, p. 4761–4784, doi:https://doi.org/10.1029/JB087iB06p04761
    OpenUrlCrossRef
  29. ↵
    1. Cina S. E.,
    2. Yin A.,
    3. Grove M.,
    4. Dubey C. S.,
    5. Shukla D. P.,
    6. Lovera O. M.,
    7. Kelty T. K.,
    8. Gehrels G. E.,
    9. Foster D. A.
    , 2009, Gangdese arc detritus within the eastern Himalayan Neogene foreland basin: Implications for the Neogene evolution of the Yalu–Brahmaputra River system: Earth and Planetary Science Letters, v. 285, n. 1–2, p. 150–162, doi:https://doi.org/10.1016/j.epsl.2009.06.005
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Clift P. D.,
    2. Draut A. E.,
    3. Kelemen P. B.,
    4. Blusztajn J.,
    5. Greene A.
    , 2005, Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: The Jurassic Talkeetna Volcanic Formation, south-central Alaska: GSA Bulletin, v. 117, n. 7–8, p. 902–925, doi:https://doi.org/10.1130/B25638.1
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Clifton H. E.,
    2. Hunter R. E.
    , 1987, The Merced Formation and related beds: A mile-thick succession of late Cenozoic coastal and shelf deposits in the sea cliffs of San Francisco, California: Geological Society of America Centennial Field Guide—Cordilleran Section, p. 257–262, doi:https://doi.org/10.1130/0-8137-5401-1.257
    OpenUrlCrossRef
  32. ↵
    1. Clynne M. A.
    , 1990, Stratigraphic, lithologic, and major element geochemical constraints on magmatic evolution at Lassen Volcanic Center, California: Journal of Geophysical Research- Solid Earth, v. 95, n. B12, p. 19651–19669, doi:https://doi.org/10.1029/JB095iB12p19651
    OpenUrlCrossRef
  33. ↵
    1. Clynne M. A.,
    2. Muffler L. J. P.
    , 2010, Geologic map of Lassen Volcanic National Park and vicinity, California: U.S. Geological Survey Scientific Investigations Map SIM–2899, scale 1: 50,000, doi:https://doi.org/10.3133/sim2899
    OpenUrlCrossRef
  34. ↵
    1. Coble M. A.,
    2. Burgess S. D.,
    3. Klemetti E. W.
    , 2017, New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA: Quaternary Science Reviews, v. 172, p. 109–117, doi:https://doi.org/10.1016/j.quascirev.2017.08.004
    OpenUrlCrossRef
  35. ↵
    1. Condie K. C.
    , 1991, Another look at rare earth elements in shales: Geochimica et Cosmochimica Acta, v. 55, n. 9, p. 2527–2531, doi:https://doi.org/10.1016/0016-7037(91)90370-K
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Cox R.,
    2. Lowe D. R.,
    3. Cullers R. L.
    , 1995, The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States: Geochimica et Cosmochimica Acta, v. 59, n. 14, p. 2919–2940, doi:https://doi.org/10.1016/0016-7037(95)00185-9
    OpenUrlCrossRefGeoRefWeb of Science
  37. ↵
    1. Craddock W.,
    2. Kylander-Clark A.R.C.
    , 2013, U-Pb ages of detrital zircons from the Tertiary Mississippi River Delta in central Louisiana: Insights into sediment provenance: Geosphere, v. 9, n. 6, p. 1832–1851, doi:https://doi.org/10.1130/GES00917.1
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Cullers R. L.
    , 1994, The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet mountains region, Colorado, USA: Chemical Geology, v. 113, n. 3-4, p. 327–343, doi:https://doi.org/10.1016/0009-2541(94)90074-4
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Cullers R. L.,
    2. Barrett T.,
    3. Carlson R.,
    4. Robinson B.
    , 1987, Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, USA: Chemical Geology, v. 63, n. 3–4, p. 275–297, doi:https://doi.org/10.1016/0009-2541(87)90167-7
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Davis G. A.
    , 1969, Tectonic correlations, Klamath Mountains and western Sierra Nevada, California: GSA Bulletin, v. 80, v. 6, p. 1095–1108, doi:https://doi.org/10.1130/0016-7606(1969)80[1095:TCKMAW]2.0.CO;2
    OpenUrlCrossRef
  41. ↵
    1. Davis G. A.,
    2. Ando C. J.,
    3. Cashman P. H.,
    4. Goullaud L.
    , 1980, Geologic cross section of the central Klamath Mountains, California: Summary: GSA Bulletin, v. 91, n. 3, p. 139–142, doi:https://doi.org/10.1130/0016-7606(1980)91<139:GCSOTC>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. DeCelles P. G.
    , 1988, Lithologic provenance modeling applied to the Late Cretaceous synorogenic Echo Canyon Conglomerate, Utah: A case of multiple source areas: Geology, v. 16, n. 11, p. 1039–1043, doi:https://doi.org/10.1130/0091-7613(1988)016<1039:LPMATT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. DeCelles P. G.,
    2. Graham S. A.
    , 2015, Cyclical processes in the North American Cordilleran orogenic system: Geology, v. 43, n. 6, p. 499–502, doi:https://doi.org/10.1130/G36482.1
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. DeGraaff-Surpless K.,
    2. Graham S. A.,
    3. Wooden J. L.,
    4. McWilliams M. O.
    , 2002, Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc-forearc system: GSA Bulletin, v. 114, n. 12, p. 1564–1580, doi:https://doi.org/10.1130/0016-7606(2002)114<1564:DZPAOT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. DePaolo D. J.
    , 1981, A neodymium and strontium isotopic study of the Mesozoic calc-alkalic granitic batholiths of the Sierra Nevada and Peninsular Ranges, California: Journal of Geophysical Research-Solid Earth, v. 86, n. B11, p. 10470–10488, doi:https://doi.org/10.1029/JB086iB11p10470
    OpenUrlCrossRef
  46. ↵
    1. Dhuime B.,
    2. Hawkesworth C. J.,
    3. Storey C. D.,
    4. Cawood P. A.
    , 2011, From sediments to their source rocks: Hf and Nd isotopes in recent river sediments: Geology, v. 39, n. 4, 407–410, doi:https://doi.org/10.1130/G31785.1
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Dickinson W. R.
    , 1970, Relations of andesites, granites, and derivative sandstones to arc-trench tectonics: Reviews of Geophysics and Space Physics, v. 8, n. 4, p. 813–860, doi:https://doi.org/10.1029/RG008i004p00813
    OpenUrlCrossRefGeoRefWeb of Science
    1. Dickinson W. R.
    1970, Interpreting detrital modes of graywacke and arkose: Journal of Sedimentary Research, v. 40, n. 2, p. 695–707, doi:https://doi.org/10.1306/74D72018-2B21-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Dickinson W. R.
    1971, Plate tectonics in geologic history: Science, v. 174, n. 4005, p. 107–113, doi:https://doi.org/10.1126/science.174.4005.107
    OpenUrlFREE Full Text
  49. ↵
    1. Dickinson W. R.
    2008, Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis: Earth and Planetary Science Letters, v. 275, n. 1–2, p. 80–92, doi:https://doi.org/10.1016/j.epsl.2008.08.003
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Dickinson W. R.,
    2. Rich E. I.
    , 1972, Petrologic intervals and petrofacies in the Great Valley sequence, Sacramento Valley, California: GSA Bulletin, v. 83, n. 10, p. 3007–3024, doi:https://doi.org/10.1130/0016-7606(1972)83[3007:PIAPIT]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Dickinson W. R.,
    2. Ingersoll R. V.,
    3. Graham S. A.
    , 1979, Paleogene sediment dispersal and paleotectonics in northern California: GSA Bulletin, Part I, v. 90, n. 10, p. 897–898, doi:https://doi.org/10.1130/0016-7606(1979)90<897:PSDAPI>2.0.CO;2
    OpenUrlCrossRef
    1. Dickinson W. R.,
    2. Ingersoll R. V.,
    3. Graham S. A.
    1979, Paleogene sediment dispersal and paleotectonics in northern California: GSA Bulletin, Part II, v. 90, doi:https://doi.org/10.1130/GSAB-P2-90-1458
    OpenUrlCrossRef
  52. ↵
    1. Dickinson W. R.,
    2. Hopson C. A.,
    3. Saleeby J.
    , 1996, Alternate origins of the Coast Range ophiolite (California): Introduction and implications: GSA Today, v. 6, n. 2, p. 1–10.
    OpenUrlGeoRef
  53. ↵
    1. Dodge F. C. W.,
    2. Millard H. T. Jr..,
    3. Elsheimer H. N.
    , 1982, Compositional variations and abundances of selected elements in granitoid rocks and constituent minerals, central Sierra Nevada batholith, California: U.S.G.S. Professional Paper 1248, 24 p., doi:https://doi.org/10.3133/pp1248
    OpenUrlCrossRef
  54. ↵
    1. Doherty W.
    , 1989, An internal standardization procedure for the determination of yttrium and the rare earth elements in geological materials by inductively coupled plasma-mass spectrometry: Spectrochimica Acta, Part B, v. 44, n. 3, p. 263–280, doi:https://doi.org/10.1016/0584-8547(89)80031-X
    OpenUrlCrossRef
  55. ↵
    1. Draut A. E.,
    2. Clift P. D.
    , 2001, Geochemical evolution of arc magmatism during arc-continent collision, South Mayo, Ireland: Geology, v. 29, n. 6, p. 543–546, doi:https://doi.org/10.1130/0091-7613(2001)029<0543:GEOAMD>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Ducea M.
    , 2001, The California arc: Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups: GSA Today, v. 11, n. 11, p. 4–10, doi:https://doi.org/10.1130/1052-5173(2001)011<0004:TCATGB>2.0.CO;2
    OpenUrlCrossRefGeoRef
  57. ↵
    1. Ducea M. N.,
    2. Barton M. D.
    , 2007, Igniting flare-up events in Cordilleran arcs: Geology, v. 35, n. 11, p. 1047–1050, doi:https://doi.org/10.1130/G23898A.1
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Dumitru T. A.,
    2. Ernst W. G.,
    3. Wright J. E.,
    4. Wooden J. L.,
    5. Wells R. E.,
    6. Farmer L. P.,
    7. Kent A. J. R.,
    8. Graham S. A.
    , 2013, Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins: Geology, v. 41, n. 2, p. 187–190, doi:https://doi.org/10.1130/G33746.1
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Dumitru T. A.,
    2. Ernst W. G.,
    3. Hourigan J. K.,
    4. McLaughlin R. J.
    , 2015, Detrital zircon U–Pb reconnaissance of the Franciscan subduction complex in northwestern California: International Geology Review, v. 57, n. 5–8, p. 767–800, doi:https://doi.org/10.1080/00206814.2015.1008060
    OpenUrlCrossRefGeoRef
  60. ↵
    1. Ernst W. G.
    , 1970, Tectonic contact between the Franciscan mélange and the Great Valley sequence- Crustal expression of a Late Mesozoic Benioff zone: Journal of Geophysical Research, v. 75, n. 5, p. 886–901, doi:https://doi.org/10.1029/JB075i005p00886
    OpenUrlCrossRefGeoRefWeb of Science
  61. ↵
    1. Ernst W. G.,
    2. Saleeby J. B.,
    3. Snow C. A.
    , 2007, Guadalupe pluton–Mariposa Formation age relationships in the southern Sierran Foothills: Onset of Mesozoic subduction in northern California?: Journal of Geophysical Research, v. 114, n. B11, doi:https://doi.org/10.1029/2009JB006607
    OpenUrlCrossRef
  62. ↵
    1. Ernst W. G.,
    2. Martens U.,
    3. Valencia V.
    , 2009, U–Pb ages of detrital zircons in Pacheco Pass metagraywackes: Sierran–Klamath source of mid–Cretaceous and Late Cretaceous Franciscan deposition and underplating: Tectonics, v. 28, n. 6, 20 p., doi:https://doi.org/10.1029/2008TC002352
    OpenUrlCrossRef
  63. ↵
    1. Fedo C. M.,
    2. Nesbitt H. W.,
    3. Young G. M.
    , 1995, Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance: Geology, v. 23, n. 10, p. 921–924, doi:https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Fedo C. M.,
    2. Sircombe K. N.,
    3. Rainbird R. H.
    , 2003, Detrital zircon analysis of the sedimentary record: Reviews in Mineralogy and Geochemistry, v. 53, n. 1, p. 277–303, doi:https://doi.org/10.2113/0530277
    OpenUrlFREE Full Text
  65. ↵
    1. Fielding L.,
    2. Najman Y.,
    3. Millar I.,
    4. Butterworth P.,
    5. Ando S.,
    6. Padoan M.,
    7. Barfod D.,
    8. Kneller B.
    , 2016, A detrital record of the Nile River and its catchment: Journal of the Geological Society, v. 174, n. 2, p. 301–317, doi:https://doi.org/10.1144/jgs2016-075
    OpenUrlCrossRef
  66. ↵
    1. Fletcher J. M.,
    2. Grove M.,
    3. Kimbrough D.,
    4. Lovera O.,
    5. Gehrels G. E.
    , 2007, Ridge-trench interactions and the Neogene tectonic evolution of the Magdalena shelf and southern Gulf of California: Insights from detrital zircon U-Pb ages from the Magdalena fan and adjacent areas: GSA Bulletin, v. 119, n. 11–12, p. 1313–1336, doi:https://doi.org/10.1130/B26067.1
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Frink J. W.,
    2. Kues H. A.
    , 1954, Corcoran Clay—A Pleistocene lacustrine deposit in San Joaquin Valley, California: AAPG Bulletin, v. 38, n. 11, p. 2357–2371, doi:https://doi.org/10.1306/5CEAE0A0-16BB-11D7-8645000102C1865D
    OpenUrlAbstract
  68. ↵
    1. Gale A.,
    2. Dalton C. A.,
    3. Langmuir C. H.,
    4. Su Y.,
    5. Schilling J. G.
    , 2013, The mean composition of ocean ridge basalts: Geochemistry, Geophysics, Geosystems, v. 14, n. 3, p. 489–518, doi:https://doi.org/10.1029/2012GC004334
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Ganju N. K.,
    2. Schoellhamer D. H.
    , 2010, Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply: Estuaries and Coasts, v. 33, n. 1, p. 15–29, doi:https://doi.org/10.1007/s12237-009-9244-y
    OpenUrlCrossRef
  70. ↵
    1. Garver J. I.,
    2. Scott T. J.
    , 1995, Trace elements in shale as indicators of crustal provenance and terrane accretion in the southern Canadian Cordillera: GSA Bulletin, v. 107, n. 4, p. 440–453, doi:https://doi.org/10.1130/0016-7606(1995)107<0440:TEISAI>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Garver J. I.,
    2. Royce P. R.,
    3. Smick T. A.
    , 1996, Chromium and nickel in shale of the Taconic foreland: A case study for the provenance of fine-grained sediments with an ultramafic source: Journal of Sedimentary Research, v. 66, n. 1, p. 100–106, doi:https://doi.org/10.1306/D42682C5-2B26-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. Garver J. I.,
    2. Brandon M. T.,
    3. Roden-Tice M.,
    4. Kamp P. J.
    , 1999, Exhumation history of orogenic highlands determined by detrital fission-track thermochronology: Geological Society, London, Special Publications, v. 154, n. 1, p. 283–304, doi:https://doi.org/10.1144/GSL.SP.1999.154.01.13
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Garzanti E.,
    2. Andò S.
    , 2007, Heavy mineral concentration in modern sands: Implications for provenance interpretation: Developments in Sedimentology, v. 58, p. 517–545, doi:https://doi.org/10.1016/S0070-4571(07)58020-9
    OpenUrlCrossRef
  74. ↵
    1. Garzanti E.,
    2. Andò S.,
    3. Vezzoli G.
    , 2009, Grain-size dependence of sediment composition and environmental bias in provenance studies: Earth and Planetary Science Letters, v. 277, n. 3–4, p. 422–432, doi:https://doi.org/10.1016/j.epsl.2008.11.007
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Gehrels G.,
    2. Pecha M.
    , 2014, Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America: Geosphere, v. 10, n. 1, p. 49–65, doi:https://doi.org/10.1130/GES00889.1
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Loszewski T.,
    2. Huff W.
    1. Gehrels G. E.,
    2. Valencia V.,
    3. Pullen A.
    , 2006, Detrital zircon geochronology by Laser-Ablation Multicollector ICPMS at the Arizona LaserChron Center, in Loszewski T., Huff W., editors, Geochronology: Emerging Opportunities, Paleontology Society Short Course: Paleontology Society Papers, v. 11, 10 p.
    OpenUrl
  77. ↵
    1. Gehrels G. E.,
    2. Valencia V. A.,
    3. Ruiz J.
    , 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry: Geochemistry, Geophysics, Geosystems, v. 9, n. 3, Q03017, doi:https://doi.org/10.1029/2007GC001805
    OpenUrlCrossRef
  78. ↵
    1. Gilbert G. K.
    , 1917, Hydraulic-mining debris in the Sierra Nevada: Professional Paper 105, 154 p., doi:https://doi.org/10.3133/pp105
    OpenUrlCrossRef
  79. ↵
    1. Graham S. A.,
    2. Ingersoll R. V.,
    3. Dickinson W. R.
    , 1976, Common provenance for lithic grains in Carboniferous sandstones from Ouachita Mountains and Black Warrior Basin: Journal of Sedimentary Petrology, v. 46, n. 3, p. 620–632, doi:https://doi.org/10.1306/212F7009-2B24-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Allen P. A.,
    2. Homewood P.
    1. Graham S. A.,
    2. Tolson R. B.,
    3. DeCelles P. G.,
    4. Ingersoll R. V.,
    5. Bargar E.,
    6. Caldwell M.,
    7. Cavazza W.,
    8. Edwards D. P.,
    9. Follo W. F.,
    10. Handschy J. W.,
    11. Lemke L.,
    12. Moxon I.,
    13. Rice R.,
    14. Smith G. A.,
    15. White J.
    , 1986, Provenance modelling as a technique for analysing source terrane evolution and controls on foreland sedimentation, in Allen P. A., Homewood P., editors, Foreland Basins: International Association of Sedimentologists, Special Publication, v. 8, p. 425–436, doi:https://doi.org/10.1002/9781444303810.ch23
    OpenUrlCrossRef
  81. ↵
    1. Gruau G.,
    2. Lecuyer C.,
    3. Bernard-Griffiths J.,
    4. Morin N.
    , 1991, Origin and petrogenesis of the Trinity ophiolite Complex (California): New constraints from REE and Nd isotope data: Journal of Petrology, v. 2, p. 229–242, doi:https://doi.org/10.1093/petrology/Special_Volume.2.229
    OpenUrlCrossRef
  82. ↵
    1. Gruau G.,
    2. Bernard-Griffiths J.,
    3. Lécuyer C.,
    4. Henin O.,
    5. Macé J.,
    6. Cannat M.
    , 1995, Extreme Nd isotopic variation in the Trinity ophiolite complex and the role of melt/rock reactions in the oceanic lithosphere: Contributions to Mineralogy and Petrology, v. 121, n. 4, p. 337–350, doi:https://doi.org/10.1007/s004100050100
    OpenUrlCrossRefGeoRefWeb of Science
  83. ↵
    1. Guffanti M.,
    2. Weaver C. S.
    , 1988, Distribution of late Cenozoic volcanic vents in the Cascade Range: Volcanic arc segmentation and regional tectonic considerations: Journal of Geophysical Research: Solid Earth, v. 93, n. B6, p. 6513–6529, doi:https://doi.org/10.1029/JB093iB06p06513
    OpenUrlCrossRef
  84. ↵
    1. Guffanti M.,
    2. Clynne M. A.,
    3. Smith J. G.,
    4. Muffler L. J. P.,
    5. Bullen T. D.
    , 1990, Late Cenozoic volcanism, subduction, and extension in the Lassen region of California, southern Cascade Range: Journal of Geophysical Research: Solid Earth, v. 95, B12, p. 19453–19464, doi:https://doi.org/10.1029/JB095iB12p19453
    OpenUrlCrossRef
  85. ↵
    1. Hall N. T.
    , ms, 1965, Petrology of the type Merced Group, San Francisco Peninsula, California: Berkeley, California, University of California, Berkeley, M.A. thesis, 127 p.
  86. ↵
    1. Hamilton W.
    , 1969, Mesozoic California and the underflow of Pacific mantle: GSA Bulletin, v. 80, n. 12, p. 2409–2430, doi:https://doi.org/10.1130/0016-7606(1969)80[2409:MCATUO]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  87. ↵
    1. He M.,
    2. Zheng H.,
    3. Clift P. D.
    , 2013, Zircon U–Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China: Chemical Geology, v. 360–361, p. 186–203, doi:https://doi.org/10.1016/j.chemgeo.2013.10.020
    OpenUrlCrossRef
  88. ↵
    1. Hietpas J.,
    2. Samson S.,
    3. Moecher D.,
    4. Chakraborty S.
    , 2011, Enhancing tectonic and provenance information from detrital zircon studies: Assessing terrane-scale sampling and grain-scale characterization: Journal of the Geological Society, v. 168, n. 2, p. 309–318, doi:https://doi.org/10.1144/0016-76492009-163
    OpenUrlAbstract/FREE Full Text
  89. ↵
    1. Hildreth W.
    , 2007, Quaternary magmatism in the Cascades–Geologic perspectives: U.S. Geological Survey Professional Paper 1744, 125 p., doi:https://doi.org/10.3133/pp1744
    OpenUrlCrossRef
  90. ↵
    1. Horton B. K.,
    2. Constenius K. N.,
    3. DeCelles P. G.
    , 2004, Tectonic control on coarse-grained foreland-basin sequences: An example from the Cordilleran foreland basin, Utah: Geology, v. 32, n. 7, p. 637–640, doi:https://doi.org/10.1130/G20407.1
    OpenUrlAbstract/FREE Full Text
  91. ↵
    1. Ibañez-Mejia M.,
    2. Pullen A.,
    3. Pepper M.,
    4. Urbani F.,
    5. Ghoshal G.,
    6. Ibañez-Mejia J. C.
    , 2018, Use and abuse of detrital zircon U-Pb geochronology—A case from the Río Orinoco delta, eastern Venezuela: Geology, v. 46, n. 11, p. 1019–1022, doi:https://doi.org/10.1130/G45596.1
    OpenUrlCrossRef
  92. ↵
    1. Iizuka T.,
    2. Campbell I. H.,
    3. Allen C. M.,
    4. Gill J. B.,
    5. Maruyama S.,
    6. Makoka F.
    , 2013, Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers: Geochimica et Cosmochimica Acta, v. 107, p. 96–120, doi:https://doi.org/10.1016/j.gca.2012.12.028
    OpenUrlCrossRefGeoRefWeb of Science
  93. ↵
    1. Ingersoll R. V.
    , 1978a, Submarine fan facies of the Upper Cretaceous Great Valley Sequence, northern and central California: Sedimentary Geology, v. 21, v. 3, p. 205–230, doi:https://doi.org/10.1016/0037-0738(78)90009-X
    OpenUrlCrossRef
    1. Ingersoll R. V.
    1978b, Petrofacies and petrologic evolution of the Late Cretaceous fore-arc basin, northern and central California: The Journal of Geology, v. 86, n. 3, p. 335–352, doi:https://doi.org/10.1086/649695
    OpenUrlCrossRefGeoRefWeb of Science
  94. ↵
    1. Ingersoll R. V.
    1979, Evolution of the Late Cretaceous forearc basin, northern and central California: GSA Bulletin, v. 90, Part I, p. 813–826, doi:https://doi.org/10.1130/0016-7606(1979)90<813:EOTLCF>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  95. ↵
    1. Leggett J. K.
    1. Ingersoll R. V.
    1982, Initiation and evolution of the Great Valley forearc basin of northern and central California, U.S.A., in Leggett J. K., editor, Trench-forearc geology: Sedimentation and tectonics on modern and ancient active plate margins: Geological Society, London, Special Publications, v. 10, p. 459–467, doi:https://doi.org/10.1144/GSL.SP.1982.010.01.31
    OpenUrlCrossRef
  96. ↵
    1. Ingersoll R. V.
    , 1983, Petrofacies and provenance of late Mesozoic forearc basin, northern and central California: AAPG, v. 67, n. 7, p. 1125–1142., doi:https://doi.org/10.1306/03B5B713-16D1-11D7-8645000102C1865D
    OpenUrlCrossRef
  97. ↵
    1. Ingersoll R. V.
    1990, Actualistic sandstone petrofacies: Discriminating modern and ancient source rocks: Geology, v. 18, n. 8, p. 733–736, doi:https://doi.org/10.1130/0091-7613(1990)018<0733:ASPDMA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  98. ↵
    1. Ingersoll R. V.
    2012, Composition of modern sand and Cretaceous sandstone derived from the Sierra Nevada, California, USA, with implications for Cenozoic and Mesozoic uplift and dissection: Sedimentary Geology, v. 280, p. 195–207, doi:https://doi.org/10.1016/j.sedgeo.2012.03.022
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Ingersoll R. V.,
    2. Eastmond D. J.
    , 2007, Composition of modern sand from the Sierra Nevada, California, U.S.A.: Implications for actualistic petrofacies of continental margin magmatic arcs: Journal of Sedimentary Research, v. 77, n. 9, p. 784–796, doi:https://doi.org/10.2110/jsr.2007.071
    OpenUrlAbstract/FREE Full Text
  100. ↵
    1. Ingersoll R. V.,
    2. Kretchmer A. G.,
    3. Valles P. K.
    , 1993, The effect of sampling scale on actualistic sandstone petrofacies: Sedimentology, v. 40, n. 5, p. 937–953, doi:https://doi.org/10.1111/j.1365-3091.1993.tb01370.x
    OpenUrlCrossRefGeoRefWeb of Science
  101. ↵
    1. Ingram B. L.,
    2. Ingle J. C.
    , 1998, Strontium isotope ages of the marine Merced Formation, near San Francisco, California: Quaternary Research, v. 50, n. 2, p. 194–199, doi:https://doi.org/10.1006/qres.1998.1990
    OpenUrlCrossRefGeoRef
  102. ↵
    1. Ernst W. G.
    1. Irwin W. P.
    , 1981, Tectonic accretion of the Klamath Mountains, in Ernst W. G., editor, The geotectonic development of California: Englewood Cliffs, New Jersey, Prentice-Hall, p. 29–49.
  103. ↵
    1. Irwin W. P.
    2003, Correlation of the Klamath Mountains and Sierra Nevada: U.S. Geological Survey Open-File Report 2002-490, doi:https://doi.org/10.3133/ofr02490
    OpenUrlCrossRef
  104. ↵
    1. Irwin W. P.,
    2. Wooden J. L.
    , 1999, Plutons and accretionary episodes of the Klamath Mountains, California and Oregon: U.S. Geological Survey Open-File Report 99-374, doi:https://doi.org/10.3133/ofr99374
    OpenUrlCrossRef
  105. ↵
    1. Jacobson C. E.,
    2. Grove M.,
    3. Pedrick J. N.,
    4. Barth A. P.,
    5. Marsaglia K. M.,
    6. Gehrels G. E.,
    7. Nourse J. A.
    , 2011, Late Cretaceous–early Cenozoic tectonic evolution of the southern California margin inferred from provenance of trench and forearc sediments: GSA Bulletin, v. 123, n. 3–4, p. 485–506, doi:https://doi.org/10.1130/B30238.1
    OpenUrlAbstract/FREE Full Text
  106. ↵
    1. Jarvis K. E.
    , 1988, Inductively coupled plasma mass spectrometry: A new technique for therapid or ultra-trace level determination of the rare-earth elements in geological materials: Chemical Geology, v. 68, n. 1–2, p. 31–39, doi:https://doi.org/10.1016/0009-2541(88)90084-8
    OpenUrlCrossRefGeoRefWeb of Science
    1. Jenner G. A.,
    2. Longerich H. P.,
    3. Jackson S. E.,
    4. Fryer B. J.
    , 1990, ICP-MS – A powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. reference samples: Chemical Geology, v. 83, n. 1–2, p. 133–148, doi:https://doi.org/10.1016/0009-2541(90)90145-W
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. Johnson D. M.,
    2. Hooper P. R.,
    3. Conrey R. M.
    , 1999, XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead: Advances in X-Ray Analysis, v. 41, p. 843–867.
    OpenUrl
  108. ↵
    1. Kamphuis J. W.
    , 1974, Determination of sand roughness for fixed beds: Journal of Hydraulic Research, v. 12, n. 2, p. 193–203, doi:https://doi.org/10.1080/00221687409499737
    OpenUrlCrossRef
  109. ↵
    1. Kelley J. C.,
    2. Whetten J. T.
    , 1969, Quantitative statistical analyses of Columbia River sediment samples: Journal of Sedimentary Petrology, v. 39, n. 3, p. 1167–1173, doi:https://doi.org/10.1306/74D71DBB-2B21-11D7-8648000102C1865D
    OpenUrlAbstract/FREE Full Text
  110. ↵
    1. Kimbrough D. L.,
    2. Grove M.,
    3. Gehrels G. E.,
    4. Dorsey R. J.,
    5. Howard K. A.,
    6. Lovera O. M.,
    7. Aslan A.,
    8. House P. K.,
    9. Pearthree P. A.
    , 2015, Detrital zircon U-Pb provenance of the Colorado River: A 5 my record of incision into cover strata overlying the Colorado Plateau and adjacent regions: Geosphere, v. 11, n. 6, p. 1719–1748, doi:https://doi.org/10.1130/GES00982.1
    OpenUrlAbstract/FREE Full Text
  111. ↵
    1. Kistler R. W.,
    2. Peterman Z. E.
    , 1973, Variations in Sr, Rb, K, Na, and initial 87Sr/86Sr in Mesozoic granitic rocks and intruded wall rocks in central California: GSA Bulletin, v. 84, n. 11, p. 3489–3512, doi:https://doi.org/10.1130/0016-7606(1973)84<3489:VISRKN>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Kistler R. W.,
    2. Champion D. E.
    , 2001, Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39Ar, and U-Pb mineral ages, and strontium, lead, neodymium, and oxygen isotopic compositions for granitic rocks from the Salinian Composite Terrane, California: U.S. Geological Survey Open-File Report 2001–453, 83 p., doi:https://doi.org/10.3133/ofr01453
    OpenUrlCrossRef
  113. ↵
    1. Conomos T. J.
    1. Krone R. B.
    , 1979, Sedimentation in the San Francisco Bay system, in Conomos T. J., editor, San Francisco Bay: The Urbanized Estuary: American Association for the Advancement of Science, San Francisco, p. 85–96.
  114. ↵
    1. Lackey J. S.,
    2. Valley J. W.,
    3. Chen J. H.,
    4. Stockli D. F.
    , 2008, Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada batholith: The oxygen isotope record: Journal of Petrology, v. 49, n. 7, p. 1397–1426, doi:https://doi.org/10.1093/petrology/egn030
    OpenUrlCrossRefGeoRefWeb of Science
  115. ↵
    1. Lawrence R. L.,
    2. Cox R.,
    3. Mapes R. W.,
    4. Coleman D. S.
    , 2011, Hydrodynamic fractionation of zircon age populations: GSA Bulletin, v. 123, n. 1–2, p. 295–305, doi:https://doi.org/10.1130/B30151.1
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Lawton T. F.
    , 1986, Compositional trends within a clastic wedge adjacent to a fold-thrust belt: Indianola Group, central Utah, USA.: Foreland Basins, p. 411–423, doi:https://doi.org/10.1002/9781444303810.ch22
  117. ↵
    1. Li Y.,
    2. Clift P. D.,
    3. O'Sullivan P.
    , 2018, Millennial and centennial variations in zircon U-Pb ages in the Quaternary Indus submarine canyon: Basin Research, v. 31, n. 1, p. 155–170, doi:https://doi.org/10.1111/bre.12313
    OpenUrlCrossRef
  118. ↵
    1. Lichte F. E.,
    2. Meier A. L.,
    3. Crock J. G.
    , 1987, Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry: Analytical Chemistry, v. 59, n. 8, p. 1150–1157, doi:https://doi.org/10.1021/ac00135a018
    OpenUrlCrossRefGeoRef
  119. ↵
    1. Cooper J. D.,
    2. Stevens C. H.
    1. Lindsley-Griffin N.
    , 1991, The Trinity complex: A polygenetic ophiolitic assemblage, in Cooper J. D., Stevens C. H., editors, Paleozoic paleogeography of the United States II: Los Angeles, Pacific Section, Society of Economic Paleontologists and Mineralogists, Book 67 p. 589–607.
  120. ↵
    1. Linn A. M.,
    2. DePaolo D. J.,
    3. Ingersoll R. V.
    , 1992, Nd–Sr isotopic, geochemical, and petrographic stratigraphy and paleotectonic analysis: Mesozoic Great Valley forearc sedimentary rocks of California: GSA Bulletin, v. 104, n. 10, p. 1264–1279, doi:https://doi.org/10.1130/0016-7606(1992)104<1264:NSIGAP>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  121. ↵
    1. Longerich H. P.,
    2. Jenner G. A.,
    3. Fryer B. J.,
    4. Jackson S. E.
    , 1990, Inductively coupled plasma-mass spectrometric analysis of geological samples: A critical evaluation based on case Studies: Chemical Geology, v. 83, n. 1–2, p. 105–118, doi:https://doi.org/10.1016/0009-2541(90)90143-U
    OpenUrlCrossRefGeoRefWeb of Science
  122. ↵
    1. Malkowski M. A.,
    2. Hampton B. A.
    , 2014, Sedimentology, U-Pb detrital geochronology, and Hf isotopic analyses from Mississippian–Permian stratigraphy of the Mystic subterrane, Farewell terrane, Alaska: Lithosphere, v. 6, n. 5, p. 383–398, doi:https://doi.org/10.1130/L365.1
    OpenUrlAbstract/FREE Full Text
  123. ↵
    1. Malusà M. G.,
    2. Carter A.,
    3. Limoncelli M.,
    4. Villa I. M.,
    5. Garzanti E.
    , 2013, Bias in detrital zircon geochronology and thermochronometry: Chemical Geology, v. 359, p. 90–107, doi:https://doi.org/10.1016/j.chemgeo.2013.09.016
    OpenUrlCrossRefGeoRef
  124. ↵
    1. Mapes R. W.
    , ms, 2009, Past and present provenance of the Amazon River drainage basin: Chapel Hill, North Carolina, University of North Carolina, Ph. D. thesis, 195 p., doi:https://doi.org/10.17615/s09s-f385
  125. ↵
    1. Mason C. C.,
    2. Fildani A.,
    3. Gerber T.,
    4. Blum M. D.,
    5. Clark J. D.,
    6. Dykstra M.
    , 2017, Climatic and anthropogenic influences on sediment mixing in the Mississippi source-to-sink system using detrital zircons: Late Pleistocene to recent: Earth and Planetary Science Letters, v. 466, p. 70–79, doi:https://doi.org/10.1016/j.epsl.2017.03.001
    OpenUrlCrossRef
  126. ↵
    1. Mason C. C.,
    2. Romans B. W.,
    3. Stockli D. F.,
    4. Mapes R. W.,
    5. Fildani A.
    , 2019, Detrital Zircons reveal sea-level and hydroclimate controls on Amazon river to-fan sediment transfer: Geology, v. 47, n. 6, p. 563–567, doi:https://doi.org/10.1130/G45852.1
    OpenUrlCrossRef
  127. ↵
    1. McLaughlin R. J.,
    2. Kling S. A.,
    3. Poore R. Z.,
    4. McDougall K.,
    5. Beutner E. C.
    , 1982, Post–middle Miocene accretion of Franciscan rocks, northwestern California: GSA Bulletin, v. 93, n. 7, 595–605, doi:https://doi.org/10.1130/0016-7606(1982)93<595:PMAOFR>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  128. ↵
    1. McLaughlin R. J.,
    2. Ellen S. D.,
    3. Blake M. C. Jr.,
    4. Jayko A. S.,
    5. Irwin W. P.,
    6. Aalto K. R.,
    7. Carver G. A.,
    8. Clarke S. H. Jr..
    , 2000, Geology of the Cape Mendocino, Eureka, Garberville, and southwestern part of the Hayfork 30× 60 minute quadrangles and adjacent offshore area, northern California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2336, 1(100), 000.
  129. ↵
    1. McLaughlin R. J.,
    2. Powell C. L. II.,
    3. McDougall-Reid K.,
    4. Jachens R .C.
    , 2007, Cessation of slip on the Pilarcitos fault and initiation of the San Francisco Peninsula segment of the (modern) San Andreas Fault, California: American Geophysical Union, Fall Meeting 2007, abstract #T43A-1089
  130. ↵
    1. McLennan S. M.
    , 1989, Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes: Reviews in Mineralogy and Geochemistry, v. 21, p. 169–200, doi:https://doi.org/10.1515/9781501509032-010
    OpenUrlAbstract
  131. ↵
    1. McLennan S. M.,
    2. Taylor S. R.
    , 1991, Sedimentary rocks and crustal evolution: Tectonic setting and secular trends: The Journal of Geology, v. 99, n. 1, p. 1–21, doi:https://doi.org/10.1086/629470
    OpenUrlCrossRefGeoRefWeb of Science
  132. ↵
    1. McLennan S. M.,
    2. Taylor S. R.,
    3. McCulloch M. T.,
    4. Maynard J. B.
    , 1990, Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations: Geochimica et Cosmochimica Acta, v. 54, n. 7, p. 2015–2050, doi:https://doi.org/10.1016/0016-7037(90)90269-Q
    OpenUrlCrossRefGeoRefWeb of Science
  133. ↵
    1. McLennan S. M.,
    2. Hemming S.,
    3. McDaniel D. K.,
    4. Hanson G. N.
    , 1993, Geochemical approaches to sedimentation, provenance, and tectonics: GSA Special Papers, v. 284, p. 21–40, doi:https://doi.org/10.1130/SPE284-p21
    OpenUrlCrossRef
  134. ↵
    1. Dilek Y.,
    2. Moores E. M.,
    3. Elthon D.,
    4. Nicolas A.
    1. Metcalf R. V.,
    2. Wallin E. T.,
    3. Willse K. R.,
    4. Muller E. R.
    , 2000, Geology and geochemistry of the Trinity terrane, California: Evidence of middle Paleozoic depleted supra-subduction zone magmatism in a proto-arc setting, in Dilek Y., Moores E. M., Elthon D., Nicolas A., editors, Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program: GSA Special Papers, v. 349, p. 403–418, doi:https://doi.org/10.1130/0-8137-2349-3.403
    OpenUrlCrossRef
  135. ↵
    1. Moecher D. P.,
    2. Samson S. D.
    , 2006, Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis: Earth and Planetary Science Letters, v. 247, n. 3–4, p. 252–266, doi:https://doi.org/10.1016/j.epsl.2006.04.035
    OpenUrlCrossRefGeoRefWeb of Science
  136. ↵
    1. Nesbitt H. W.,
    2. Young G. M.
    , 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, v. 299, n. 5885, p. 715–717, doi:https://doi.org/10.1038/299715a0
    OpenUrlCrossRefGeoRefWeb of Science
  137. ↵
    1. Nesbitt H. W.,
    2. Young G. M.
    1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations: Geochimica et Cosmochimica Acta, v. 48, n. 7, p. 1523–1534, doi:https://doi.org/10.1016/0016-7037(84)90408-3
    OpenUrlCrossRefGeoRefWeb of Science
  138. ↵
    1. Nesbitt H. W.,
    2. Young G. M.
    1989, Formation and diagenesis of weathering profiles: The Journal of Geology, v. 97, n. 2, p. 129–147, doi:https://doi.org/10.1086/629290
    OpenUrlCrossRefGeoRefWeb of Science
  139. ↵
    1. Nittrouer J. A.,
    2. Viparelli E.
    , 2014, Sand as a stable and sustainable resource for nourishing the Mississippi River delta: Nature Geoscience, v. 7, n. 5, p. 350–354, doi:https://doi.org/10.1038/ngeo2142
    OpenUrlCrossRef
  140. ↵
    1. Ojakangas R. W.
    , 1968, Cretaceous sedimentation, Sacramento Valley, California: GSA Bulletin, v. 79, n. 8, p. 973–1008, doi:https://doi.org/10.1130/0016-7606(1968)79[973:CSSVC]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  141. ↵
    1. Papavassiliou C. T.,
    2. Cosgrove M. E.
    , 1982, The geochemistry of DSDP sediments from Site 223, Indian Ocean: Chemical Geology, v. 37, n. 3–4, p. 299–315, doi:https://doi.org/10.1016/0009-2541(82)90085-7
    OpenUrlCrossRefGeoRef
  142. ↵
    1. Parker G.
    , 1991, Selective sorting and abrasion of river gravel. II: Applications: Journal of Hydraulic Engineering, v. 117, n. 2, p. 150–171, doi:https://doi.org/10.1061/(ASCE)0733-9429(1991)117:2(150)
    OpenUrlCrossRefGeoRefWeb of Science
  143. ↵
    1. Paterson S. R.,
    2. Ducea M. N.
    , 2015, Arc magmatic tempos: Gathering the evidence: Elements, v. 11, n. 2, p. 91–98, doi:https://doi.org/10.2113/gselements.11.2.91
    OpenUrlAbstract/FREE Full Text
  144. ↵
    1. Porterfield G.,
    2. Busch R. D.,
    3. Waananen A. O.
    , 1978, Sediment transport in the Feather River, Lake Oroville to Yuba City, California: U. S. Geological Survey, Water Resources Investigations Report 78–20, 84 p. doi:https://doi.org/10.3133/wri7820
    OpenUrlCrossRef
  145. ↵
    1. Potter P. E.,
    2. Maynard J. B.,
    3. Depetris P. J.
    , 2005, Mud and mudstones: Introduction and overview: Heidelberg, Springer-Verlag, 297 p., doi:https://doi.org/10.1007/b138571
  146. ↵
    1. Press W. H.,
    2. Teukolsky S. A.,
    3. Vetterling W. T.,
    4. Flannery B. P.
    , 2007, Numerical Recipes: The Art of Scientific Computing: New York, Cambridge University Press, 1256 p.
  147. ↵
    1. Prohoroff R.,
    2. Wakabayashi J.,
    3. Dumitru T. A.
    , 2012, Sandstone matrix olistostrome deposited on intra-subduction complex serpentinite, Franciscan Complex, western Marin County, California: Tectonophysics, v. 568–569, p. 296–305, doi:https://doi.org/10.1016/j.tecto.2012.05.018
    OpenUrlCrossRef
  148. ↵
    1. Prokopiev A. V.,
    2. Toro J.,
    3. Miller E. L.,
    4. Gehrels G. E.
    , 2008, The paleo–Lena River–200 m.y. of transcontinental zircon transport in Siberia: Geology, v. 36, n. 9, p. 699–702, doi:https://doi.org/10.1130/G24924A.1
    OpenUrlAbstract/FREE Full Text
  149. ↵
    1. Quick J. E.
    , 1981, Petrology and petrogenesis of the Trinity peridotite, An upper mantle diapir in the eastern Klamath Mountains, northern California: Journal of Geophysical Research-Solid Earth, v. 86, n. B12, p. 11837–11863. doi:https://doi.org/10.1029/JB086iB12p11837
    OpenUrlCrossRef
  150. ↵
    1. Reiners P. W.,
    2. Campbell I. H.,
    3. Nicolescu S.,
    4. Allen C. M.,
    5. Hourigan J. K.,
    6. Garver J. I.,
    7. Mattinson J. M.,
    8. Cowan D. S.
    , 2005, (U-Th)/(He-Pb) double dating of detrital zircons: American Journal of Science, v. 305, n. 4, p. 259–311, doi:https://doi.org/10.2475/ajs.305.4.259
    OpenUrlAbstract/FREE Full Text
  151. ↵
    1. Rohling E. J.,
    2. Fenton M.,
    3. Jorissen F. J.,
    4. Bertrand P.,
    5. Ganssen G.,
    6. Caulet J. P.
    , 1998, Magnitudes of sea-level lowstands of the past 500,000 year: Nature, v. 394, p. 162–165, doi:https://doi.org/10.1038/28134
    OpenUrlCrossRefGeoRefWeb of Science
  152. ↵
    1. Rosenbauer R. J.,
    2. Foxgrover A. C.,
    3. Hein J. R.,
    4. Swarzenski P. W.
    , 2013, A Sr–Nd isotopic study of sand-sized sediment provenance and transport for the San Francisco Bay coastal system: Marine Geology, v. 345, p. 143–153, doi:https://doi.org/10.1016/j.margeo.2013.01.002
    OpenUrlCrossRefGeoRef
  153. ↵
    1. Ross G. M.,
    2. Parrish R. R.,
    3. Winston D.
    , 1992, Provenance and U-Pb geochronology of the Mesoproterozoic Belt Supergroup (northwestern Unites States): Implications for age of deposition and pre-Panthalassa plate reconstructions: Earth and Planetary Science Letters, v. 113, n. 1–2, p. 57–76, doi:https://doi.org/10.1016/0012-821X(92)90211-D
    OpenUrlCrossRefGeoRefWeb of Science
  154. ↵
    1. Ryan K. M.,
    2. Williams D. M.
    , 2007, Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins: Chemical Geology, v. 242, n. 1–2, p. 103–125, doi:https://doi.org/10.1016/j.chemgeo.2007.03.013
    OpenUrlCrossRefGeoRefWeb of Science
  155. ↵
    1. Sack P. J.,
    2. Berry R. F.,
    3. Meffre S.,
    4. Falloon T. J.,
    5. Gemmell J. B.,
    6. Friedman R. M.
    , 2011, In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation–inductively coupled plasma–quadrupole mass spectrometry: Geochemistry, Geophysics, Geosystems, v. 12, n. 5, doi:https://doi.org/10.1029/2010GC003405
    OpenUrlCrossRef
  156. ↵
    1. Saleeby J.,
    2. Le Pourhiet L.,
    3. Saleeby Z.,
    4. Gurnis M.
    , 2012, Epeirogenic transients related to mantle lithosphere removal in the southern Sierra Nevada region, California, part I: Implications of thermomechanical modeling: Geosphere, v. 8, n. 6, p. 1286–1309, doi:https://doi.org/10.1130/GES00746.1
    OpenUrlAbstract/FREE Full Text
  157. ↵
    1. Saleeby J.,
    2. Saleeby Z.,
    3. Le Pourhiet L.
    , 2013, Epeirogenic transients related to mantle lithosphere removal in the southern Sierra Nevada region, California: Part II. Implications of rock uplift and basin subsidence relations: Geosphere, v. 9, n. 3, p. 394–425, doi:https://doi.org/10.1130/GES00816.1
    OpenUrlAbstract/FREE Full Text
  158. ↵
    1. Sarna-Wojcicki A. M.,
    2. Meyer C. E.,
    3. Bowman H. R.,
    4. Hall N. T.,
    5. Russell P. C.,
    6. Woodward M. J.,
    7. Slate J. L.
    , 1985, Correlation of the Rockland ash bed, a 400,000-year-old stratigraphic marker in northern California and western Nevada, and implications for middle Pleistocene paleogeography of central California: Quaternary Research, v. 23, n. 2, p. 236–257 doi:https://doi.org/10.1016/0033-5894(85)90031-6
    OpenUrlCrossRefGeoRef
  159. ↵
    1. Saylor J. E.,
    2. Sundell K. E.
    , 2016, Quantifying comparison of large detrital geochronology data sets: Geosphere, v. 12, n. 1, p. 203–220, doi:https://doi.org/10.1130/GES01237.1
    OpenUrlAbstract/FREE Full Text
  160. ↵
    1. Schoellhamer D. H,
    2. Wright S. A.,
    3. Drexler J.
    , 2012, A Conceptual Model of Sedimentation in the Sacramento–San Joaquin Delta: San Francisco Estuary and Watershed Science, 10(3). Retrieved from https://escholarship.org/uc/item/2652z8sq
  161. ↵
    1. Schweickert R. A.,
    2. Cowan D. S.
    , 1975, Early Mesozoic tectonic evolution of the western Sierra Nevada, California: GSA Bulletin, v. 86, n. 10, p. 1329–1336, doi:https://doi.org/10.1130/0016-7606(1975)86<1329:EMTEOT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  162. ↵
    1. Sharman G. R.,
    2. Johnstone S. A.
    , 2017, Sediment unmixing using detrital geochronology: Earth and Planetary Science Letters, v. 477, p. 183–194, doi:https://doi.org/10.1016/j.epsl.2017.07.044
    OpenUrlCrossRef
  163. ↵
    1. Sharman G. R.,
    2. Graham S. A.,
    3. Grove M.,
    4. Hourigan J. K.
    , 2013, A reappraisal of the early slip history of the San Andreas Fault, central California, USA.: Geology, v. 41, n. 7, p. 727–730, doi:https://doi.org/10.1130/G34214.1
    OpenUrlAbstract/FREE Full Text
  164. ↵
    1. Sharman G. R.,
    2. Graham S. A.,
    3. Grove M.,
    4. Kimbrough D. L.,
    5. Wright J. E.
    , 2015, Detrital zircon provenance of the Late Cretaceous–Eocene California forearc: Influence of Laramide low-angle subduction on sediment dispersal and paleogeography: GSA Bulletin, v. 127, n. 1–2, p. 38–60, doi:https://doi.org/10.1130/B31065.1
    OpenUrlAbstract/FREE Full Text
  165. ↵
    1. Sharman G. R.,
    2. Sharman J. P.,
    3. Sylvester Z.
    , 2018, detritalPy: A Python-based toolset for visualizing and analysing detrital geo-thermochronologic data: The Depositional Record, v. 4, n. 2, p. 202–215, doi:https://doi.org/10.1002/dep2.45
    OpenUrlCrossRef
  166. ↵
    1. Shervais J. W.,
    2. Kimbrough D. L.
    , 1985, Geochemical evidence for the tectonic setting of the Coast Range ophiolite: A composite island-arc–oceanic crust terrane in western California: Geology, v. 13, n. 1, p. 35–38, doi:https://doi.org/10.1130/0091-7613(1985)13<35:GEFTTS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  167. ↵
    1. Sircombe K. N.,
    2. Freeman M. J.
    , 1999, Provenance of detrital zircons on the Western Australia coastline –Implications for the geologic history of the Perth basin and denudation of the Yilgarn: Geology, v. 27, n. 10, p. 879–882, doi:https://doi.org/10.1130/0091-7613(1999)027<0879:PODZOT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  168. ↵
    1. Sláma J.,
    2. Košler J.
    , 2012, Effects of sampling and mineral separation on accuracy of detrital zircon studies: Geochemistry, Geophysics, Geosystems, v. 13, n. 5, 17 p., doi:https://doi.org/10.1029/2012GC004106
    OpenUrlCrossRef
  169. ↵
    1. Smith N. D.,
    2. Pérez-Arlucea M.
    , 2008, Natural levee deposition during the 2005 flood of the Saskatchewan River: Geomorphology, v. 101, n. 4, p. 583–594, doi:https://doi.org/10.1016/j.geomorph.2008.02.009
    OpenUrlCrossRefGeoRef
  170. ↵
    1. Snow C. A.,
    2. Wakabayashi J.,
    3. Ernst W. G.,
    4. Wooden J. L.
    , 2010, Detrital zircon evidence for progressive underthrusting in Franciscan metagraywackes, west-central California: GSA Bulletin, v. 122, n. 1–2, p. 282–291, doi:https://doi.org/10.1130/B26399.1
    OpenUrlAbstract/FREE Full Text
  171. ↵
    1. Somme T. O.,
    2. Helland-Hansen W.,
    3. Martinsenw O. J.,
    4. Thurmondw J. B.
    , 2009, Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems: Basin Research, v. 21, n. 4, p. 361–387, doi:https://doi.org/10.1111/j.1365-2117.2009.00397.x
    OpenUrlCrossRefGeoRefWeb of Science
  172. ↵
    1. Spencer C. J.,
    2. Kirkland C. L.,
    3. Roberts N. M. W.
    , 2018, Implications of erosion and bedrock composition on zircon fertility: Examples from South America and Western Australia: Terra Nova, v. 30, n. 4, p. 289–295, doi:https://doi.org/10.1111/ter.12338
    OpenUrlCrossRef
  173. ↵
    1. Stacey J. S.,
    2. Kramers J. D.
    , 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, n. 2, p. 207–221, doi:https://doi.org/10.1016/0012-821X(75)90088-6
    OpenUrlCrossRefGeoRefWeb of Science
  174. ↵
    1. Sundell K. E.,
    2. Saylor J. E.
    , 2017, Unmixing detrital geochronology age distributions: Geochemistry, Geophysics, Geosystems, v. 18, n. 8, p. 2872–2886, doi:https://doi.org/10.1002/2016GC006774
    OpenUrlCrossRef
  175. ↵
    1. Surpless K. D.
    , 2014, Geochemistry of the Great Valley Group: An integrated provenance record: International Geology Review, v. 57, n. 5–8, p. 747–766, doi:https://doi.org/10.1080/00206814.2014.923347
    OpenUrlCrossRef
  176. ↵
    1. Surpless K. D.,
    2. Augsburger G. A.
    , 2009, Provenance of the Pythian Cave conglomerate, northern California: Implications for mid-Cretaceous paleogeography of the U.S. Cordillera: Cretaceous Research, v. 30, n. 5, p. 1181–1192, doi:https://doi.org/10.1016/j.cretres.2009.05.005
    OpenUrlCrossRefGeoRef
  177. ↵
    1. Surpless K. D.,
    2. Graham S. A.,
    3. Covault J. A.,
    4. Wooden J. L.
    , 2006, Does the Great Valley Group contain Jurassic strata? Reevaluation of the age and early evolution of a classic forearc basin: Geology, v. 34, n. 1, p. 21–24, doi:https://doi.org/10.1130/G21940.1
    OpenUrlAbstract/FREE Full Text
  178. ↵
    1. Taylor S. R.,
    2. McLennan S. M.
    , 1985, The Continental Crust: Its Composition and Evolution: Boston, Massachusetts, Blackwell Scientific, 312 p.
  179. ↵
    1. Taylor S. R.,
    2. McLennan S. M.
    1995, The geochemical evolution of the continental crust: Reviews of Geophysics, v. 33, n. 2, p. 241–265, doi:https://doi.org/10.1029/95RG00262
    OpenUrlCrossRefGeoRefWeb of Science
  180. ↵
    1. Taylor S. R.,
    2. White A. J. R.
    , 1966, Trace element abundances in andesites: Bulletin Volcanologique, v. 29, n. 1, p. 177–194, doi:https://doi.org/10.1007/BF02597152
    OpenUrlCrossRefGeoRef
  181. ↵
    1. Unruh J. R.,
    2. Dumitru T. A.,
    3. Sawyer T. L.
    , 2007, Coupling of early Tertiary extension in the Great Valley forearc basin with blueschist exhumation in the underlying Franciscan accretionary wedge at Mount Diablo, California: GSA Bulletin, v. 119, n. 11–12, p. 1347–1367, doi:https://doi.org/10.1130/B26057.1
    OpenUrlAbstract/FREE Full Text
  182. ↵
    1. VanderPlas J.
    , 2016, Python data science handbook: essential tools for working with data: “ O'Reilly Media, Inc.”
  183. ↵
    1. Vermeesch P.
    , 2012, On the visualisation of detrital age distributions: Chemical Geology, v. 312–313, p. 190–194, doi:https://doi.org/10.1016/j.chemgeo.2012.04.021
    OpenUrlCrossRef
  184. ↵
    1. Wakabayashi J.
    , 2015, Anatomy of a subduction complex: Architecture of the Franciscan Complex, California, at multiple length and time scales: International Geology Review, v. 57, n. 5–8, p. 669–746, doi:https://doi.org/10.1080/00206814.2014.998728
    OpenUrlCrossRefGeoRef
  185. ↵
    1. Glazner A. F.,
    2. Walker J. D.,
    3. Bartley J. M.
    1. Walker J. D.,
    2. Martin M. W.,
    3. Glazner A. F.
    , 2002, Late Paleozoic to Mesozoic development of the Mojave Desert and environs, California, in Glazner A. F., Walker J. D., Bartley J. M., editors, Geologic Evolution of the Mojave Desert and Southwestern Basin and Range: Geological Society of America Memoir 195, p. 1–18, doi:https://doi.org/10.1130/0-8137-1195-9.1
    OpenUrlCrossRef
  186. ↵
    1. Wallin E. T.,
    2. Metcalf R. V.
    , 1998, Supra-subduction zone ophiolite formed in an extensional forearc: Trinity terrane, Klamath Mountains, California: The Journal of Geology, v. 106, n. 5, p. 591–608, doi:https://doi.org/10.1086/516044
    OpenUrlCrossRefGeoRefWeb of Science
  187. ↵
    1. Whetten J. T.,
    2. Kelley J. C.,
    3. Hanson L. G.
    , 1969, Characteristics of Columbia River sediment and sediment transport: Journal of Sedimentary Petrology, v. 39, n. 3, p. 1149–1166.
    OpenUrlAbstract/FREE Full Text
  188. ↵
    1. Whitmore G. P.,
    2. Crook K. A. W.,
    3. Johnson D. P.
    , 2004, Grain size control of mineralogy and geochemistry in modern river sediment, New Guinea collision, Papua New Guinea: Sedimentary Geology, v. 171, n. 1–4, p. 129–157, doi:https://doi.org/10.1016/j.sedgeo.2004.03.011
    OpenUrlCrossRefGeoRefWeb of Science
  189. ↵
    1. Wong F. L.,
    2. Woodrow D. L.,
    3. McGann M.
    , 2013, Heavy mineral analysis for assessing the provenance of sandy sediment in the San Francisco Bay Coastal System: Marine Geology, v. 345, p. 170–180, doi:https://doi.org/10.1016/j.margeo.2013.05.012
    OpenUrlCrossRef
  190. ↵
    1. Wong M.,
    2. Parker G.
    , 2006, Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database: Journal of Hydraulic Engineering, v. 132, n. 11, p. 1159–1168, doi:https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159)
    OpenUrlCrossRefWeb of Science
  191. ↵
    1. Wright J. E.,
    2. Fahan M. R.
    , 1988, An expanded view of Jurassic orogenesis in the western United States Cordillera: Middle Jurassic (pre-Nevadan) regional metamorphism and thrust faulting within an active arc environment, Klamath Mountains, California: GSA Bulletin, v. 100, n. 6, p. 859–876, doi:https://doi.org/10.1130/0016-7606(1988)100<0859:AEVOJO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  192. ↵
    1. Wright J. E.,
    2. Wyld S. J.
    , 1994, The Rattlesnake Creek terrane, Klamath Mountains, California: An early Mesozoic volcanic arc and its basement of tectonically disrupted oceanic crust: GSA Bulletin, v. 106, n. 8, p. 1033–1056, doi:https://doi.org/10.1130/0016-7606(1994)106<1033:TRCTKM>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  193. ↵
    1. Cloos M.,
    2. Carlson W. D.,
    3. Gilbert M. C.,
    4. Liou J. G.,
    5. Sorenson S. S.
    1. Wright J. E.,
    2. Wyld S. J.
    2007, Alternative tectonic model for Late Jurassic through Early Cretaceous evolution of the Great Valley Group, California, in Cloos M., Carlson W. D., Gilbert M. C., Liou J. G., Sorenson S. S., editors, Convergent margin terranes and associated regions: A tribute to W. G. Ernst: GSA Special Papers, v. 419, p. 81–95, doi:https://doi.org/10.1130/2007.2419(04)
    OpenUrlCrossRef
  194. ↵
    1. Wright S. A.,
    2. Schoellhamer D. H.
    , 2004, Trends in the sediment yield of the Sacramento River, California, 1957–2001: San Francisco Estuary and Watershed Science, v. 2, n. 2, 14 p., doi:https://doi.org/10.15447/sfews.2004v2iss2art2
    OpenUrlCrossRef
  195. ↵
    1. Wright S. A.,
    2. Schoellhamer D. H.
    2005, Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento–San Joaquin River Delta: Water Resources Research, v. 41, n. 9, (W09428), doi:https://doi.org/10.1029/2004WR003753
    OpenUrlCrossRef
  196. ↵
    1. Wronkiewicz D. J.,
    2. Condie K. C.
    , 1987, Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance: Geochimica et Cosmochimica Acta, v. 51, n. 9, p. 2401–2416, doi:https://doi.org/10.1016/0016-7037(87)90293-6
    OpenUrlCrossRefGeoRefWeb of Science
  197. ↵
    1. Wronkiewicz D. J.,
    2. Condie K. C.
    1990, Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic: Geochimica et Cosmochimica Acta, v. 54, n. 2, p. 343–354, doi:https://doi.org/10.1016/0016-7037(90)90323-D
    OpenUrlCrossRefGeoRefWeb of Science
  198. ↵
    1. Xiao S.,
    2. Grove M.
    , 2012, Detrital Zircon evaluation of the provenance shift in the Pleistocene Merced Formation, San Francisco: Implications for the timescales of sedimentary processes. Abstract ED31A-0706 presented at 2012 Fall Meeting, AGU, San Francisco, California, 3–7 December.
  199. ↵
    1. Xu J.,
    2. Stockli D. F.,
    3. Snedden J. W.
    , 2017, Enhanced provenance interpretation using combined U-Pb and (U-Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America: Earth and Planetary Science Letters, v. 475, p. 44–57. doi:https://doi.org/10.1016/j.epsl.2017.07.024
    OpenUrlCrossRef
  200. ↵
    1. Zhang J. Y.,
    2. Yin A.,
    3. Liu W. C.,
    4. Wu F. Y.,
    5. Lin D.,
    6. Grove M.
    , 2012, Coupled U-Pb dating and Hf isotopic analysis of detrital zircon of modern river sand from the Yalu River (Yarlung Tsangpo) drainage system in southern Tibet: Constraints on the transport processes and evolution of Himalayan rivers: GSA Bulletin, v. 124, p. 1449–1473, doi:https://doi.org/10.1130/B30592.1
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 319 (10)
American Journal of Science
Vol. 319, Issue 10
1 Dec 2019
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.)
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 10 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.)
Matthew A. Malkowski, Glenn R. Sharman, Samuel A. Johnstone, Martin J. Grove, David L. Kimbrough, Stephan A. Graham
American Journal of Science Dec 2019, 319 (10) 846-902; DOI: 10.2475/10.2019.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.)
Matthew A. Malkowski, Glenn R. Sharman, Samuel A. Johnstone, Martin J. Grove, David L. Kimbrough, Stephan A. Graham
American Journal of Science Dec 2019, 319 (10) 846-902; DOI: 10.2475/10.2019.02
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • BACKGROUND
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX 1
    • APPENDIX 2
    • APPENDIX 3
    • APPENDIX 4
    • APPENDIX 5
    • APPENDIX 6
    • APPENDIX 7
    • APPENDIX 8
    • Footnotes
    • REFERENCES CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Tracking Proterozoic-Triassic sediment routing to western Laurentia via bivariate non-negative matrix factorization of detrital provenance data
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Central California
  • Detrital zircon
  • dilution
  • Geochemistry
  • modern sediment

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire