Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Comment on the “Self-accelerating dolomite-for-calcite replacement model: Self-organized dynamics of burial dolomitization and associated mineralization”, v. 311, n. 7, p. 573–607, by Enrique Merino and Àngels Canals

Mechanisms for hydrothermal dolomite emplacement

David W. Morrow
American Journal of Science October 2018, 318 (8) 882-886; DOI: https://doi.org/10.2475/08.2018.03
David W. Morrow
Geological Survey of Canada (Calgary), 3303-33rd Street N.W., Calgary, Alberta, Canada T2L 2A7
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: david.morrow@canada.ca
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Arvidson R. S.,
    2. Mackenzie F. T.
    , 1999, The dolomite problem: Control of precipitation kinetics by temperature and saturation state: American Journal of Science, v. 299, n. 4, p. 257–288, doi:https://doi.org/10.2475/ajs.299.4.257
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Davies G. R.,
    2. Smith L. B. Jr..
    , 2006, Structurally controlled hydrothermal dolomite reservoir facies: An overview: AAPG (American Association of Petroleum Geologists) Bulletin, v. 90, n. 11, p. 1641–1690, doi:http://dx.doi.org/10.1306/05220605164
    OpenUrlCrossRef
  3. ↵
    1. Huang J.,
    2. Huang K.,
    3. Lü J.,
    4. Lan Y.
    , 2014, The relationship between dolomite textures and their formation temperature: A case study from the Permian-Triassic of the Sichuan Basin and the Lower Paleozoic of the Tarim Basin: Petroleum Science, v. 11, n. 1, p. 39–51, doi:https://doi.org/10.1007/s12182-014-0316-7
    OpenUrlCrossRef
  4. ↵
    1. Lichtner P. C.,
    2. Steefel C. I.,
    3. Oelkers E. H.
    1. Lichtner P. C.
    , 1996, Continuum formulation of multiphase multicomponent reactive transport, in Lichtner P. C., Steefel C. I., Oelkers E. H., editors, Reactive Transport in Porous Media: Reviews in Mineralogy, v. 34, v. 34, p. 1–81.
    OpenUrl
  5. ↵
    1. Braithwaite C. J. R.,
    2. Rizzi G.,
    3. Darke G.
    1. Machel H. G.
    , 2004, Concepts and models of dolomitization: A critical reappraisal, in Braithwaite C. J. R., Rizzi G., Darke G., editors, The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Geological Society, London, Special Publications, v. 235, p. 7–63, doi:http://dx.doi.org/10.1144/GSL.SP.2004.235.01.02
    OpenUrlCrossRef
  6. ↵
    1. Merino E.,
    2. Canals A.
    , 2011, Self-accelerating dolomite-for-calcite replacement: Self-organized dynamics of burial dolomitization and associated mineralization: American Journal of Science, v. 311, p. 573–607, doi:https://doi.org/10.2475/07.2011.01
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Morrow D. W.
    , 1982, Dolomite Part 1: The Chemistry of dolomitization and dolomite precipitation: Geoscience Canada, v. 9, n. 1, p. 5–11, doi:https://journals.lib.unb.ca/index.php/GC/article/view/3279
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Beaumont E. A.,
    2. Foster N. H.
    1. Morrow D. W.
    , 1988, The chemistry of dolomitization and dolomite precipitation, in Beaumont E. A., Foster N. H., editors, Reservoirs III—carbonates: AAPG Treatise of Petroleum Geology Reprint Series 5, p. 342–350.
  9. ↵
    1. McIlreath I. A.,
    2. Morrow D. W.
    1. Morrow D. W.
    , 1990, Dolomite - Part 1: The Chemistry of dolomitization and dolomite precipitation, in McIlreath I. A., Morrow D. W., editors, Diagenesis; Reprint Series 4; Geoscience Canada, Geological Association of Canada, p. 113–124.
  10. ↵
    1. Morrow D. W.
    , 2014, Zebra and boxwork fabrics in hydrothermal dolomites of northern Canada: Indicators for dilational fracturing, dissolution or in situ replacement?: Sedimentology, v. 61, issue 4, p. 915–951, doi:https://doi.org/10.1111/sed.12094
    OpenUrlCrossRefGeoRef
  11. ↵
    1. Morrow D. W.,
    2. Gorham B. L.,
    3. Wong J. N. Y.
    , 1993, Dolomite-calcite equilibrium at 220 to 240 °C at saturation vapour pressure: Experimental data: Geochimica et Cosmochimica Acta, v. 58, n. 1, p. 169–177, doi:https://doi.org/10.1016/0016-7037(94)90454-5
    OpenUrlCrossRef
  12. ↵
    1. Parkhurst D. L.,
    2. Appelo C. A. J.
    , 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey, Techniques and Methods, Book 6, chapter A43, 497 p., available at: doi:http://pubs.usgs.gov/tm/06/a43/
    OpenUrlCrossRef
  13. ↵
    1. Spencer R. J.
    , 1987, Origin of Ca-CI brines in Devonian formations, Western Canada Sedimentary Basin: Applied Geochemistry, v. 2, n. 4, p. 373–384, doi:https://doi.org/10.1016/0883-2927(87)90022-9
    OpenUrlCrossRefGeoRef
  14. ↵
    1. Zempolich W. G.,
    2. Baker P. A.
    , 1993, Experimental and Natural Mimetic Dolomitization of Aragonite Ooids: Journal Of Sedimentary Research, v. 63, n. 4, p. 596–606, doi:https://doi.org/10.1306/d4267b86-2b26-11d7-8648000102c1865d
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 318 (8)
American Journal of Science
Vol. 318, Issue 8
1 Oct 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comment on the “Self-accelerating dolomite-for-calcite replacement model: Self-organized dynamics of burial dolomitization and associated mineralization”, v. 311, n. 7, p. 573–607, by Enrique Merino and Àngels Canals
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Comment on the “Self-accelerating dolomite-for-calcite replacement model: Self-organized dynamics of burial dolomitization and associated mineralization”, v. 311, n. 7, p. 573–607, by Enrique Merino and Àngels Canals
David W. Morrow
American Journal of Science Oct 2018, 318 (8) 882-886; DOI: 10.2475/08.2018.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Comment on the “Self-accelerating dolomite-for-calcite replacement model: Self-organized dynamics of burial dolomitization and associated mineralization”, v. 311, n. 7, p. 573–607, by Enrique Merino and Àngels Canals
David W. Morrow
American Journal of Science Oct 2018, 318 (8) 882-886; DOI: 10.2475/08.2018.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire