Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

On the geological and scientific legacy of petrogenic organic carbon

Thomas M. Blattmann, Dominik Letsch and Timothy I. Eglinton
American Journal of Science October 2018, 318 (8) 861-881; DOI: https://doi.org/10.2475/08.2018.02
Thomas M. Blattmann
Department of Earth Sciences, Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: thomas.blattmann@erdw.ethz.ch
Dominik Letsch
Department of Earth Sciences, Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy I. Eglinton
Department of Earth Sciences, Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Arrhenius S.
    , 1896, XXXI, On the influence of carbonic acid in the air upon the temperature of the ground: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, series 5, v. 41, issue 251, p. 237–276, doi:https://doi.org/10.1080/14786449608620846
    OpenUrlCrossRef
  2. ↵
    1. Bataille C. P.,
    2. Mastalerz M.,
    3. Tipple B. J.,
    4. Bowen G. J.
    , 2013, Influence of provenance and preservation on the carbon isotope variations of dispersed organic matter in ancient floodplain sediments: Geochemistry, Geophysics, Geosystems, v. 14, n. 11, p. 4874–4891, doi:https://doi.org/10.1002/ggge.20294
    OpenUrlCrossRefGeoRef
  3. ↵
    1. Bauer J. E.,
    2. Spies R. B.,
    3. Vogel J. S.,
    4. Nelson D. E.,
    5. Southon J. R.
    , 1990, Radiocarbon evidence of fossil-carbon cycling in sediments of a nearshore hydrocarbon seep: Nature, v. 348, p. 230–232, doi:https://doi.org/10.1038/348230a0
    OpenUrlCrossRefGeoRef
  4. ↵
    1. Bernard S.,
    2. Benzerara K.,
    3. Beyssac O.,
    4. Balan E.,
    5. Brown G. E. Jr..
    , 2015, Evolution of the macromolecular structure of sporopollenin during thermal degradation: Heliyon, v. 1, n. 2, p. 1–28, doi:https://doi.org/10.1016/j.heliyon.2015.e00034
    OpenUrlCrossRef
  5. ↵
    1. Berner R. A.
    , 1989, Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 75, n. 1–2, p. 97–122, doi:https://doi.org/10.1016/0031-0182(89)90186-7
    OpenUrlCrossRef
  6. ↵
    1. Berner R. A.
    , 1990, Atmospheric carbon dioxide levels over Phanerozoic time: Science, v. 249, n. 4975, p. 1382–1386, doi:https://doi.org/10.1126/science.249.4975.1382
    OpenUrlAbstract/FREE Full Text
    1. Berner R. A.
    , 1995, A. G. Högbom and the development of the concept of the geochemical carbon cycle: American Journal of Science, v. 295, n. 5, p. 491–495, doi:https://doi.org/10.2475/ajs.295.5.491
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Berner R. A.
    , 1996, A call for the study of the history of geochemistry: Geochimica et Cosmochima Acta, v. 60, n. 9, p. 1463, doi:https://doi.org/10.1016/0016-7037(96)85790-5
    OpenUrlCrossRef
  8. ↵
    1. Berner R. A.
    , 2006, GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2: Geochimica et Cosmochimica Acta, v. 70, n. 23, p. 5653–5664, doi:https://doi.org/10.1016/j.gca.2005.11.032
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Berner R. A.,
    2. Maasch K. A.
    , 1996, Chemical weathering and controls on atmospheric O2 and CO2: Fundamental principles were enunciated by J.J. Ebelmen in 1845: Geochimica et Cosmochimica Acta, v. 60, n. 9, p. 1633–1637, doi:https://doi.org/10.1016/0016-7037(96)00104-4
    OpenUrlCrossRefGeoRefWeb of Science
  10. ↵
    1. Beyssac O.,
    2. Rumble D.
    , 2014, Graphitic carbon: A ubiquitous, diverse, and useful geomaterial: Elements, v. 10, n. 6, p. 415–420, doi:https://doi.org/10.2113/gselements.10.6.415
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Dowdeswell J. A.,
    2. Scourse J. D.
    1. Bischof J.,
    2. Koch J.,
    3. Kubisch M.,
    4. Spielhagen R. F.,
    5. Thiede J.
    , 1990, Nordic Seas surface ice drift reconstructions: Evidence from ice rafted coal fragments during oxygen isotope stage 6, in Dowdeswell J. A., Scourse J. D., editors, Glacimarine Environments: Processes and Sediments: Geological Society, London, Special Publications, v. 53, p. 235–251, doi:https://doi.org/10.1144/GSL.SP.1990.053.01.13
    OpenUrlCrossRef
  12. ↵
    1. Blair N. E.,
    2. Aller R. C.
    , 2012, The fate of terrestrial organic carbon in the marine environment: Annual Review of Marine Science, v. 4, p. 401–423, doi:https://doi.org/10.1146/annurev-marine-120709-142717
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Blair N. E.,
    2. Leithold E. L.,
    3. Ford S. T.,
    4. Peeler K. A.,
    5. Holmes J. C.,
    6. Perkey D. W.
    , 2003, The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system: Geochimica et Cosmochimica Acta, v. 67, n. 1, p. 63–73, doi:https://doi.org/10.1016/S0016-7037(02)01043-8
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Blattmann T. M.,
    2. Zhang Y.,
    3. Zhao Y.,
    4. Wen K.,
    5. Lin S.,
    6. Li J.,
    7. Wacker L.,
    8. Haghipour N.,
    9. Plötze M.,
    10. Liu Z.,
    11. Eglinton T. I.
    , 2018, Contrasting fates of petrogenic and biospheric carbon in the South China Sea: Geophysical Research Letters, doi:https://doi.org/10.1029/2018GL079222
    OpenUrlCrossRef
  15. ↵
    1. Blystad P.,
    2. Selsing L.
    , 1989, Some erroneous radiocarbon dates of lacustrine sediments: Norsk geologisk tidsskrift, v. 69, n. 4, p. 201–208.
    OpenUrlGeoRef
  16. ↵
    1. Bolton E. W.,
    2. Berner R. A.,
    3. Petsch S. T.
    , 2006, The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modeling: American Journal of Science, v. 306, n. 8, p. 575–615, doi:https://doi.org/10.2475/08.2006.01
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Bordovskiy O. K.
    , 1965, Sources of organic matter in marine basins: Marine Geology, v. 3, n. 1–2, p. 5–31, doi:https://doi.org/10.1016/0025-3227(65)90003-4
    OpenUrlCrossRefGeoRef
  18. ↵
    1. Bouchez J.,
    2. Beyssac O.,
    3. Galy V.,
    4. Gaillardet J.,
    5. France-Lanord C.,
    6. Maurice L.,
    7. Moreira-Turcq P.
    , 2010, Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2: Geology, v. 38, n. 3, p. 255–258, doi:https://doi.org/10.1130/G30608.1
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Boucsein B.,
    2. Stein R.
    , 2009, Black shale formation in the late Paleocene/early Eocene Arctic Ocean and paleoenvironmental conditions: New results from a detailed organic petrological study: Marine and Petroleum Geology, v. 26, n. 3, p. 416–426, doi:https://doi.org/10.1016/j.marpetgeo.2008.04.001
    OpenUrlCrossRefGeoRef
  20. ↵
    1. Bray E.,
    2. Burke W.
    , 1960, Socony Mobil Radiocarbon Dates I: American Journal of Science, Radiocarbon Supplement, v. 2, p. 97–111, doi:https://doi.org/10.1017/S1061592X00020639
    OpenUrlCrossRef
  21. ↵
    1. Brooks J.,
    2. Shaw G.
    , 1978, Sporopollenin: A review of its chemistry, palaeochemistry and geochemistry: Grana, v. 17, n. 2, p. 91–97, doi:https://doi.org/10.1080/00173137809428858
    OpenUrlCrossRefGeoRef
  22. ↵
    1. Brotzen F.
    , 1961, An interstadial (radiocarbon dated) and the substages of the last glaciation in Sweden: Geologiska Föreningen i Stockholm Förhandlingar, v. 83, n. 2, p. 144–150, doi:https://doi.org/10.1080/11035896109449594
    OpenUrlCrossRef
  23. ↵
    1. Buseck P. R.,
    2. Beyssac O.
    , 2014, From organic matter to graphite: Graphitization: Elements, v. 10, n. 6, p. 421–426, doi:https://doi.org/10.2113/gselements.10.6.421
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Campbell I. H.,
    2. Allen C. M.
    , 2008, Formation of supercontinents linked to increases in atmospheric oxygen: Nature Geoscience, v. 1, p. 554–558, doi:https://doi.org/10.1038/ngeo259
    OpenUrlCrossRef
  25. ↵
    1. Caraco N.,
    2. Bauer J. E.,
    3. Cole J. J.,
    4. Petsch S.,
    5. Raymond P.
    , 2010, Millennial-aged organic carbon subsidies to a modern river food web: Ecology, v. 91, n. 8, p. 2385–2393, doi:https://doi.org/10.1890/09-0330.1
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    1. Cathalot C.,
    2. Rabouille C.,
    3. Tisnérat-Laborde N.,
    4. Toussaint F.,
    5. Kerhervé P.,
    6. Buscail R.,
    7. Loftis K.,
    8. Sun M. Y.,
    9. Tronczynski J.,
    10. Azoury S.,
    11. Lansard B.,
    12. Treignier C.,
    13. Pastor L.,
    14. Tesi T.
    , 2013, The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (δ13C, Δ14C) and organic tracers: Geochimica et Cosmochimica Acta, v. 118, Supplement C, p. 33–55, doi:https://doi.org/10.1016/j.gca.2013.05.001
    OpenUrlCrossRefGeoRef
  27. ↵
    1. Chamberlin T. C.
    , 1899a, An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis: The Journal of Geology, v. 7, n. 6, p. 545–584, doi:https://doi.org/10.1086/608449
    OpenUrlCrossRef
  28. ↵
    1. Chamberlin T. C.
    , 1899b, An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis (continued): The Journal of Geology, v. 7, n. 7, p. 667–685, doi:https://doi.org/10.1086/608483
    OpenUrlCrossRef
  29. ↵
    1. Chang S.,
    2. Berner R. A.
    , 1999, Coal weathering and the geochemical carbon cycle: Geochimica et Cosmochimica Acta, v. 63, n. 19–20, p. 3301–3310, doi:https://doi.org/10.1016/S0016-7037(99)00252-5
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Clark K. E.,
    2. Hilton R. G.,
    3. West A. J.,
    4. Robles Caceres A.,
    5. Gröcke D. R.,
    6. Marthews T. R.,
    7. Ferguson R. I.,
    8. Asner G. P.,
    9. New M.,
    10. Malhi Y.
    , 2017, Erosion of organic carbon from the Andes and its effects on ecosystem carbon dioxide balance: Journal of Geophysical Research, Biogeosciences, v. 122, n. 3, p. 449–469, doi:https://doi.org/10.1002/2016JG003615
    OpenUrlCrossRef
  31. ↵
    1. Cui X.,
    2. Bianchi T. S.,
    3. Jaeger J. M.,
    4. Smith R. W.
    , 2016, Biospheric and petrogenic organic carbon flux along southeast Alaska: Earth and Planetary Science Letters, v. 452, p. 238–246, doi:https://doi.org/10.1016/j.epsl.2016.08.002
    OpenUrlCrossRef
  32. ↵
    1. Daines S. J.,
    2. Mills B. J. W.,
    3. Lenton T. M.
    , 2017, Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon: Nature Communications, v. 8, article number 14379, doi:https://doi.org/10.1038/ncomms14379
    OpenUrlCrossRef
  33. ↵
    1. Dalai T. K.,
    2. Singh S. K.,
    3. Trivedi J. R.,
    4. Krishnaswami S.
    , 2002, Dissolved rhenium in the Yamuna river system and the Ganga in the Himalaya: Role of black shale weathering on the budgets of Re, Os, and U in rivers and CO2 in the atmosphere: Geochimica et Cosmochimica Acta, v. 66, n. 1, p. 29–43, doi:https://doi.org/10.1016/S0016-7037(01)00747-5
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Davis M. B.
    , 1961, The problem of rebedded pollen in late-glacial sediments at Taunton, Massachusetts: American Journal of Science, v. 259, n. 3, p. 211–222, doi:https://doi.org/10.2475/ajs.259.3.211
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Falkowski P. G.,
    2. Freeman K. H.
    1. Derry L. A.
    , 2014, Organic carbon cycling and the lithosphere, in Falkowski P. G., Freeman K. H., editors, Organic Geochemistry: Treatise on Geochemistry, second edition, v. 12, p. 239–249, doi:https://doi.org/10.1016/B978-0-08-095975-7.01014-7
    OpenUrlCrossRef
  36. ↵
    1. Dickens A. F.,
    2. Gelinas Y.,
    3. Masiello C. A.,
    4. Wakeham S.,
    5. Hedges J. I.
    , 2004, Reburial of fossil organic carbon in marine sediments: Nature, v. 427, p. 336–339., doi:https://doi.org/10.1038/nature02299
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    1. Di-Giovanni C.,
    2. Disnar J. R.,
    3. Macaire J. J.
    , 2002, Estimation of the annual yield of organic carbon released from carbonates and shales by chemical weathering: Global and Planetary Change, v. 32, n. 2–3, p. 195–210, doi:https://doi.org/10.1016/S0921-8181(01)00141-2
    OpenUrlCrossRefGeoRef
  38. ↵
    1. Donner J. J.,
    2. Jungner H.
    , 1973, The effect of re-deposited organic material on radiocarbon measurements of clay samples from Somero, southwestern Finland: Geologiska Föreningen i Stockholm Förhandlingar, v. 95, n. 2, p. 267–268, doi:https://doi.org/10.1080/11035897309454223
    OpenUrlCrossRef
  39. ↵
    1. Donner J. J.,
    2. Jungner H.
    , 1974, Errors in the radiocarbon dating of deposits in Finland from the time of deglaciation: Bulletin of the Geological Society of Finland, v. 46, p. 139–144, doi:https://doi.org/10.17741/bgsf/46.2.006
    OpenUrlCrossRefGeoRef
  40. ↵
    1. Dow W. G.
    , 1977, Kerogen studies and geological interpretations: Journal of Geochemical Exploration v. 7, p. 79–99, doi:https://doi.org/10.1016/0375-6742(77)90078-4
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Drenzek N. J.,
    2. Montluçon D. B.,
    3. Yunker M. B.,
    4. Macdonald R. W.,
    5. Eglinton T. I.
    , 2007, Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements: Marine Chemistry, v. 103, n. 1–2, p. 146–162, doi:https://doi.org/10.1016/j.marchem.2006.06.017
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Durand B.
    1. Durand B.
    , 1980, Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen, in Durand B., editor, Kerogen: Insoluble organic matter from sedimentary rocks: Éditions Technip, p. 13–34.
  43. ↵
    1. Ebelmen J. J.
    , 1845, Sur les produits de la décomposition des espèces minérales de la famille des silicates: Annales des Mines, v. 7, p. 3–66.
    OpenUrl
  44. ↵
    1. Eglinton T. I.,
    2. Aluwihare L. I.,
    3. Bauer J. E.,
    4. Druffel E. R. M.,
    5. McNichol A. P.
    , 1996, Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating: Analytical Chemistry, v. 68, n. 5, p. 904–912, doi:https://doi.org/10.1021/ac9508513
    OpenUrlCrossRefPubMed
  45. ↵
    1. Eglinton T. I.,
    2. Benitez-Nelson B. C.,
    3. Pearson A.,
    4. McNichol A. P.,
    5. Bauer J. E.,
    6. Druffel E. R. M.
    , 1997, Variability in radiocarbon ages of individual organic compounds from marine sediments: Science, v. 277, n. 5327, p. 796–799, doi:https://doi.org/10.1126/science.277.5327.796
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Emery K. O.
    , 1960, The sea off southern California: A modern habitat of petroleum: New York, John Wiley and Sons, 366 p.
  47. ↵
    1. Emery K. O.,
    2. Bray E. E.
    , 1962, Radiocarbon dating of California basin sediments: American Association of Petroleum Geologists Bulletin, v. 46, n. 10, 1839–1856.
    OpenUrlAbstract
  48. ↵
    1. Eshet Y.,
    2. Druckman Y.,
    3. Cousminer H. L.,
    4. Habib D.,
    5. Drugg W. S.
    , 1988, Reworked palynomorphs and their use in the determination of sedimentary cycles: Geology, v. 16, n. 7, p. 662–665, doi:https://doi.org/10.1130/0091-7613(1988)016<0662:RPATUI>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Fowler A. J.,
    2. Gillespie R.,
    3. Hedges R. E. M.
    , 1986, Radiocarbon dating of sediments: Radiocarbon v. 28, n. 2A. p. 441–450, doi:https://doi.org/10.1017/S0033822200007578
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Tissot B.,
    2. Bienner F.
    1. Gadel F.,
    2. Ragot J. P.
    , 1974, Sur l'allochtonie de la fraction organique particulaire des dépôts Quaternaires Récents du Golfe du Lion, in Tissot B., Bienner F., editors, Advances in organic geochemisty 1973: Proceedings of the 6th International Meeting on Organic Geochemistry, p. 619–628.
  51. ↵
    1. Galvez M. E.,
    2. Gaillardet J.
    , 2012, Historical constraints on the origins of the carbon cycle concept: Comptes Rendus Geoscience, v. 344, n. 11–12, p. 549–567, doi:https://doi.org/10.1016/j.crte.2012.10.006
    OpenUrlCrossRef
  52. ↵
    1. Galvez M. E.,
    2. Beyssac O.,
    3. Martinez I.,
    4. Benzerara K.,
    5. Chaduteau C.,
    6. Malvoisin B.,
    7. Malavieille J.
    , 2013, Graphite formation by carbonate reduction during subduction: Nature Geoscience, v. 6, p. 473–477, doi:https://doi.org/10.1038/ngeo1827
    OpenUrlCrossRef
  53. ↵
    1. Galy V.,
    2. France-Lanord C.,
    3. Beyssac O.,
    4. Faure P.,
    5. Kudrass H.,
    6. Palhol F.
    , 2007, Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system: Nature, v. 450, p. 407–410, doi:https://doi.org/10.1038/nature06273
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  54. ↵
    1. Galy V.,
    2. Beyssac O.,
    3. France-Lanord C.,
    4. Eglinton T. I.
    , 2008, Recycling of graphite during Himalayan erosion: A geological stabilization of carbon in the crust: Science, v. 322, n. 5903, p. 943–945, doi:https://doi.org/10.1126/science.1161408
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Galy V.,
    2. Peucker-Ehrenbrink B.,
    3. Eglinton T. I.
    , 2015, Global carbon export from the terrestrial biosphere controlled by erosion: Nature, v. 521, p. 204–207, doi:https://doi.org/10.1038/nature14400
    OpenUrlCrossRefGeoRefPubMed
  56. ↵
    1. Giger W.,
    2. Sturm M.,
    3. Sturm H.,
    4. Schaffner C.,
    5. Bonani G.,
    6. Balzer R.,
    7. Hofmann H. J.,
    8. Morenzoni E.,
    9. Nessi M.,
    10. Suter M.,
    11. Wölfli W.
    , 1984, 14C/12C-ratios in organic matter and hydrocarbons extracted from dated lake sediments: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 5, n. 2, p. 394–397, doi:https://doi.org/10.1016/0168-583X(84)90548-2
    OpenUrlCrossRef
  57. ↵
    1. Guy-Ohlson D.,
    2. Lindqvist B.,
    3. Norling E.
    , 1987, Reworked Carboniferous spores in Swedish Mesozoic sediments: Geologiska Föreningen i Stockholm Förhandlingar, v. 109, n. 4, p. 295–306, doi:https://doi.org/10.1080/11035898709453093
    OpenUrlCrossRef
  58. ↵
    1. Hallet B.,
    2. Hunter L.,
    3. Bogen J.
    , 1996, Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications: Global and Planetary Change, v. 12, n. 1–4, p. 213–235, doi:https://doi.org/10.1016/0921-8181(95)00021-6
    OpenUrlCrossRefGeoRefWeb of Science
  59. ↵
    1. Harland W. B.
    , 1964, Critical evidence for a great infra-Cambrian glaciation: Geologische Rundschau, v. 54, n. 1, p. 45–61, doi:https://doi.org/10.1007/BF01821169
    OpenUrlCrossRef
  60. ↵
    1. Hayes J. M.,
    2. Waldbauer J. R.
    , 2006, The carbon cycle and associated redox processes through time: Philosophical Transactions of the Royal Society B: Biological Sciences, v. 361, n. 1470, p. 931–950, doi:https://doi.org/10.1098/rstb.2006.1840
    OpenUrlCrossRef
  61. ↵
    1. Hedges J. I.
    , 1992, Global biogeochemical cycles: Progress and problems: Marine Chemistry, v. 39, n. 1–3, p. 67–93, doi:https://doi.org/10.1016/0304-4203(92)90096-S
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Hefter J.,
    2. Naafs B. D. A.,
    3. Zhang S.
    , 2017, Tracing the source of ancient reworked organic matter delivered to the North Atlantic Ocean during Heinrich Events: Geochimica et Cosmochimica Acta, v. 205, p. 211–225, doi:https://doi.org/10.1016/j.gca.2017.02.008
    OpenUrlCrossRef
  63. ↵
    1. Heinonen L.
    , 1957, Studies on the microfossils in the tills of the North European glaciation: Suomalainen Tiedeakatemia, v. 52, p. 1–92.
    OpenUrl
  64. ↵
    1. Hemingway J. D.,
    2. Hilton R. G.,
    3. Hovius N.,
    4. Eglinton T. I.,
    5. Haghipour N.,
    6. Wacker L.,
    7. Chen M.-C.,
    8. Galy V. V.
    , 2018, Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils: Science, v. 360, n. 6385, p. 209–212, doi:https://doi.org/10.1126/science.aao6463
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Herman F.,
    2. Beyssac O.,
    3. Brughelli M.,
    4. Lane S. N.,
    5. Leprince S.,
    6. Adatte T.,
    7. Lin J. Y. Y.,
    8. Avouac J.-P.,
    9. Cox S. C.
    , 2015, Erosion by an Alpine glacier: Science, v. 350, n. 6257, p. 193–195, doi:https://doi.org/10.1126/science.aab2386
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Hilton R. G.
    , 2017, Climate regulates the erosional carbon export from the terrestrial biosphere: Geomorphology, v. 277, p. 118–132, doi:https://doi.org/10.1016/j.geomorph.2016.03.028
    OpenUrlCrossRef
  67. ↵
    1. Hilton R. G.,
    2. Galy A.,
    3. Hovius N.,
    4. Chen M.-C.,
    5. Horng M.-J.,
    6. Chen H.
    , 2008, Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains: Nature Geoscience, v. 1, p. 759–762, doi:https://doi.org/10.1038/ngeo333
    OpenUrlCrossRef
  68. ↵
    1. Hilton R. G.,
    2. Galy A.,
    3. Hovius N.,
    4. Horng M.-J.,
    5. Chen H.
    , 2011, Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: An orogenic carbon sequestration mechanism: Geology, v. 39, n. 1, p. 71–74, doi:https://doi.org/10.1130/G31352.1
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Hilton R. G.,
    2. Gaillardet J.,
    3. Calmels D.,
    4. Birck J.-L.
    , 2014, Geological respiration of a mountain belt revealed by the trace element rhenium: Earth and Planetary Science Letters, v. 403, p. 27–36, doi:https://doi.org/10.1016/j.epsl.2014.06.021
    OpenUrlCrossRefGeoRef
  70. ↵
    1. Hilton R. G.,
    2. Galy V.,
    3. Gaillardet J.,
    4. Dellinger M.,
    5. Bryant C.,
    6. O'Regan M.,
    7. Gröcke D. R.,
    8. Coxall H.,
    9. Bouchez J.,
    10. Calmels D.
    , 2015, Erosion of organic carbon in the Arctic as a geological carbon dioxide sink: Nature, v. 524, p. 84–87, doi:https://doi.org/10.1038/nature14653
    OpenUrlCrossRefGeoRefPubMed
  71. ↵
    1. Hoffman P. F.,
    2. Kaufman A. J.,
    3. Halverson G. P.,
    4. Schrag D. P.
    , 1998, A Neoproterozoic Snowball Earth: Science, v. 281, n. 5381, p. 1342–1346, doi:https://doi.org/10.1126/science.281.5381.1342
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. Hoffman P. F.,
    2. Abbot D. S.,
    3. Ashkenazy Y.,
    4. Benn D. I.,
    5. Brocks J. J.,
    6. Cohen P. A.,
    7. Cox G. M.,
    8. Creveling J. R.,
    9. Donnadieu Y.,
    10. Erwin D. H.,
    11. Fairchild I. J.,
    12. Ferreira D.,
    13. Goodman J. C.,
    14. Halverson G. P.,
    15. Jansen M. F.,
    16. Le Hir G.,
    17. Love G. D.,
    18. Macdonald F. A.,
    19. Maloof A. C.,
    20. Partin C. A.,
    21. Ramstein G.,
    22. Rose B. E. J.,
    23. Rose C. V.,
    24. Sadler P. M.,
    25. Tziperman E.,
    26. Voigt A.,
    27. Warren S. G.
    , 2017, Snowball Earth climate dynamics and Cryogenian geology-geobiology: Science Advances, v. 3, n. 11, doi:https://doi.org/10.1126/sciadv.1600983
    OpenUrlCrossRef
  73. ↵
    1. Hölemann J. A.,
    2. Henrich R.
    , 1994, Allochthonous versus autochthonous organic matter in Cenozoic sediments of the Norwegian Sea: Evidence for the onset of glaciations in the northern hemisphere: Marine Geology, v. 121, n. 1–2, p. 87–103, doi:https://doi.org/10.1016/0025-3227(94)90159-7
    OpenUrlCrossRefGeoRefWeb of Science
  74. ↵
    1. Hooykaas R.
    , 1963, Natural law and divine miracle – The principle of uniformity in geology, biology and theology: Leiden, The Netherlands, E. J. Brill, 237 p.
  75. ↵
    1. Horan K.,
    2. Hilton R. G.,
    3. Selby D.,
    4. Ottley C. J.,
    5. Gröcke D. R.,
    6. Hicks M.,
    7. Burton K. W.
    , 2017, Mountain glaciation drives rapid oxidation of rock-bound organic carbon: Science Advances, v. 3, n. 10, doi:https://doi.org/10.1126/sciadv.1701107
    OpenUrlCrossRef
  76. ↵
    1. Horn D. R.
    , ms, 1967, Recent marine sediments and submarine topography, Sverdrup Islands, Canadian Arctic Archipelago: Austin, Texas, University of Texas, Austin, Ph. D. thesis, 362 p.
  77. ↵
    1. Hörnsten Å.,
    2. Olsson I. U.
    , 1964, En C14-Datering Av Glaciallera Från Lugnvik, Ångermanland: Geologiska Föreningen i Stockholm Förhandlingar, v. 86, n. 2, p. 206–210, doi:https://doi.org/10.1080/11035896409448898
    OpenUrlCrossRef
  78. ↵
    1. Hough J. L.
    , 1934, Redeposition of microscopic Devonian plant fossils: The Journal of Geology, v. 42, n. 6, p. 646–648, doi:https://doi.org/10.1086/624220
    OpenUrlCrossRefGeoRef
  79. ↵
    1. Jaffe L. A.,
    2. Peucker-Ehrenbrink B.,
    3. Petsch S. T.
    , 2002, Mobility of rhenium, platinum group elements and organic carbon during black shale weathering: Earth and Planetary Science Letters, v. 198, n. 3–4, p. 339–353, doi:https://doi.org/10.1016/S0012-821X(02)00526-5
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Jiang G.,
    2. Wang X.,
    3. Shi X.,
    4. Xiao S.,
    5. Zhang S.,
    6. Dong J.
    , 2012, The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze platform: Earth and Planetary Science Letters, v. 317–318, p. 96–110, doi:https://doi.org/10.1016/j.epsl.2011.11.018
    OpenUrlCrossRef
  81. ↵
    1. Johnson M. D.,
    2. Thomas B. W.
    , 1884, Report on the committee on the microscopic organisms in the bowlder clays of Chicago and vicinity: Bulletin of the Chicago Academy of Sciences, v. 1, p. 35–40.
    OpenUrl
  82. ↵
    1. Johnston D. T.,
    2. Macdonald F. A.,
    3. Gill B. C.,
    4. Hoffman P. F.,
    5. Schrag D. P.
    , 2012, Uncovering the Neoproterozoic carbon cycle: Nature, v. 483, p. 320–323, doi:https://doi.org/10.1038/nature10854
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  83. ↵
    1. Brooks J.,
    2. Welte D.
    1. Jones R. W.
    , 1987, Organic facies, in Brooks J., Welte D., editors, Advances in petroleum geochemistry: Amsterdam, Elsevier, p. 1–90.
  84. ↵
    1. Kao S.-J.,
    2. Liu K.-K.
    , 1996, Particulate organic carbon export from a subtropical mountainous river (Lanyang Hsi) in Taiwan: Limnology and Oceanography, v. 41, n. 8, p. 1749–1757, doi:https://doi.org/10.4319/lo.1996.41.8.1749
    OpenUrlCrossRefWeb of Science
  85. ↵
    1. Kao S.-J.,
    2. Hilton R. G.,
    3. Selvaraj K.,
    4. Dai M.,
    5. Zehetner F.,
    6. Huang J.-C.,
    7. Hsu S.-C.,
    8. Sparkes R.,
    9. Liu J. T.,
    10. Lee T.-Y.,
    11. Yang J.-Y. T.,
    12. Galy A.,
    13. Xu X.,
    14. Hovius N.
    , 2014, Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: Mountain building and atmospheric carbon dioxide sequestration: Earth Surface Dynamics, v. 2, p. 127, doi:https://doi.org/10.5194/esurf-2-127-2014
    OpenUrlCrossRef
  86. ↵
    1. Kemp A. L. W.,
    2. Johnston L. M.
    , 1979, Diagenesis of organic matter in the sediments of lakes Ontario, Erie, and Huron: Journal of Great Lakes Research, v. 5, n. 1, p. 1–10, doi:https://doi.org/10.1016/S0380-1330(79)72121-6
    OpenUrlCrossRefGeoRef
  87. ↵
    1. Kennicutt M. C.,
    2. Barker C.,
    3. Brooks J. M.,
    4. DeFreitas D. A.,
    5. Zhu G. H.
    , 1987, Selected organic matter source indicators in the Orinoco, Nile and Changjiang deltas: Organic Geochemistry, v. 11, n. 1, p. 41–51, doi:https://doi.org/10.1016/0146-6380(87)90050-7
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. King J. E.,
    2. Lineback J. A.,
    3. Gross D. L.
    , 1976, Palynology and sedimentology of Holocene deposits in southern Lake Michigan: Illinois State Geological Survey, v. 496 p. 1–24.
    OpenUrl
  89. ↵
    1. Lenton T. M.,
    2. Daines S. J.,
    3. Mills B. J. W.
    , 2018, COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time: Earth-Science Reviews, v. 178, p. 1–28, doi:https://doi.org/10.1016/j.earscirev.2017.12.004
    OpenUrlCrossRef
  90. ↵
    1. Letsch D.
    , 2015, R. A. Daly's early model of seafloor generation 40 years before the Vine-Matthews hypothesis: An outstanding theoretical achievement inspired by field work on St. Helena in 1921-1922: Canadian Journal of Earth Sciences, v. 52, n. 10, p. 893–902, doi:https://doi.org/10.1139/cjes-2015-0040
    OpenUrlAbstract/FREE Full Text
    1. Libby W. F.
    , 1946, Atmospheric helium three and radiocarbon from cosmic radiation: Physical Review, v. 69, p. 671–672, doi:https://doi.org/10.1103/PhysRev.69.671.2
    OpenUrlCrossRef
  91. ↵
    1. Littke R.,
    2. Sachsenhofer R. F.
    , 1994, Organic petrology of deep sea sediments: A compilation of results from the ocean drilling program and the deep sea drilling project: Energy & Fuels, v. 8, n. 6, p. 1498–1512, doi:https://doi.org/10.1021/ef00048a041
    OpenUrlCrossRef
  92. ↵
    1. Longworth B. E.,
    2. Petsch S. T.,
    3. Raymond P. A.,
    4. Bauer J. E.
    , 2007, Linking lithology and land use to sources of dissolved and particulate organic matter in headwaters of a temperate, passive-margin river system: Geochimica et Cosmochimica Acta, v. 71, n. 17, p. 4233–4250, doi:https://doi.org/10.1016/j.gca.2007.06.056
    OpenUrlCrossRef
  93. ↵
    1. Lyell C.
    , 1833, Principles of geology, v. 2, second edition, corrected: London, England, Murray, 338 p.
    OpenUrl
  94. ↵
    1. Menard H. W.
    , 1986, The ocean of truth – A personal history of global tectonics: Princeton, New Jersey, Princeton University Press, 353 p., doi:https://doi.org/10.1515/9781400854684
  95. ↵
    1. Meybeck M.
    , 1993, Riverine transport of atmospheric carbon: Sources, global typology and budget: Water, Air, and Soil Pollution, v. 70, n. 1–4, p. 443–463, doi:http://doi.org/10.1007/BF01105015.
    OpenUrlCrossRefGeoRefWeb of Science
  96. ↵
    1. Moran J. E.,
    2. Fehn U.,
    3. Teng R. T. D.
    , 1998, Variations in 129I/127I ratios in recent marine sediments: Evidence for a fossil organic component: Chemical Geology, v. 152, n. 1–2, p. 193–203, doi:https://doi.org/10.1016/S0009-2541(98)00106-5
    OpenUrlCrossRefGeoRefWeb of Science
  97. ↵
    1. Muller J.
    , 1959, Palynology of recent Orinoco delta and shelf sediments: Reports of the Orinoco shelf expedition: Micropaleontology, v. 5, n. 1, p. 1–32, doi:https://doi.org/10.2307/1484153
    OpenUrlAbstract/FREE Full Text
  98. ↵
    1. Nibourel L.,
    2. Herman F.,
    3. Cox S. C.,
    4. Beyssac O.,
    5. Lavé J.
    , 2015, Provenance analysis using Raman spectroscopy of carbonaceous material: A case study in the Southern Alps of New Zealand: Journal of Geophysical Research: Earth Surface, v. 120, n. 10, p. 2056–2079, doi:https://doi.org/10.1002/2015JF003541
    OpenUrlCrossRef
  99. ↵
    1. Østrem G.
    , 1965, Problems of Dating Ice-Cored Moraines: Geografiska Annaler, Series A, Physical Geography, v. 47, n. 1, p. 1–38, doi:https://doi.org/10.1080/04353676.1965.11879710
    OpenUrlCrossRef
  100. ↵
    1. Falkowski P. G.,
    2. Freeman K. H.
    1. Petsch S. T.
    , 2014, Weathering of organic carbon, in Falkowski P. G., Freeman K. H., editors, Organic Geochemistry: Treatise on Geochemistry, second edition, v. 12, p. 217–238, doi:https://doi.org/10.1016/B978-0-08-095975-7.01013-5
    OpenUrlCrossRef
  101. ↵
    1. Petsch S. T.,
    2. Eglinton T. I.,
    3. Edwards K. J.
    , 2001, 14C-Dead living biomass: Evidence for microbial assimilation of ancient organic carbon during shale weathering: Science, v. 292, n. 5519, p. 1127–1131, doi:https://doi.org/10.1126/science.1058332
    OpenUrlAbstract/FREE Full Text
  102. ↵
    1. Rankama K.,
    2. Sahama T. G.
    , 1950, Geochemistry: Chicago, Illinois, The University of Chicago Press, 912 p.
  103. ↵
    1. Rosell-Melé A.,
    2. Maslin M. A.,
    3. Maxwell J. R.,
    4. Schaeffer P.
    , 1997, Biomarker evidence for “Heinrich” events: Geochimica et Cosmochimica Acta, v. 61, n. 8, p. 1671–1678, doi:https://doi.org/10.1016/S0016-7037(97)00046-X
    OpenUrlCrossRefGeoRefWeb of Science
  104. ↵
    1. Rowland S. J.,
    2. Maxwell J. R
    , 1984, Reworked triterpenoid and steroid hydrocarbons in a recent sediment: Geochimica et Cosmochimica Acta, v. 48, n. 4. p. 617–624, doi:https://doi.org/10.1016/0016-7037(84)90090-5
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Tissot B.,
    2. Bienner F.
    1. Sackett W. M.,
    2. Eadie B. J.,
    3. Exner M. E.
    , 1974a, Stable isotope composition of organic carbon in recent Antarctic sediments, in Tissot B., Bienner F., editors, Advances in organic geochemisty 1973: Paris, Editions Tech, Proceedings of the 6th international meeting on organic geochemistry, p. 661–671.
  106. ↵
    1. Sackett W. M.,
    2. Poag C. W.,
    3. Eadie B. J.
    , 1974b, Kerogen recycling in the Ross Sea, Antarctica: Science, v. 185, n. 4156, p. 1045–1047, doi:https://doi.org/10.1126/science.185.4156.1045
    OpenUrlAbstract/FREE Full Text
  107. ↵
    1. Sauramo M. R.
    , 1938, The mode of occurrence of carbon in Quaternary deposits: Suomen Kemistilehti B, v. 3, p. 11–16.
    OpenUrl
  108. ↵
    1. Sauramo M. R.
    , 1939, Graphit als Bestandteil der baltischen Sedimente: Geologie der Meere und Binnengewässer, v. 3, p. 1–8.
    OpenUrl
  109. ↵
    1. Schillawski S.,
    2. Petsch S. T.
    , 2008, Release of biodegradable dissolved organic matter from ancient sedimentary rocks: Global Biogeochemical Cycles, v. 22, n. 3, p. 1–8, doi:https://doi.org/10.1029/2007GB002980
    OpenUrlCrossRef
  110. ↵
    1. Dilek Y.,
    2. Newcomb S.
    1. Şengör A. M. C.
    , 2003, The repeated rediscovery of mélanges and its implications for the possibility and the role of objective evidence in the scientific enterprise, in Dilek Y., Newcomb S., editors, Ophiolite concept and the evolution of geological thought: Geological Society of America Special Paper, v. 373, p. 385–445, doi:https://doi.org/10.1130/0-8137-2373-6.385
    OpenUrlCrossRef
  111. ↵
    1. Smith P. V. Jr..
    , 1952, The occurrence of hydrocarbons in recent sediments from the Gulf of Mexico: Science, v. 116, n. 3017, p. 437–439, doi:https://doi.org/10.1126/science.116.3017.437
    OpenUrlFREE Full Text
  112. ↵
    1. Smith P. V. Jr..
    , 1954, Studies on origin of petroleum; occurrence of hydrocarbons in recent sediments: American Association of Petroleum Geologists Bulletin, v. 38, n. 3, p. 377–404.
    OpenUrlAbstract
  113. ↵
    1. Stanley E. A.
    , 1965, Use of reworked pollen and spores for determining the Pleistocene - Recent and the Intra-Pleistocene boundaries: Nature, v. 206, p. 289–291, doi:https://doi.org/10.1038/206289a0
    OpenUrlCrossRefGeoRef
  114. ↵
    1. Stanley E. A.
    , 1966, The problem of reworked pollen and spores in marine sediments: Marine Geology, v. 4, n. 6, p. 397–408, doi:https://doi.org/10.1016/0025-3227(66)90008-9
    OpenUrlCrossRefGeoRef
  115. ↵
    1. Bless M. J. M.,
    2. Bouckaert J.,
    3. Paproth E.
    1. Streel M.,
    2. Bless M. J. M.
    , 1980, Occurrence and significance of reworked palynomorphs, in Bless M. J. M., Bouckaert J., Paproth E., editors, Pre-Permian around the Brabant Massif in Belgium, the Netherlands and Germany: Mededelingen Rijks Geologische Dienst, v. 32, n. 10, p. 69–80.
    OpenUrl
  116. ↵
    1. Tyson R. V.
    , 1995, Sedimentary organic matter: Torquay, Devon, England, Chapman and Hall, 615 p., doi:https://doi.org/10.1007/978-94-011-0739-6
    OpenUrlCrossRef
  117. ↵
    1. Vance D.,
    2. Teagle D. A. H.,
    3. Foster G. L.
    , 2009, Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets: Nature, v. 458, p. 493–496, doi:https://doi.org/10.1038/nature07828
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  118. ↵
    1. Vandenbroucke M.,
    2. Largeau C.
    , 2007, Kerogen origin, evolution and structure: Organic Geochemistry, v. 38, n. 5, p. 719–833, doi:https://doi.org/10.1016/j.orggeochem.2007.01.001
    OpenUrlCrossRefGeoRefWeb of Science
  119. ↵
    1. Wagner T.,
    2. Hölemann J. A.
    , 1995, Deposition of organic matter in the Norwegian-Greenland Sea during the past 2.7 million years: Quaternary Research, v. 44, n. 3, p. 355–366, doi:https://doi.org/10.1006/qres.1995.1080
    OpenUrlCrossRefGeoRef
  120. ↵
    1. Schneer C. J.
    1. Wegmann E.
    , 1969, Changing ideas about moving shorelines, in Schneer C. J., editor, Toward a history of geology: Cambridge, Massachusetts, MIT Press, p. 386–414.
  121. ↵
    1. Wilson L. R.
    , 1964, Recycling, stratigraphic leakage, and faulty techniques in palynology: Grana Palynologica, v. 5, n. 3, p. 425–436, doi:https://doi.org/10.1080/00173136409430029
    OpenUrlCrossRefGeoRef
PreviousNext
Back to top

In this issue

American Journal of Science: 318 (8)
American Journal of Science
Vol. 318, Issue 8
1 Oct 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
On the geological and scientific legacy of petrogenic organic carbon
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 12 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
On the geological and scientific legacy of petrogenic organic carbon
Thomas M. Blattmann, Dominik Letsch, Timothy I. Eglinton
American Journal of Science Oct 2018, 318 (8) 861-881; DOI: 10.2475/08.2018.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
On the geological and scientific legacy of petrogenic organic carbon
Thomas M. Blattmann, Dominik Letsch, Timothy I. Eglinton
American Journal of Science Oct 2018, 318 (8) 861-881; DOI: 10.2475/08.2018.02
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • THE EARLIEST PIONEERS
    • A PERIOD OF REDISCOVERY
    • MODERN ERA RESEARCH INTO PETROGENIC ORGANIC CARBON
    • CONCLUSIONS AND OUTLOOK
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Comment on carbon dioxide emissions by rock organic carbon oxidation
  • Mineralogical control on the fate of continentally derived organic matter in the ocean
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • kerogen
  • fossil
  • recalcitrant
  • organic
  • palynology
  • recycling
  • glacier
  • Snowball Earth
  • Carbon cycle
  • history of geology
  • vitrinite
  • inertinite

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire