Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

Determining the kinetics of discrete aqueous redox reaction sub-steps using computational methods: Application to reactions of plutonyl (PuO2+/2+) with Fe2+, Fe3+, and hydroxyl radical (•OH)

Will M. Bender and Udo Becker
American Journal of Science November 2018, 318 (9) 893-920; DOI: https://doi.org/10.2475/09.2018.02
Will M. Bender
Department of Earth and Environmental Sciences, University of Michigan, Room 2534, 1100 North University Avenue, Ann Arbor, Michigan 48109-1005
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: benderwm@umich.edu ubecker@umich.edu
Udo Becker
Department of Earth and Environmental Sciences, University of Michigan, Room 2534, 1100 North University Avenue, Ann Arbor, Michigan 48109-1005
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: benderwm@umich.edu ubecker@umich.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Amme M.,
    2. Bors W.,
    3. Michel C.,
    4. Stettmaier K.,
    5. Rasmussen G.,
    6. Betti M.
    , 2005, Effects of Fe(II) and hydrogen peroxide interaction upon dissolving UO2 under geologic repository conditions: Environmental Science & Technology, v. 39, n. 1, p. 221–229, doi:https://doi.org/10.1021/es040034x
    OpenUrlCrossRef
  2. ↵
    1. Amme M.,
    2. Pehrman R.,
    3. Deutsch R.,
    4. Roth O.,
    5. Jonsson M.
    , 2012, Combined effects of Fe(II) and oxidizing radiolysis products on UO2 and PuO2 dissolution in a system containing solid UO2 and PuO2: Journal of Nuclear Materials, v. 430, n. 1–3, p. 1–5, doi:https://doi.org/10.1016/j.jnucmat.2012.06.036
    OpenUrlCrossRef
  3. ↵
    1. Aqueous Solutions L.
    , 2017, The Geochemist's Workbench, Aqueous Solutions: Champaign, Illinois, Aqueous Solutions, LLC.
  4. ↵
    1. Bader R. F. W.,
    2. Anderson S. G.,
    3. Duke A. J.
    , 1979a, Quantum topology of molecular charge distributions. 1: Journal of the American Chemical Society, v. 101, n. 6, p. 1389–1395, doi:https://doi.org/10.1021/ja00500a006
    OpenUrlCrossRef
  5. ↵
    1. Bader R. F. W.,
    2. Nguyendang T. T.,
    3. Tal Y.
    , 1979b, Quantum topology of molecular charge distributions. II. Molecular structure and its change: The Journal of Chemical Physics, v. 70, n. 9, p. 4316–4329, doi:https://doi.org/10.1063/1.438006
    OpenUrlCrossRef
  6. ↵
    1. Balabanov N. B.,
    2. Peterson K. A.
    , 2005, Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn: The Journal of Chemical Physics, v. 123, n. 6, doi:https://doi.org/10.1063/1.1998907
    OpenUrlCrossRef
  7. ↵
    1. Becke A. D.
    , 1993, Density-functional thermochemistry. III. The role of exact exchange: The Journal of Chemical Physics, v. 98, n. 7, p. 5648–5652, doi:https://doi.org/10.1063/1.464913
    OpenUrlCrossRefWeb of Science
  8. ↵
    1. Begg J. D.,
    2. Zavarin M.,
    3. Kersting A. B.
    , 2014, Plutonium desorption from mineral surfaces at environmental concentrations of hydrogen peroxide: Environmental Science & Technology, v. 48, n. 11, p. 6201–6210, doi:https://doi.org/10.1021/es500984w
    OpenUrlCrossRef
  9. ↵
    1. Borch T.,
    2. Kretzschmar R.,
    3. Kappler A.,
    4. van Cappellen P.,
    5. Ginder-Vogel M.,
    6. Voegelin A.,
    7. Campbell K.
    , 2010, Biogeochemical redox processes and their impact on contaminant dynamics: Environmental Science & Technology, v. 44, n. 1, p. 15–23, doi:https://doi.org/10.1021/es9026248
    OpenUrlCrossRefPubMed
  10. ↵
    1. Boys S. F.,
    2. Bernardi F.
    , 1970, The calculation of small molecular interactions by differences of separate total energies. Some procedures with reduced errors: Molecular Physics, v. 19, n. 4, p. 553–566, doi:https://doi.org/10.1080/00268977000101561
    OpenUrlCrossRefWeb of Science
  11. ↵
    1. Bros R.,
    2. Turpin L.,
    3. Gauthier-Lafaye F.,
    4. Holliger P.,
    5. Stille P.
    , 1993, Occurrence of naturally enriched 235U: Implications for plutonium behavior in natural environments: Geochimica et Cosmochimica Acta, v. 57, n. 6, p. 1351–1356, doi:https://doi.org/10.1016/0016-7037(93)90072-5
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Choppin G. R.
    , 2007, Actinide speciation in the environment: Journal of Radioanalytical and Nuclear Chemistry, v. 273, n. 3, p. 695–703, doi:https://doi.org/10.1007/s10967-007-0933-3
    OpenUrlCrossRefWeb of Science
  13. ↵
    1. Collins R. N.,
    2. Rosso K. M.
    , 2017, Mechanisms and rates of U(VI) reduction by Fe(II) in homogeneous aqueous solution and the role of U(V) disproportionation: The Journal of Physical Chemistry A, v. 121, n. 35, p. 6603–6613, doi:https://doi.org/10.1021/acs.jpca.7b05965
    OpenUrlCrossRef
  14. ↵
    1. Cossi M.,
    2. Rega N.,
    3. Scalmani G.,
    4. Barone V.
    , 2003, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model: Journal of Computational Chemistry, v. 24, n. 6, p. 669–681, doi:https://doi.org/10.1002/jcc.10189
    OpenUrlCrossRefPubMed
  15. ↵
    1. Dodge C. J.,
    2. Francis A. J.,
    3. Gillow J. B.,
    4. Halada G. P.,
    5. Eng C.,
    6. Clayton C. R.
    , 2002, Association of uranium with iron oxides typically formed on corroding steel surfaces: Environmental Science & Technology, v. 36, n. 16, p. 3504–3511, doi:https://doi.org/10.1021/es011450+
    OpenUrlCrossRefPubMed
    1. Dorfman L. M.,
    2. Adams G. E.
    , 1973, Reactivity of the hydroxyl radical in aqueous solutions: National Standard Reference Data System: Washington D. C., U.S. Department of Commerce, p. 72.
  16. ↵
    1. Du X.,
    2. Boonchayaanant B.,
    3. Wu W.-M.,
    4. Fendorf S.,
    5. Bargar J.,
    6. Criddle C. S.
    , 2011, Reduction of uranium(VI) by soluble iron(II) conforms with thermodynamic predictions: Environmental Science & Technology, v. 45, n. 11, p. 4718–4725, doi:https://doi.org/10.1021/es2006012
    OpenUrlCrossRef
  17. ↵
    1. Dunning T. H. Jr..
    , 1989, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen: The Journal of Chemical Physics, v. 90, p. 1007–1023, doi:https://doi.org/10.1063/1.456153
    OpenUrlCrossRefWeb of Science
  18. ↵
    1. Schaefer H. F.
    1. Dunning T. H. Jr..,
    2. Hay P. J.
    , 1977, Gaussian basis sets for molecular calculations, in Schaefer H. F., editor, Methods of Electronic Structure Theory: New York, Springer US, Modern Theoretical Chemistry, v. 3, p. 1–27, doi:https://doi.org/10.1007/978-1-4757-0887-5_1
    OpenUrlCrossRef
  19. ↵
    1. Feller D.
    , 1996, The role of databases in support of computational chemistry calculations: Journal of Computational Chemistry, v. 17, n. 13, p. 1571–1586, doi:https://doi.org/10.1002/(sici)1096-987x(199610)17:13<1571::aid-jcc9>3.0.co;2-p
    OpenUrlCrossRef
  20. ↵
    1. Frisch M. J.,
    2. Trucks G. W.,
    3. Schelgel H. B.,
    4. Scuseria G. E.,
    5. Robb M. A.,
    6. Cheeseman J. R.,
    7. Scalmani G.,
    8. Barone V.,
    9. Petersson G. A.,
    10. Nakatsuji H.,
    11. Li X.,
    12. Caricato M.,
    13. Marenich A.,
    14. Bloino J.,
    15. Janesko B. G.,
    16. Gomperts R.,
    17. Mennucci B.,
    18. Hratchian H. P.,
    19. Ortiz J. V.,
    20. Izmaylov A. F.,
    21. Sonnenber J. L.,
    22. Williams-Young D.,
    23. Ding F.,
    24. Lipparini F.,
    25. Egidi F.,
    26. Goings J.,
    27. Peng B.,
    28. Petrone A.,
    29. Henderson T.,
    30. Ranasinghe D.,
    31. Zakrzewski V. G.,
    32. Gao J.,
    33. Rega N.,
    34. Zheng G.,
    35. Liang W.,
    36. Hada M.,
    37. Ehara M.,
    38. Toyota K.,
    39. Fukuda R.,
    40. Hasegawa J.,
    41. Ishida M.,
    42. Nakajima T.,
    43. Honda Y.,
    44. Kitao O.,
    45. Nakai H.,
    46. Vreven T.,
    47. Throssell K.,
    48. Montgomery J.,
    49. J. A.,
    50. Peralta J. E.,
    51. Ogliaro F.,
    52. Bearpark M.,
    53. Heyd J. J.,
    54. Brothers E.,
    55. Kudin K. N.,
    56. Staroverov V. N.,
    57. Keith T.,
    58. Kobayashi R.,
    59. Normand J.,
    60. Raghavachari K.,
    61. Rendell A.,
    62. Burant J. C.,
    63. Iyengar S. S.,
    64. Tomasi J.,
    65. Cossi M.,
    66. Millam J. M.,
    67. Klene M.,
    68. Adamo C.,
    69. Cammi R.,
    70. Ochterski J. W.,
    71. Martin R. L.,
    72. Morokuma K.,
    73. Farkas O.,
    74. Foresman J. B.,
    75. Fox D. J.
    , 2016, Gaussian 09: Wallingford, CT, Gaussian, Inc.
  21. ↵
    1. Glicksman M. E.
    , 1999, Diffusion in solids: Field theory, solid-state principles, and applications: New York, John Wiley & Sons, 498 p.
  22. ↵
    1. Gustafsson J. P.
    , 2013, Visual MINTEQ 3.1: Stockholm, KTH Royal Institute of Technology.
  23. ↵
    1. Hay P. J.,
    2. Wadt W. R.
    , 1985, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals: The Journal of Chemical Physics, v. 82, n. 1, p. 299–310, doi:https://doi.org/10.1063/1.448975
    OpenUrlCrossRefWeb of Science
  24. ↵
    1. Hixon A. E.,
    2. Arai Y.,
    3. Powell B. A.
    , 2013, Examination of the effect of alpha radiolysis on plutonium(V) sorption to quartz using multiple plutonium isotopes: Journal of Colloid and Interface Science, v. 403, p. 105–112, doi:https://doi.org/10.1016/j.jcis.2013.04.007
    OpenUrlCrossRef
  25. ↵
    1. Huber F.,
    2. Schild D.,
    3. Vitova T.,
    4. Rothe J.,
    5. Kirsch R.,
    6. Schäfer T.
    , 2012, U(VI) removal kinetics in presence of synthetic magnetite nanoparticles: Geochimica et Cosmochimica Acta, v. 96, p. 154–173, doi:https://doi.org/10.1016/j.gca.2012.07.019
    OpenUrlCrossRefGeoRef
  26. ↵
    1. Huss G. R.,
    2. Meyer B. S.,
    3. Srinivasan G.,
    4. Goswami J. N.,
    5. Sahijpal S.
    , 2009, Stellar sources of the short-lived radionuclides in the early solar system: Geochimica et Cosmochimica Acta, v. 73, n. 17, p. 4922–4945, doi:https://doi.org/10.1016/j.gca.2009.01.039
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Kendall R. A.,
    2. Dunning T. H. Jr..,
    3. Harrison R. J.
    , 1992, Electron-affinities of the 1st-row atoms revisited. Systematic basis sets and wave-functions: The Journal of Chemical Physics, v. 96, n. 9, p. 6796–6806, doi:https://doi.org/10.1063/1.462569
    OpenUrlCrossRefWeb of Science
    1. Kraus K. A.,
    2. Nelson F.
    , 1949, Chemistry of aqueous uranium(V) solutions. II. Reaction of uranium pentachloride with water. Thermodynamic stability of UO2+. Potential of U(IV)/(V), U(IV)/(VI) and U(V)/U(VI) couples: Journal of the American Chemical Society, v. 71, n. 7, p. 2517–2522, doi:https://doi.org/10.1021/ja01175a080
    OpenUrlCrossRef
    1. Kraus K. A.,
    2. Nelson F.,
    3. Johnson G. L.
    , 1949, Chemistry of aqueous uranium(V) solutions. I. Preparation and properties. Analogy between uranium(V), neptunium(V) and plutonium(V): Journal of the American Chemical Society, v. 71, n. 7, p. 2510–2517, doi:https://doi.org/10.1021/ja01175a079
    OpenUrlCrossRef
  28. ↵
    1. Lee C. T.,
    2. Yang W. T.,
    3. Parr R. G.
    , 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density: Physical Review B, v. 37, n. 2, p. 785–789, doi:https://doi.org/10.1103/PhysRevB.37.785
    OpenUrlCrossRefPubMedWeb of Science
    1. Lide D. R.,
    2. Kehiaian H. V.
    , 1994, CRC handbook of thermophysical and thermochemical data: Boca Raton, Florida, CRC Press, Inc., 518 p.
  29. ↵
    1. Liger E.,
    2. Charlet L.,
    3. Van Cappellen P.
    , 1999, Surface catalysis of uranium(VI) reduction by iron(II): Geochimica et Cosmochimica Acta, v. 63, n. 19–20, p. 2939–2955, doi:https://doi.org/10.1016/s0016-7037(99)00265-3
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Luo W.,
    2. Gu B.
    , 2011, Dissolution of uranium-bearing minerals and mobilization of uranium by organic ligands in a biologically reduced sediment: Environmental Science & Technology, v. 45, n. 7, p. 2994–2999, doi:https://doi.org/10.1021/es103073u
    OpenUrlCrossRef
  31. ↵
    1. Manion J. A.,
    2. Huie R. E.,
    3. Levin R. D.,
    4. Burgess D. R. Jr..,
    5. Orkin V. L.,
    6. Tsang W.,
    7. McGivern W. S.,
    8. Hudgens J. W.,
    9. Knyazev V. D.,
    10. Atkinson D. B.,
    11. Chai E.,
    12. Tereza A. M.,
    13. Lin C.-Y.,
    14. Allison T. C.,
    15. Mallard W. G.,
    16. Westley F.,
    17. Herron J. T.,
    18. Hampson R. F.,
    19. Frizzell D. H.
    , 2015, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0, Release 1.6.8: Gaithersburg, Maryland, National Institute of Standards and Technology.
  32. ↵
    1. Marcus R. A.
    , 1963, On the theory of oxidation-reduction reactions involving electron transfer. V. Comparison and properties of electrochemical and chemical rate constants: The Journal of Physical Chemistry, v. 67, n. 4, p. 853–857, doi:https://doi.org/10.1021/j100798a033
    OpenUrlCrossRefWeb of Science
  33. ↵
    1. Marcus R. A.,
    2. Sutin N.
    , 1985, Electron transfers in chemistry and biology: Biochimica et Biophysica Acta - Reviews on Bioergetics, v. 811, n. 3, p. 265–322, doi:https://doi.org/10.1016/0304-4173(85)90014-X
    OpenUrlCrossRef
  34. ↵
    1. McQuarrie D. A.,
    2. Simon J. D.
    , 1997, Physical chemistry: A molecular approach: Sausalito, California, University Science Books, 1360 p.
  35. ↵
    1. Mennucci B.,
    2. Tomasi J.
    , 1997, Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries: The Journal of Chemical Physics, v. 106, n. 12, p. 5151–5158, doi:https://doi.org/10.1063/1.473558
    OpenUrlCrossRefWeb of Science
  36. ↵
    1. Moelwyn-Hughes E. A.
    , 1971, The chemical statics and kinetics of solutions: Physical Chemistry: London, Academic Press, 530 p.
  37. ↵
    1. Morse J. W.,
    2. Choppin G. R.
    , 1986, Laboratory studies of plutonium in marine systems: Marine Chemistry, v. 20, n. 1, p. 73–89, doi:https://doi.org/10.1016/0304-4203(86)90067-8
    OpenUrlCrossRefGeoRef
  38. ↵
    1. Perdew J. P.,
    2. Burke K.,
    3. Ernzerhof M.
    , 1996, Generalized gradient approximation made simple: Physical Review Letters, v. 77, n. 18, p. 3865–3868, doi:https://doi.org/10.1103/PhysRevLett.77.3865
    OpenUrlCrossRefPubMedWeb of Science
  39. ↵
    1. Privalov T.,
    2. Macak P.,
    3. Schimmelpfennig B.,
    4. Fromager E.,
    5. Grenthe I.,
    6. Wahlgren U.
    , 2004, Electron transfer in uranyl(VI)-uranyl(V) complexes in solution: Journal of the American Chemical Society, v. 126, n. 31, p. 9801–9808, doi:https://doi.org/10.1021/ja049205o
    OpenUrlCrossRefPubMed
  40. ↵
    1. Reich M.,
    2. Ewing R. C.,
    3. Ehlers T. A.,
    4. Becker U.
    , 2007, Low-temperature anisotropic diffusion of helium in zircon: Implications for zircon (U-Th)/He thermochronometry: Geochimica et Cosmochimica Acta, v. 71, n. 12, p. 3119–3130, doi:https://doi.org/10.1016/j.gca.2007.03.033
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Riedel T.,
    2. Kübeck C.
    , 2018, Uranium in groundwater - A synopsis based on a large hydrogeochemical data set: Water Research, v. 129, p. 29–38, doi:https://doi.org/10.1016/j.watres.2017.11.001
    OpenUrlCrossRef
  42. ↵
    1. Schuchardt K. L.,
    2. Didier B. T.,
    3. Elsethagen T.,
    4. Sun L.,
    5. Gurumoorthi V.,
    6. Chase J.,
    7. Li J.,
    8. Windus T. L.
    , 2007, Basis set exchange: A community database for computational sciences: Journal of Chemical Information and Modeling, v. 47, n. 3, p. 1045–1052, doi:https://doi.org/10.1021/ci600510j
    OpenUrlCrossRefPubMed
  43. ↵
    1. Scott T. B.,
    2. Tort O. R.,
    3. Allen G. C.
    , 2007, Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material: Geochimica et Cosmochimica Acta, v. 71, n. 21, p. 5044–5053, doi:https://doi.org/10.1016/j.gca.2007.08.017
    OpenUrlCrossRefGeoRefWeb of Science
    1. Shannon R. D.
    , 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides: Acta Crystallographica Section A, v. 32, n. 5, p. 751–767, doi:https://doi.org/10.1107/s0567739476001551
    OpenUrlCrossRef
  44. ↵
    1. Shriver D.,
    2. Weller M.,
    3. Overton T.,
    4. Rourke J.,
    5. Armstrong F.
    , 2014, Inorganic chemistry: New York, W.H. Freeman and Company, 875 p.
  45. ↵
    1. Silva R. J.,
    2. Nitsche H.
    , 1995, Actinide environmental chemistry: Radiochimica Acta, v. 70–71, n. 1, p. 377–396, doi:https://doi.org/10.1524/ract.1995.7071.s1.377
    OpenUrlCrossRef
  46. ↵
    1. Skomurski F. N.,
    2. Ilton E. S.,
    3. Engelhard M. H.,
    4. Arey B. W.,
    5. Rosso K. M.
    , 2011, Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment: Geochimica et Cosmochimica Acta, v. 75, n. 22, p. 7277–7290, doi:https://doi.org/10.1016/j.gca.2011.08.006
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Szabo Z.,
    2. Toraishi T.,
    3. Vallet V.,
    4. Grenthe I.
    , 2006, Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms: Coordination Chemistry Reviews, v. 250, n. 7–8, p. 784–815, doi:https://doi.org/10.1016/j.ccr.2005.10.005
    OpenUrlCrossRef
  48. ↵
    1. Taube H.
    , 1970, Electron transfer reactions of complex ions in solution: Current Chemical Concepts: New York, Academic Press, 103 p, doi:https://doi.org/10.1016/B978-0-12-683850-3.X5001-8
    OpenUrlCrossRef
  49. ↵
    1. Taylor S. D.,
    2. Marcano M. C.,
    3. Rosso K. M.,
    4. Becker U.
    , 2015, An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron: Geochimica et Cosmochimica Acta, v. 156, p. 154-172, doi:https://doi.org/10.1016/j.gca.2015.01.021
    OpenUrlCrossRefGeoRef
  50. ↵
    1. Taylor S. D.,
    2. Becker U.,
    3. Rosso K. M.
    , 2017a, Electron transfer pathways facilitating U(VI) reduction by Fe(II) on Al- vs. Fe-oxides: The Journal of Physical Chemistry C, v. 121, n. 36, p. 19887–19903, doi:https://doi.org/10.1021/acs.jpcc.7b06893
    OpenUrlCrossRef
  51. ↵
    1. Taylor S. D.,
    2. Marcano M. C.,
    3. Becker U.
    , 2017b, A first principles investigation of electron transfer between Fe(II) and U(VI) on insulating Al- vs. semiconducting Fe-oxide surfaces via the proximity effect: Geochimica et Cosmochimica Acta, v. 197, p. 305–322, doi:https://doi.org/10.1016/j.gca.2016.10.022
    OpenUrlCrossRef
  52. ↵
    1. Valiev M.,
    2. Bylaska E. J.,
    3. Govind N.,
    4. Kowalski K.,
    5. Straatsma T. P.,
    6. Van Dam H. J. J.,
    7. Wang D.,
    8. Nieplocha J.,
    9. Apra E.,
    10. Windus T. L.,
    11. de Jong W.
    , 2010, NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations: Computer Physics Communications, v. 181, n. 9, p. 1477–1489, doi:https://doi.org/10.1016/j.cpc.2010.04.018
    OpenUrlCrossRefWeb of Science
  53. ↵
    1. van Duijneveldt F. B.,
    2. van Dduijneveldt-van der Rjdt J. G. C. M.,
    3. van Lenthe J. H.
    , 1994, State-of-the-art in counterpoise theory: Chemical Reviews, v. 94, n. 7, p. 1873–1885, doi:https://doi.org/10.1021/cr00031a007
    OpenUrlCrossRefWeb of Science
  54. ↵
    1. Wadt W. R.,
    2. Hay P. J.
    , 1985, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi: The Journal of Chemical Physics, v. 82, n. 1, p. 284–298, doi:https://doi.org/10.1063/1.448800
    OpenUrlCrossRefWeb of Science
  55. ↵
    1. Warren L. A.,
    2. Haack E. A.
    , 2001, Biogeochemical controls on metal behaviour in freshwater environments: Earth-Science Reviews, v. 54, n. 4, p. 261–320, doi:https://doi.org/10.1016/s0012-8252(01)00032-0
    OpenUrlCrossRefGeoRef
  56. ↵
    1. Wolfsberg A.,
    2. Dai Z. X.,
    3. Zhu L.,
    4. Reimus P.,
    5. Xiao T.,
    6. Ware D.
    , 2017, Colloid-facilitated plutonium transport in fractured tuffaceous rock: Environmental Science & Technology, v. 51, n. 10, p. 5582–5590, doi:https://doi.org/10.1021/acs.est.7b00968
    OpenUrlCrossRef
  57. ↵
    1. Yang Z.,
    2. Kang M.,
    3. Ma B.,
    4. Xie J.,
    5. Chen F.,
    6. Charlet L.,
    7. Liu C.
    , 2014, Inhibition of U(VI) Reduction by Synthetic and Natural Pyrite: Environmental Science & Technology, v. 48, n. 18, p. 10716–10724, doi:https://doi.org/10.1021/es502181x
    OpenUrlCrossRef
  58. ↵
    1. Yu K. C.,
    2. Tsai L. J.,
    3. Chen S. H.,
    4. Ho S. T.
    , 2001, Chemical binding of heavy metals in anoxic river sediments: Water Research, v. 35, n. 17, p. 4086–4094, doi:https://doi.org/10.1016/s0043-1354(01)00126-9
    OpenUrlCrossRefPubMed
  59. ↵
    1. Zarzycki P.,
    2. Kerisit S.,
    3. Rosso K. M.
    , 2015, Molecular dynamics study of Fe(II) adsorption, electron exchange, and mobility at goethite (a-FeOOH) surfaces: The Journal of Physical Chemistry C, v. 119, n. 6, p. 3111–3123, doi:https://doi.org/10.1021/jp511086r
    OpenUrlCrossRef
  60. ↵
    1. Zhao P. H.,
    2. Begg J. D.,
    3. Zavarin M.,
    4. Tumey S. J.,
    5. Williams R.,
    6. Dai Z. R.,
    7. Kips R.,
    8. Kersting A. B.
    , 2016, Plutonium(IV) and (V) sorption to goethite at sub-femtomolar to micromolar concentrations: Redox transformations and surface precipitation: Environmental Science & Technology, v. 50, n. 13, p. 6948–6956, doi:https://doi.org/10.1021/acs.est.6b00605
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science: 318 (9)
American Journal of Science
Vol. 318, Issue 9
1 Nov 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Determining the kinetics of discrete aqueous redox reaction sub-steps using computational methods: Application to reactions of plutonyl (PuO2+/2+) with Fe2+, Fe3+, and hydroxyl radical (•OH)
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
12 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Determining the kinetics of discrete aqueous redox reaction sub-steps using computational methods: Application to reactions of plutonyl (PuO2+/2+) with Fe2+, Fe3+, and hydroxyl radical (•OH)
Will M. Bender, Udo Becker
American Journal of Science Nov 2018, 318 (9) 893-920; DOI: 10.2475/09.2018.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Determining the kinetics of discrete aqueous redox reaction sub-steps using computational methods: Application to reactions of plutonyl (PuO2+/2+) with Fe2+, Fe3+, and hydroxyl radical (•OH)
Will M. Bender, Udo Becker
American Journal of Science Nov 2018, 318 (9) 893-920; DOI: 10.2475/09.2018.02
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • METHODOLOGY
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX A: TESTING OF COMPUTATIONAL PARAMETERS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
  • Constraints on surface temperature 3.4 billion years ago based on triple oxygen isotopes of cherts from the Barberton Greenstone Belt, South Africa, and the problem of sample selection
  • Miocene to Pleistocene glacial history of West Antarctica inferred from Nunatak geomorphology and cosmogenic-nuclide measurements on bedrock surfaces
Show more Articles

Similar Articles

Keywords

  • kinetics
  • redox reactions
  • actinide geochemistry

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2021 American Journal of Science

Powered by HighWire