Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events

Lawrence M.E. Percival, Hugh C. Jenkyns, Tamsin A. Mather, Alexander J. Dickson, Sietske J. Batenburg, Micha Ruhl, Stephen P. Hesselbo, Richard Barclay, Ian Jarvis, Stuart A. Robinson and Lineke Woelders
American Journal of Science October 2018, 318 (8) 799-860; DOI: https://doi.org/10.2475/08.2018.01
Lawrence M.E. Percival
* Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
§§§ Institute of Earth Sciences, Géopolis, University of Lausanne, CH-1015 Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lawrence.percival11@gmail.com
Hugh C. Jenkyns
* Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tamsin A. Mather
* Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander J. Dickson
* Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
‡ Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sietske J. Batenburg
* Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Micha Ruhl
* Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
‡‡ Department of Geology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen P. Hesselbo
** Camborne School of Mines and Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard Barclay
*** Smithsonian Institution, PO Box, 37012, MRC 121, Washington, D.C., 20013-7012, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ian Jarvis
§ Department of Geography and Geology, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stuart A. Robinson
* Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lineke Woelders
§§ KU Leuven, Division of Geology, Department of Earth and Environmental Sciences, B-3001, Leuven, Belgium
‡‡‡ Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Abramovich S.,
    2. Keller G.
    , 2002, High stress late Maastrichtian paleoenvironment: Inference from planktonic foraminifera in Tunisia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 178, n. 3–4, p. 145–164, doi:https://doi.org/10.1016/S0031-0182(01)00394-7
    OpenUrlCrossRefGeoRef
  2. ↵
    1. Allègre C. J.,
    2. Birck J. L.,
    3. Capmas F.,
    4. Courtillot V.
    , 1999, Age of the Deccan traps using 187Re–187Os systematics: Earth and Planetary Science Letters, v. 170, n. 3, p. 197–204, doi:https://doi.org/10.1016/S0012-821X(99)00110-7
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Alvarez L. W.
    , 1983, Experimental evidence that an asteroid impact led to extinction of many species 65 million years ago: Proceedings of the National Academy of Sciences of the United States of America, v. 80, n. 2, p. 627–642, doi:https://doi.org/10.1073/pnas.80.2.627
    OpenUrlFREE Full Text
  4. ↵
    1. Alvarez L. W.,
    2. Alvarez W.,
    3. Asaro F.,
    4. Michel H. V.
    , 1980, Extraterrestrial cause for the Cretaceous-Tertiary extinction: Science, v. 208, n. 4448, p. 1095–1108, doi:https://doi.org/10.1126/science.208.4448.1095
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Arens N. C.,
    2. Jahren A. H.
    , 2000, Carbon isotope excursion in atmospheric CO2 at the Cretaceous-Tertiary boundary: Evidence from terrestrial sediments: Palaios, v. 15, n. 4, p. 314–322, doi:https://doi.org/10.1669/0883-1351(2000)015<0314:CIEIAC>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Wilson G. P.,
    2. Clemens W. A.,
    3. Horner J. R.,
    4. Hartman J. H.
    1. Arens N. C.,
    2. Jahren A. H.,
    3. Kendrick D. C.
    , 2014, Carbon isotope stratigraphy and correlation of plant megafossil localities in the Hell Creek Formation of eastern Montana, USA, in Wilson G. P., Clemens W. A., Horner J. R., Hartman J. H., editors, Through the End of the Cretaceous in the Type Locality of the Hell Creek Formation in Montana and Adjacent Areas: Geological Society of America Special Papers, v. 503, p. 149–171, doi:https://doi.org/10.1130/2014.2503(05)
    OpenUrlCrossRef
  7. ↵
    1. Averitt P.
    , 1962, Geology and coal resources of the Cedar Mountain quadrangle, Iron County, Utah. U.S.: Geological Survey Professional Paper 389, 72 p.
  8. ↵
    1. Bagnato E.,
    2. Oliveri E.,
    3. Acquavita A.,
    4. Covelli S.,
    5. Petranich E.,
    6. Barra M.,
    7. Italiano F.,
    8. Parello F.,
    9. Sprovieri M.
    , 2017, Hydrochemical mercury distribution and air-sea exchange over the submarine hydrothermal vents off-shore Panarea Island (Aeolian arc, Tyrrhenian Sea): Marine Chemistry, v. 194, p. 63–78, doi:https://doi.org/10.1016/j.marchem.2017.04.003
    OpenUrlCrossRef
  9. ↵
    1. Barclay R. S.,
    2. McElwain J. C.,
    3. Sageman B. B.
    , 2010, Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2: Nature Geoscience, v. 3, p. 205–208, doi:https://doi.org/10.1038/NGEO757
    OpenUrlCrossRef
  10. ↵
    1. Barclay R. S.,
    2. Rioux M.,
    3. Meyer L. B.,
    4. Bowring S. A.,
    5. Johnson K. R.,
    6. Miller I. M.
    , 2015, High precision U–Pb zircon geochronology for Cenomanian Dakota Formation floras in Utah: Cretaceous Research, v. 52, Part A, p. 213–237, doi:https://doi.org/10.1016/j.cretres.2014.08.006
    OpenUrlCrossRefGeoRef
  11. ↵
    1. Barnet J. S.,
    2. Littler K.,
    3. Kroon D.,
    4. Leng M. J.,
    5. Westerhold T.,
    6. Röhl U.,
    7. Zachos J. C.
    , 2017, A new high-resolution chronology for the late Maastrichtian warming event: Establishing robust temporal links with the onset of Deccan volcanism: Geology, v. 46, n. 2, p. 147–150, doi:https://doi.org/10.1130/G39771.1
    OpenUrlCrossRef
  12. ↵
    1. Batenburg S. J.,
    2. Sprovieri M.,
    3. Gale A. S.,
    4. Hilgen F. J.,
    5. Hüsing S.,
    6. Laskar J.,
    7. Liebrand D.,
    8. Lirer F.,
    9. Orue-Etxebarria X.,
    10. Pelosi N.,
    11. Smit J.
    , 2012, Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country, Northern Spain): Earth and Planetary Science Letters, v. 359–360, p. 264–278, doi:https://doi.org/10.1016/j.epsl.2012.09.054
    OpenUrlCrossRef
  13. ↵
    1. Batenburg S. J.,
    2. Gale A. S.,
    3. Sprovieri M.,
    4. Hilgen F. J.,
    5. Thibault N.,
    6. Boussaha M.,
    7. Orue-Etxebarria X.
    , 2014, An astronomical time scale for the Maastrichtian based on the Zumaia and Sopelana sections (Basque country, northern Spain): Journal of the Geological Society, v. 171, n. 2, p. 165–180, doi:https://doi.org/10.1144/jgs2013-015
    OpenUrlCrossRef
  14. ↵
    1. Beaudoin B.,
    2. M'Ban E. P.,
    3. Montanari A.,
    4. Pinault M.
    , 1996, Lithostratigraphie haute résolution (< 20 ka) dans le Cénomanien du bassin d'Ombrie-Marches (Italie): Comptes rendus de l'Académie des sciences, Série IIa, Sciences de la terre et des planètes, v. 323, p. 689–696.
    OpenUrl
  15. ↵
    1. Beerling D. J.,
    2. Berner R. A.
    , 2002, Biogeochemical constraints on the Triassic–Jurassic boundary carbon cycle event: Global Biogeochemical Cycles, v. 16, n. 3, 1036, doi:https://doi.org/10.1029/2001GB001637
    OpenUrlCrossRef
  16. ↵
    1. Behar F.,
    2. Beaumont V.,
    3. de B. Penteado H. L.
    , 2001, Rock-Eval 6 technology: Performances and developments: Oil & Gas Science and Technology, v. 56, n. 2, p. 111–134, doi:https://doi.org/10.2516/ogst:2001013
    OpenUrlCrossRefWeb of Science
  17. ↵
    1. Benoit J. M.,
    2. Gilmour C. C.,
    3. Mason R. P.,
    4. Heyes A.
    , 1999, Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters: Environmental Science & Technology, v. 33, n. 6, p. 951–957, doi:https://doi.org/10.1021/es9808200
    OpenUrlCrossRef
  18. ↵
    1. Benoit J. M.,
    2. Mason R. P.,
    3. Gilmour C. C.,
    4. Aiken G. R.
    , 2001, Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades: Geochimica et Cosmochimica Acta, v. 65, n. 24, p. 4445–4451, doi:https://doi.org/10.1016/S0016-7037(01)00742-6
    OpenUrlCrossRefGeoRef
  19. ↵
    1. Birch H. S.,
    2. Coxall H. K.,
    3. Pearson P. N.,
    4. Kroon D.,
    5. Schmidt D. N.
    , 2016, Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary: Geology, v. 44, n. 4, p. 287–290, doi:https://doi.org/10.1130/G37581.1
    OpenUrlAbstract/FREE Full Text
    1. Blackburn T. J.,
    2. Olsen P. E.,
    3. Bowring S. A.,
    4. McLean N. M.,
    5. Kent D. V.,
    6. Puffer J.,
    7. McHone G.,
    8. Rasbury E. T.,
    9. Et-Touhami M.
    , 2013, Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province: Science, v. 340, n. 6135, p. 941–945, doi:https://doi.org/10.1126/science.1234204
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Blättler C. L.,
    2. Jenkyns H. C.,
    3. Reynard L. M.,
    4. Henderson G. M.
    , 2011, Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes: Earth and Planetary Science Letters, v. 309, n. 1–2, p. 77–88, doi:https://doi.org/10.1016/j.epsl.2011.06.029
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Blum J. D.,
    2. Sherman L. S.,
    3. Johnson M. W.
    , 2014, Mercury isotopes in earth and environmental sciences: Annual Review of Earth and Planetary Sciences, v. 42, p. 249–269, doi:https://doi.org/10.1146/annurev-earth-050212-124107
    OpenUrlCrossRefGeoRef
  22. ↵
    1. Keller G.,
    2. Kerr A. C.
    1. Bond D. P. G.,
    2. Wignall P. B.
    , 2014, Large igneous provinces and mass extinctions: An update, in Keller G., Kerr A. C., editors, Volcanism, Impacts, and Mass Extinctions: Causes and Effects: Geological Society of America Special Papers, v. 505, SPE505-02, doi:https://doi.org/10.1130/2014.2505(02)
    OpenUrlCrossRef
  23. ↵
    1. Bottini C.,
    2. Cohen A. S.,
    3. Erba E.,
    4. Jenkyns H. C.,
    5. Coe A. L.
    , 2012, Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a: Geology, v. 40, n. 7, p. 583–586, doi:https://doi.org/10.1130/G33140.1
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Bowman K. L.,
    2. Hammerschmidt C. R.,
    3. Lamborg C. H.,
    4. Swarr G.
    , 2015, Mercury in the North Atlantic Ocean: The U.S. GEOTRACES zonal and meridional sections: Deep-Sea Research Part II, v. 116, p. 251–261, doi:https://doi.org/10.1016/j.dsr2.2014.07.004
    OpenUrlCrossRef
  25. ↵
    1. Bowman V. C.,
    2. Francis J. E.,
    3. Riding J. B.,
    4. Hunter S. J.,
    5. Haywood A. M.
    , 2012, A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation from Antarctica, and implications for phytoprovincialism in the high southern latitudes: Review of Palaeobotany and Palynology, v. 171, p. 40–56, doi:https://doi.org/10.1016/j.revpalbo.2011.11.004
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Brusatte S. L.,
    2. Butler R. J.,
    3. Barrett P. M.,
    4. Carrano M. T.,
    5. Evans D. C.,
    6. Lloyd G. T.,
    7. Mannion P. D.,
    8. Norell M. A.,
    9. Peppe D. J.,
    10. Upchurch P.,
    11. Williamson T. E.
    , 2015, The extinction of the dinosaurs: Biological Reviews, v. 90, n. 2, p. 628–642, doi:https://doi.org/10.1111/brv.12128
    OpenUrlCrossRef
    1. Bryan S. E.,
    2. Ferrari L.
    , 2013, Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years: Geological Society of America Bulletin, v. 125, n. 7–8, p. 1053–1078, doi:https://doi.org/10.1130/B30820.1
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Bryan S. E.,
    2. Peate I. U.,
    3. Peate D. W.,
    4. Self S.,
    5. Jerram D. A.,
    6. Mawby M. R.,
    7. Marsh J. S.,
    8. Miller J. A.
    , 2010, The largest volcanic eruptions on Earth: Earth-Science Reviews, v. 102, n. 3–4, p. 207–229, doi:https://doi.org/10.1016/j.earscirev.2010.07.001
    OpenUrlCrossRefGeoRef
  28. ↵
    1. Buchs D. M.,
    2. Kerr A. C.,
    3. Brims J. C.,
    4. Zapata-Villada J. P.,
    5. Correa-Restrepo T.,
    6. Rodríguez G.
    , 2018, Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications: Earth and Planetary Science Letters, v. 499, p. 62–73, doi:https://doi.org/10.1016/j.epsl.2018.07.020
    OpenUrlCrossRef
  29. ↵
    1. Burgess S. D.,
    2. Bowring S. A.
    , 2015, High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction: Science Advances, v. 1, n. 7, e1500470, doi:https://doi.org/10.1126/sciadv.1500470
    OpenUrlFREE Full Text
  30. ↵
    1. Burgess S. D.,
    2. Bowring S.,
    3. Shen S. Z.
    , 2014, High-precision timeline for Earth's most severe extinction: Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 9, p. 3316–3321, doi:https://doi.org/10.1073/pnas.1317692111
    OpenUrlAbstract/FREE Full Text
    1. Burgess S. D.,
    2. Bowring S. A.,
    3. Fleming T. H.,
    4. Elliot D. H.
    , 2015, High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis: Earth and Planetary Science Letters, v. 415, p. 90–99, doi:https://doi.org/10.1016/j.epsl.2015.01.037
    OpenUrlCrossRefGeoRef
  31. ↵
    1. Burgess S. D.,
    2. Muirhead J. D.,
    3. Bowring S. A.
    , 2017, Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction: Nature Communications, v. 8, doi:https://doi.org/10.1038/s41467-017-00083-9
    OpenUrlCrossRef
  32. ↵
    1. Fitton J. G.,
    2. Mahoney J. J.,
    3. Wallace P. J.,
    4. Saunders A. D.
    1. Chambers L. M.,
    2. Pringle M. S.,
    3. Fitton J. G.
    , 2004, Phreatomagmatic eruptions on the Ontong Java Plateau: an Aptian 40Ar/39Ar age for volcaniclastic rocks at ODP Site 1184, in Fitton J. G., Mahoney J. J., Wallace P. J., Saunders A. D., editors, Origin and Evolution of the Ontong Java Plateau: Geological Society, London, Special Publications, v. 229, p. 325–331, doi:https://doi.org/10.1144/GSL.SP.2004.229.01.18
    OpenUrlCrossRef
  33. ↵
    1. Channell J. E. T.,
    2. Erba E.,
    3. Lini A.
    , 1993, Magnetostratigraphic calibration of the Late Valanginian carbon isotope event in pelagic limestones from Northern Italy and Switzerland: Earth and Planetary Science Letters, v. 118, p. 145–166, doi:https://doi.org/10.1016/0012-821X(93)90165-6.
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Charbonnier G.,
    2. Föllmi K. B.
    , 2017, Mercury enrichments in lower Aptian sediments support the link between Ontong Java large igneous province activity and oceanic anoxic episode 1a: Geology, v. 45, n. 1, p. 63–66, doi:https://doi.org/10.1130/G38207.1
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Charbonnier G.,
    2. Boulila S.,
    3. Gardin S.,
    4. Duchamp-Alphonse S.,
    5. Adatte T.,
    6. Spangenberg J. E.,
    7. Föllmi K. B.,
    8. Colin C.,
    9. Galbrun B.
    , 2013, Astronomical calibration of the Valanginian “Weissert” episode: The Orpierre marl–limestone succession (Vocontian Basin, southeastern France): Cretaceous Research, v. 45, p. 25–42, doi:https://doi.org/10.1016/j.cretres.2013.07.003
    OpenUrlCrossRefGeoRef
  36. ↵
    1. Charbonnier G.,
    2. Morales C.,
    3. Duchamp-Alphonse S.,
    4. Westermann S.,
    5. Adatte T.,
    6. Föllmi K. B.
    , 2017, Mercury enrichment indicates volcanic triggering of Valanginian environmental change: Scientific Reports, v. 7, n. 40808, doi:https://doi.org/10.1038/srep40808
    OpenUrlCrossRef
  37. ↵
    1. Charbonnier G.,
    2. Godet A.,
    3. Bodin S.,
    4. Adatte T.,
    5. Föllmi K. B.
    , 2018a, Mercury anomalies, volcanic pulses, and drowning episodes along the northern Tethyan margin during the latest Hauterivian-earliest Aptian: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 505, p. 337–350, doi:https://doi.org/10.1016/j.palaeo.2018.06.013
    OpenUrlCrossRef
  38. ↵
    1. Charbonnier G.,
    2. Boulila S.,
    3. Spangenberg J. E.,
    4. Adatte T.,
    5. Föllmi K. B.,
    6. Laskar J.
    , 2018b, Obliquity pacing of the hydrological cycle during the Oceanic Anoxic Event 2: Earth and Planetary Science Letters, v. 499, p. 266–277, doi:https://doi.org/10.1016/j.epsl.2018.07.029
    OpenUrlCrossRef
  39. ↵
    1. Chellman N.,
    2. McConnell J. R.,
    3. Arienzo M.,
    4. Pederson G. T.,
    5. Aarons S. M.,
    6. Csank A.
    , 2017, Reassessment of the Upper Fremont Glacier Ice-Core Chronologies by Synchronizing of Ice-Core-Water Isotopes to a Nearby Tree-Ring Chronology: Environmental Science & Technology, v. 51, n. 8, p. 4230–4238, doi:https://doi.org/10.1021/acs.est.6b06574
    OpenUrlCrossRef
  40. ↵
    1. Chenet A. L.,
    2. Quidelleur X.,
    3. Fluteau F.,
    4. Courtillot V.,
    5. Bajpai S.
    , 2007, 40K–40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration: Earth and Planetary Science Letters, v. 263, n. 1–2, p. 1–15, doi:https://doi.org/10.1016/j.epsl.2007.07.011
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Chenet A. L.,
    2. Fluteau F.,
    3. Courtillot V.,
    4. Gérard M.,
    5. Subbarao K. V.
    , 2008, Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment: Journal of Geophysical Research: Solid Earth, v. 113, B04101, doi:https://doi.org/10.1029/2006JB004635
    OpenUrlCrossRef
  42. ↵
    1. Chenet A. L.,
    2. Courtillot V.,
    3. Fluteau F.,
    4. Gérard M.,
    5. Quidelleur X.,
    6. Khadri S. F. R.,
    7. Subbarao K. V.,
    8. Thordarson T.
    , 2009, Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section: Journal of Geophysical Research: Solid Earth, v. 114, n. B6, B06103, doi:https://doi.org/10.1029/2008JB005644
    OpenUrlCrossRef
  43. ↵
    1. Clyde W. C.,
    2. Ramezani J.,
    3. Johnson K. R.,
    4. Bowring S. A.,
    5. Jones M. M.
    , 2016, Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales: Earth and Planetary Science Letters, v. 452, p. 272–280, doi:https://doi.org/10.1016/j.epsl.2016.07.041
    OpenUrlCrossRef
  44. ↵
    1. Coffin M. F.,
    2. Eldholm O.
    , 1994, Large igneous provinces: Crustal structure, dimensions, and external consequences: Reviews of Geophysics, v. 32, n. 1, p. 1–36, doi:https://doi.org/10.1029/93RG02508
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Cohen A. S.,
    2. Coe A. L.
    , 2002, New geochemical evidence for the onset of volcanism in the Central Atlantic magmatic province and environmental change at the Triassic-Jurassic boundary: Geology, v. 30, n. 3, p. 267–270, doi:https://doi.org/10.1130/0091-7613(2002)030<0267:NGEFTO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Cohen A. S.,
    2. Coe A. L.
    , 2007, The impact of the Central Atlantic Magmatic Province on climate and on the Sr- and Os-isotope evolution of seawater: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 244, n. 1–4, p. 374–390, doi:https://doi.org/10.1016/j.palaeo.2006.06.036
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Cohen A. S.,
    2. Coe A. L.,
    3. Bartlett J. M.,
    4. Hawkesworth C. J.
    , 1999, Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater: Earth and Planetary Science Letters, v. 167, n. 3–4, p. 159–173, doi:https://doi.org/10.1016/S0012-821X(99)00026-6
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Courtillot V.,
    2. Renne P. R.
    , 2003, On the ages of flood basalt events: Comptes Rendus Geoscience, v. 335, n. 1, p. 113–140, doi:https://doi.org/10.1016/S1631-0713(03)00006-3
    OpenUrlCrossRefWeb of Science
  48. ↵
    1. Courtillot V.,
    2. Besse J.,
    3. Vandamme D.,
    4. Montigny R.,
    5. Jaeger J. J.,
    6. Cappetta H.
    , 1986, Deccan flood basalts at the Cretaceous/Tertiary boundary?: Earth and Planetary Science Letters, v. 80, n. 3–4, p. 361–374, doi:https://doi.org/10.1016/0012-821X(86)90118-4
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Crame J. A.,
    2. Pirrie D.,
    3. Riding J. B.,
    4. Thomson M. R. A.
    , 1991, Campanian–Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica: Journal of the Geological Society, v. 148, p. 1125–1140, doi:https://doi.org/10.1144/gsjgs.148.6.1125
    OpenUrlCrossRef
  50. ↵
    1. Crame J. A.,
    2. Francis J. E.,
    3. Cantrill D. J.,
    4. Pirrie D.
    , 2004, Maastrichtian stratigraphy of Antarctica: Cretaceous Research, v. 25, n. 3, p. 411–423, doi:https://doi.org/10.1016/j.cretres.2004.02.002
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Crumière J. P.,
    2. Crumiere-Airaud C.,
    3. Espitalié J.
    , 1990, Cyclic preservation of amorphous organic-matter in sediments of the Vocontian Basin (southeastern France), around the Cenomanian-Turonian boundary paleoceanographic controls: Bulletin de la Société Géologique de France, v. 6, n. 3, p. 469–478, doi:https://doi.org/10.2113/gssgfbull.VI.3.469
    OpenUrlCrossRefGeoRef
    1. Davies J. H. F. L.,
    2. Marzoli A.,
    3. Bertrand H.,
    4. Youbi N.,
    5. Ernesto M.,
    6. Schaltegger U.
    , 2017, End-Triassic mass extinction started by intrusive CAMP activity: Nature Communications, v. 8, doi:https://doi.org/10.1038/ncomms15596
    OpenUrlCrossRef
  52. ↵
    1. Dickens G. R.,
    2. O'Neil J. R.,
    3. Rea D. K.,
    4. Owen R. M.
    , 1995, Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene: Paleoceanography and Paleoclimatology, v. 10, n. 6, p. 965–971, doi:https://doi.org/10.1029/95PA02087
    OpenUrlCrossRef
    1. Dickson A. J.,
    2. Cohen A. S.,
    3. Coe A. L.,
    4. Davies M.,
    5. Shcherbinina E. A.,
    6. Gavrilov Y. O.
    , 2015, Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 438, p. 300–307, doi:https://doi.org/10.1016/j.palaeo.2015.08.019
    OpenUrlCrossRefGeoRef
  53. ↵
    1. Dickson A. J.,
    2. Jenkyns H. C.,
    3. Porcelli D.,
    4. van den Boorn S.,
    5. Idiz E.
    , 2016, Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous): Geochimica et Cosmochimica Acta, v. 178, p. 291–306, doi:https://doi.org/10.1016/j.gca.2015.12.036
    OpenUrlCrossRef
  54. ↵
    1. Dickson A. J.,
    2. Saker-Clark M.,
    3. Jenkyns H. C.,
    4. Bottini C.,
    5. Erba E.,
    6. Russo F.,
    7. Gorbanenko O.,
    8. Naafs B. D. A.,
    9. Pancost R. D.,
    10. Robinson S. A.,
    11. van den Boorn S.,
    12. Idiz E.
    , 2017, A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian–Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau): Sedimentology, v. 64, n. 1, p. 186–203, doi:https://doi.org/10.1111/sed.12303
    OpenUrlCrossRef
  55. ↵
    1. Dilek Y.,
    2. Furnes H.
    , 2011, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere: Geological Society of America Bulletin, v. 123, n. 3–4, p. 387–411, doi:https://doi.org/10.1130/B30446.1
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Dodd S. C.,
    2. Mac Niocaill C.,
    3. Muxworthy A. R.
    , 2015, Long duration (> 4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná–Etendeka Large Igneous Province: New palaeomagnetic data from Namibia: Earth and Planetary Science Letters, v. 414, p. 16–29, doi:https://doi.org/10.1016/j.epsl.2015.01.009
    OpenUrlCrossRefGeoRef
  57. ↵
    1. Du Vivier A. D. C.,
    2. Selby D.,
    3. Sageman B. B.,
    4. Jarvis I.,
    5. Gröcke D. R.,
    6. Voigt S.
    , 2014, Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2: Earth and Planetary Science Letters, v. 389, p. 23–33, doi:https://doi.org/10.1016/j.epsl.2013.12.024
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. Du Vivier A. D. C.,
    2. Selby D.,
    3. Takashima R.,
    4. Nishi H.
    , 2015, Pacific 187Os/188Os isotope chemistry and U–Pb geochronology: Synchroneity of global Os isotope change across OAE 2: Earth and Planetary Science Letters, v. 428, p. 204–216, doi:https://doi.org/10.1016/j.epsl.2015.07.020
    OpenUrlCrossRefGeoRef
  59. ↵
    1. Duchamp-Alphonse S.,
    2. Gardin S.,
    3. Fiet N.,
    4. Bartolini A.,
    5. Blamart D.,
    6. Pagel M.
    , 2007, Fertilization of the northwestern Tethys (Vocontian basin, SE France) during the Valanginian carbon isotope perturbation: Evidence from calcareous nannofossils and trace element data: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 243, n. 1–2, p. 132–151, doi:https://doi.org/10.1016/j.palaeo.2006.07.010
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Duncan R. A.,
    2. Pyle D. G.
    , 1988, Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary: Nature, v. 333, p. 841–843, doi:https://doi.org/10.1038/333841a0
    OpenUrlCrossRefGeoRefWeb of Science
  61. ↵
    1. Elder W. P.,
    2. Gustason E. R.,
    3. Sageman B. B.
    , 1994, Correlation of basinal carbonate cycyles to nearshore parasequences in the Late Cretaceous Greenhorn seaway, Western Interior: US. Geological Society of America Bulletin, v. 106, n. 7, p. 892–902, doi:https://doi.org/10.1130/0016-7606(1994)106<0892:COBCCT>2.3.CO;2
    OpenUrlCrossRef
  62. ↵
    1. Eldrett J. S.,
    2. Minisini D.,
    3. Bergman S. C.
    , 2014, Decoupling of the carbon cycle during Ocean Anoxic Event 2: Geology, v. 42, n. 7, p. 567–570, doi:https://doi.org/10.1130/G35520.1
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Elliot D. H.,
    2. Askin R. A.,
    3. Kyte F. T.,
    4. Zinsmeister W. J.
    , 1994, Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: Implications for the K-T event: Geology, v. 22, n. 8, p. 675–678, doi:https://doi.org/10.1130/0091-7613(1994)022<0675:IADATC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Emili A.,
    2. Koron N.,
    3. Covelli S.,
    4. Faganeli J.,
    5. Acquavita A.,
    6. Predonzani S.,
    7. De Vittor C.
    , 2011, Does anoxia affect mercury cycling at the sediment–water interface in the Gulf of Trieste (northern Adriatic Sea)? Incubation experiments using benthic flux chambers: Applied Geochemistry, v. 26, n. 2, p. 194–204, doi:https://doi.org/10.1016/j.apgeochem.2010.11.019
    OpenUrlCrossRefGeoRef
  65. ↵
    1. Neal C. R.,
    2. Sager W. W.,
    3. Sano T.,
    4. Erba E.
    1. Erba E.,
    2. Duncan R. A.,
    3. Bottini C.,
    4. Tiraboschi D.,
    5. Weissert H.,
    6. Jenkyns H. C.,
    7. Malinverno A.
    , 2015, Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism, in Neal C. R., Sager W. W., Sano T., Erba E., editors, The Origin, Evolution, and Environmentsl Impact of Oceanic Large Igneous Provinces: Geological Society of America Special Papers, v. 511, SPE511-15, doi:https://doi.org/10.1130/2015.2511(15)
    OpenUrlCrossRef
  66. ↵
    1. Erbacher J.,
    2. Friedrich O.,
    3. Wilson P. A.,
    4. Birch H.,
    5. Mutterlose J.
    , 2005, Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic: Geochemistry, Geophysics, Geosystems, v. 6, n. 6, Q06010, doi:https://doi.org/10.1029/2004GC000850
    OpenUrlCrossRef
  67. ↵
    1. Ernst R. E.,
    2. Youbi N.
    , 2017, How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 478, p. 30–52, doi:https://doi.org/10.1016/j.palaeo.2017.03.014
    OpenUrlCrossRef
  68. ↵
    1. Esmeray-Senlet S.,
    2. Wright J. D.,
    3. Olsson R. K.,
    4. Miller K. G.,
    5. Browning J. V.,
    6. Quan T. M.
    , 2015, Evidence for reduced export productivity following the Cretaceous/Paleogene mass extinction: Paleoceanography and Paleoclimatology, v. 30, n. 6, p. 718–738, doi:https://doi.org/10.1002/2014PA002724
    OpenUrlCrossRef
  69. ↵
    1. Espitalié J.,
    2. Madec M.,
    3. Tissot B.,
    4. Menning J. J.,
    5. Leplat P.
    , 1977, Source rock characterization methods for petroleum exploration: Houston, Texas, Proceedings of the 1977 Offshore Technology Conference, 3, Document ID OTC-2935-MS, p. 439–443, doi:https://doi.org/10.4043/2935-MS
  70. ↵
    1. Falzoni F.,
    2. Petrizzo M. R.,
    3. Jenkyns H. C.,
    4. Gale A. S.,
    5. Tsikos H.
    , 2016, Planktonic foraminiferal biostratigraphy and assemblage composition across the Cenomanian–Turonian boundary interval at Clot Chevalier (Vocontian Basin, SE France): Cretaceous Research, v. 59, p. 69–97, doi:https://doi.org/10.1016/j.cretres.2015.10.028
    OpenUrlCrossRef
  71. ↵
    1. Fantasia A.,
    2. Föllmi K. B.,
    3. Adatte T.,
    4. Bernárdez E.,
    5. Spangenberg J. E.,
    6. Mattioli E.
    , 2018, The Toarcian Oceanic Anoxic Event in southwestern Gondwana: An example from the Andean Basin, northern Chile: Journal of the Geological Society, London, doi:https://doi.org/10.1144/jgs2018-008
    OpenUrlCrossRef
  72. ↵
    1. Fitzgerald W. F.,
    2. Lamborg C. H.,
    3. Hammerschmidt C. R.
    , 2007, Marine biogeochemical cycling of mercury: Chemical Reviews, v. 107, n. 2, p. 641–662, doi:https://doi.org/10.1021/cr050353m
    OpenUrlCrossRefPubMedWeb of Science
  73. ↵
    1. Font E.,
    2. Adatte T.,
    3. Sial A. N.,
    4. de Lacerda L. D.,
    5. Keller G.,
    6. Punekar J.
    , 2016, Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction: Geology, v. 44, n. 2, p. 171–174, doi:https://doi.org/10.1130/G37451.1
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Font E.,
    2. Adatte T.,
    3. Andrade M.,
    4. Keller G.,
    5. Bitchong A. M.,
    6. Carvallo C.,
    7. Ferreira J.,
    8. Diogo Z.,
    9. Mirão J.
    , 2018, Deccan volcanism induced high-stress environment during the Cretaceous–Paleogene transition at Zumaia, Spain: Evidence from magnetic, mineralogical and biostratigraphic records: Earth and Planetary Science Letters, v. 484, p. 53–66, doi:https://doi.org/10.1016/j.epsl.2017.11.055
    OpenUrlCrossRef
  75. ↵
    1. Forster A.,
    2. Schouten S.,
    3. Moriya K.,
    4. Wilson P. A.,
    5. Sinninghe Damsté J. S.
    , 2007, Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic: Palaeoceanography and Paleoclimatology, v. 22, n. 1, PA1219, doi:https://doi.org/10.1029/2006PA001349
    OpenUrlCrossRef
  76. ↵
    1. Forster A.,
    2. Kuypers M. M.,
    3. Turgeon S. C.,
    4. Brumsack H. J.,
    5. Petrizzo M. R.,
    6. Damsté J. S. S.
    , 2008, The Cenomanian/Turonian oceanic anoxic event in the South Atlantic: New insights from a geochemical study of DSDP Site 530A: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 267, n. 3–4, p. 256–283, doi:https://doi.org/10.1016/j.palaeo.2008.07.006
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    1. Frey F. A.,
    2. Weis D.,
    3. Borisova A. Y.,
    4. Xu G.
    , 2002, Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau: New Perspectives from ODP Leg 120 Sites: Journal of Petrology, v. 43, n. 7, p. 1207–1239, doi:https://doi.org/10.1093/petrology/43.7.1207
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Galbrun B.,
    2. Gardin S.
    , 2004, New chronostratigraphy of the Cretaceous–Paleogene boundary interval at Bidart (France): Earth and Planetary Science Letters, v. 224, n. 1–2, p. 19–32, doi:https://doi.org/10.1016/j.epsl.2004.04.043
    OpenUrlCrossRefGeoRef
  79. ↵
    1. Gale A. S.,
    2. Christensen W. K.
    , 1996, Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance: Bulletin of the Geological Society of Denmark, v. 43, p. 68–77.
    OpenUrl
  80. ↵
    1. Gale A.S.,
    2. Jenkyns H.C.,
    3. Kennedy W. J.,
    4. Corfield R. M.
    , 1993, Chemostratigraphy versus biostratigraphy: Data from around the Cenomanian–Turonian boundary: Journal of the Geological Society, London, v. 150, p. 29–32, doi:https://doi.org/10.1144/gsjgs.150.1.0029
    OpenUrlCrossRef
  81. ↵
    1. Gale A. S.,
    2. Jenkyns H. C.,
    3. Tsikos H.,
    4. van Breugel Y.,
    5. Sinninghe Damsté J. S.,
    6. Bottini C.,
    7. Erba E.,
    8. Russo F.,
    9. Falzoni F.,
    10. Petrizzo M. R.,
    11. Dickson A. J.,
    12. Wray D. S.
    , 2018, High-resolution bio- and chemostratigraphy of an expanded record of Oceanic Anoxic Event 2 (Late Cenomanian–Early Turonian) at Clot Chevalier, near Barrême, SE France (Vocontian Basin): Newsletters on Stratigraphy, doi:https://doi.org/10.1127/nos/2018/0445
    OpenUrlCrossRef
  82. ↵
    1. Gambacorta G.,
    2. Jenkyns H. C.,
    3. Russo F.,
    4. Tsikos H.,
    5. Wilson P. A.,
    6. Faucher G.,
    7. Erba E.
    , 2015, Carbon-and oxygen-isotope records of mid-Cretaceous Tethyan pelagic sequences from the Umbria–Marche and Belluno Basins (Italy): Newsletters on Stratigraphy, v. 48, n. 3, p. 299–323, doi:https://doi.org/10.1127/nos/2015/0066
    OpenUrlCrossRef
  83. ↵
    1. Ganino C.,
    2. Arndt N. T.
    , 2009, Climate changes caused by degassing of sediments during the emplacement of large igneous provinces: Geology, v. 37, n. 4, p. 323–326, doi:https://doi.org/10.1130/G25325A.1
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Gardin S.,
    2. Galbrun B.,
    3. Thibault N.,
    4. Coccioni R.,
    5. Silva I. P.
    , 2012, Bio-magnetochronology for the upper Campanian–Maastrichtian from the Gubbio area, Italy: New results from the Contessa Highway and Bottaccione sections: Newsletters on Stratigraphy, v. 45, n. 1, p. 75–103, doi:https://doi.org/10.1127/0078-0421/2012/0014
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Georgiev S. V.,
    2. Stein H. J.,
    3. Hannah J. L.,
    4. Henderson C. M.,
    5. Algeo T. J.
    , 2015, Enhanced recycling of organic matter and Os-isotopic evidence for multiple magmatic or meteoritic inputs to the Late Permian Panthalassic Ocean, Opal Creek, Canada: Geochimica et Cosmochimica Acta, v. 150, p. 192–210, doi:https://doi.org/10.1016/j.gca.2014.11.019
    OpenUrlCrossRefGeoRef
  86. ↵
    1. Gibson S. A.,
    2. Dale C. W.,
    3. Geist D. J.,
    4. Day J. A.,
    5. Brügmann G.,
    6. Harpp K. S.
    , 2016, The influence of melt flux and crustal processing on Re–Os isotope systematics of ocean island basalts: Constraints from Galápagos: Earth and Planetary Science Letters, v. 449, p. 345–359, doi:https://doi.org/10.1016/j.epsl.2016.05.021
    OpenUrlCrossRef
  87. ↵
    1. Gill G. A.,
    2. Fitzgerald W. F.
    , 1988, Vertical mercury distributions in the oceans: Geochimica et Cosmochimica Acta, v. 52, n. 6, p. 1719–1728, doi:https://doi.org/10.1016/0016-7037(88)90240-2
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Glaze L. S.,
    2. Self S.,
    3. Schmidt A.,
    4. Hunter S. J.
    , 2017, Assessing eruption column height in ancient flood basalt eruptions: Earth and Planetary Science Letters, v. 457, p. 263–270, doi:https://doi.org/10.1016/j.epsl.2014.07.043
    OpenUrlCrossRef
  89. ↵
    1. Gong Q.,
    2. Wang X.,
    3. Zhao L.,
    4. Grasby S. E.,
    5. Chen Z. Q.,
    6. Zhang L.,
    7. Li Y.,
    8. Cao L.,
    9. Li Z.
    , 2017, Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction: Scientific Reports, v. 7, article number 5304, doi:https://doi.org/10.1038/s41598-017-05524-5
    OpenUrlCrossRef
  90. ↵
    1. Grasby S. E.,
    2. Sanei H.,
    3. Benoit B.,
    4. Chen Z.
    , 2013, Mercury deposition through the Permo–Triassic Biotic Crisis: Chemical Geology, v. 351, p. 209–216, doi:https://doi.org/10.1016/j.chemgeo.2013.05.022
    OpenUrlCrossRefGeoRef
  91. ↵
    1. Grasby S. E.,
    2. Beauchamp B.,
    3. Bond D. P. G.,
    4. Wignall P. B.,
    5. Sanei H.
    , 2016, Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea: Geological Magazine, v. 153, Special Issue 2 (Mass Extinctions), p. 285–297, doi:https://doi.org/10.1017/S0016756815000436
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Grasby S. E.,
    2. Wenjie S.,
    3. Runsheng Y.,
    4. Gleason J. D.,
    5. Blum J. D.,
    6. Lepak R. F.,
    7. Hurley J. P.,
    8. Beauchamp B.
    , 2017, Isotopic signatures of mercury contamination in latest Permian oceans: Geology, v. 45, n. 1, p. 55–58, doi:https://doi.org/10.1130/G38487.1
    OpenUrlAbstract/FREE Full Text
  93. ↵
    1. Grosheny D.,
    2. Beaudoin B.,
    3. Morel L.,
    4. Desmares D.
    , 2006, High-resolution biostratigraphy and chemostratigraphy of the Cenomanian/Turonian boundary event in the Vocontian Basin, southeast France: Cretaceous Research, v. 27, n. 5, p. 629–640, doi:https://doi.org/10.1016/j.cretres.2006.03.005
    OpenUrlCrossRefGeoRefWeb of Science
  94. ↵
    1. Gutjahr M.,
    2. Ridgwell A.,
    3. Sexton P. F.,
    4. Anagnostou E.,
    5. Pearson P. N.,
    6. Pälike H.,
    7. Norris R. D.,
    8. Thomas E.,
    9. Foster G. L.
    , 2017, Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum: Nature, v. 548, p. 573–577, doi:https://doi.org/10.1038/nature23646
    OpenUrlCrossRef
  95. ↵
    1. Hall J. L. O.,
    2. Newton R. J.,
    3. Witts J. D.,
    4. Francis J. E.,
    5. Hunter S. J.,
    6. Jamieson R. A.,
    7. Harper E. M.,
    8. Crame J. A.,
    9. Haywood A. M.
    , 2018, High benthic methane flux in low sulfate oceans: Evidence from carbon isotopes in Late Cretaceous Antarctic bivalves: Earth and Planetary Science Letters, v. 497, p. 113–122, doi:https://doi.org/10.1016/j.epsl.2018.06.014
    OpenUrlCrossRef
  96. ↵
    1. Hardas P.,
    2. Mutterlose J.
    , 2006, Calcareous nannofossil biostratigraphy of the Cenomanian/Turonian boundary interval of ODP Leg 207 at the Demerara Rise: Revue de Micropaléontologie, v. 49, n. 3, p. 165–179, doi:https://doi.org/10.1016/j.revmic.2006.04.005
    OpenUrlCrossRefGeoRef
  97. ↵
    1. Hesselbo S. P.,
    2. Gröcke D. R.,
    3. Jenkyns H. C.,
    4. Bjerrum C. J.,
    5. Farrimond P.,
    6. Morgans-Bell H. S.,
    7. Green O. R.
    , 2000, Massive dissociation of gas hydrates during a Jurassic Oceanic Anoxic Event: Nature, v. 406, p. 392–395, doi:https://doi.org/10.1038/35019044
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  98. ↵
    1. Hetzel A.,
    2. Böttcher M. E.,
    3. Wortmann U. G.,
    4. Brumsack H.-J.
    , 2009, Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 273, n. 3–4, p. 302–328, doi:https://doi.org/10.1016/j.palaeo.2008.11.005
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Hildebrand A. R.,
    2. Penfield G. T.,
    3. Kring D. A.,
    4. Pilkington M.,
    5. Camargo A.,
    6. Jacobsen S. B.,
    7. Boynton W. V.
    , 1991, Chicxulub crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico: Geology, v. 19, n. 9, p. 867–871, doi:https://doi.org/10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  100. ↵
    1. Holmden C.,
    2. Jacobson A. D.,
    3. Sageman B. B.,
    4. Hurtgen M. T.
    , 2016, Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway: Geochimica et Cosmochimica Acta, v. 186, p. 277–295, doi:https://doi.org/10.1016/j.gca.2016.04.039
    OpenUrlCrossRef
  101. ↵
    1. Horan M. F.,
    2. Walker R. J.,
    3. Fedorenko V. A.,
    4. Czamanske G. K.
    , 1995, Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources: Geochimica et Cosmochimica Acta, v. 59, n. 4, p. 5159–5168, doi:https://doi.org/10.1016/0016-7037(96)89674-8
    OpenUrlCrossRefGeoRefWeb of Science
  102. ↵
    1. Jarvis I.,
    2. Lignum J. S.,
    3. Gröcke D. R.,
    4. Jenkyns H. C.,
    5. Pearce M. A.
    , 2011, Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian–Turonian Oceanic Anoxic Event: Paleoceanography and Paleoclimatology, v. 26, n. 3, PA3201, doi:https://doi.org/10.1029/2010PA002081
    OpenUrlCrossRef
  103. ↵
    1. Jay A. E.,
    2. Mac Niocaill C.,
    3. Widdowson M.,
    4. Self S.,
    5. Turner W.
    , 2009, New palaeomagnetic data from the Mahabaleshwar Plateau, Deccan Flood Basalt Province, India: Implications for the volcanostratigraphic architecture of continental flood basalt provinces: Journal of the Geological Society, v. 166, n. 1, p. 13–24, doi:https://doi.org/10.1144/0016-76492007-150
    OpenUrlCrossRef
  104. ↵
    1. Jefferies R. P. S.
    , 1963, The stratigraphy of the Actinocamax plenus Subzone (Turonian) in the Anglo-Paris Basin: Proceedings of the Geologists' Association, v. 74, n. 1, p. 1–33, doi:https://doi.org/10.1016/S0016-7878(63)80011-5
    OpenUrlCrossRefGeoRef
  105. ↵
    1. Jenkyns H. C.
    , 1988, The early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence: American Journal of Science, v. 288, n. 2, p. 101–151, doi:https://doi.org/10.2475/ajs.288.2.101
    OpenUrlAbstract/FREE Full Text
  106. ↵
    1. Jenkyns H. C.
    , 2010, Geochemistry of Oceanic Anoxic Events: Geochemistry, Geophysics, Geosystems, v. 11, n. 3, Q03004, doi:https://doi.org/10.1029/2009GC002788
    OpenUrlCrossRef
  107. ↵
    1. Jenkyns H. C.,
    2. Gale A. S.,
    3. Corfield R. M.
    , 1994, Carbon-and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance: Geological Magazine, v, 131, n. 1, p. 1–34, doi:https://doi.org/10.1017/S0016756800010451
    OpenUrlAbstract
  108. ↵
    1. Jenkyns H. C.,
    2. Matthews A.,
    3. Tsikos H.,
    4. Erel Y.
    , 2007, Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian–Turonian oceanic anoxic event: Paleoceanography and Paleoclimatology, v. 22, n. 3, PA3208, doi:https://doi.org/10.1029/2006PA001355
    OpenUrlCrossRef
  109. ↵
    1. Jenkyns H. C.,
    2. Dickson A. J.,
    3. Ruhl M.,
    4. van den Boorn S. H. J.
    , 2017, Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: Deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous): Sedimentology, v. 64, n. 1, p. 16–43, doi:https://doi.org/10.1111/sed.12305
    OpenUrlCrossRef
  110. ↵
    1. Jin H.,
    2. Liebezeit G.
    , 2013, Distribution of total mercury in coastal sediments from Jade Bay and its catchment, Lower Saxony, Germany: Journal of Soils and Sediments, v. 13, n. 2, p. 441–449, doi:https://doi.org/10.1007/s11368-012-0626-6
    OpenUrlCrossRefGeoRef
  111. ↵
    1. Jones C. E.,
    2. Jenkyns H. C.
    , 2001, Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous: American Journal of Science, v. 301, n. 2, p. 112–149, doi:https://doi.org/10.2475/ajs.301.2.112
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Jones D. S.,
    2. Martini A. M.,
    3. Fike D. A.,
    4. Kaiho K.
    , 2017, A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia: Geology, v. 45, n. 7, p. 631–634, doi:https://doi.org/10.1130/G38940.1
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Keller G.,
    2. Mateo P.,
    3. Punekar J.,
    4. Khozyem H.,
    5. Gertsch B.,
    6. Spangenberg J.,
    7. Bitchong A. M.,
    8. Adatte T.
    , 2018, Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene thermal maximum: Implications for the Anthropocene: Gondwana Research, v. 56, p. 69–89, doi:https://doi.org/10.1016/j.gr.2017.12.002
    OpenUrlCrossRef
  114. ↵
    1. Kingsbury C. G.,
    2. Kamo S. L.,
    3. Ernst R. E.,
    4. Söderland U.,
    5. Cousens B. L.
    , 2018, U-Pb geochronology of the plumbing system associated with the Late Cretaceous Strand Fiord Formation, Axel Heiberg Island, Canada: Part of the 130-90 Ma High Arctic large igneous province: Journal of Geodynamics, v. 118, p. 106–117, doi:https://doi.org/10.1016/j.jog.2017.11.001
    OpenUrlCrossRef
  115. ↵
    1. Kolonic S.,
    2. Wagner T.,
    3. Forster A.,
    4. Sinninghe Damsté J. S.,
    5. Walsworth-Bell B.,
    6. Erba E.,
    7. Turgeon S.,
    8. Brumsack H. J.,
    9. Chellai E. H.,
    10. Tsikos H.,
    11. Kuhnt W.,
    12. Kuypers M. M. M.
    , 2005, Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial: Paleoceanography and Paleoclimatology, v. 20, n. 1, doi:https://doi.org/10.1029/2003PA000950
    OpenUrlCrossRef
  116. ↵
    1. Kongchum M.,
    2. Hudnall W. H.,
    3. Delaune R. D.
    , 2011, Relationship between sediment clay minerals and total mercury: Journal of Environmental Science and Health, Part A, v. 46, n. 5, p. 534–539, doi:https://doi.org/10.1080/10934529.2011.551745
    OpenUrlCrossRef
  117. ↵
    1. Krupp R.
    , 1988, Physicochemical aspects of mercury metallogenesis: Chemical Geology, v. 69, n. 3–4, p. 345–356, doi:https://doi.org/10.1016/0009-2541(88)90045-9
    OpenUrlCrossRefGeoRefWeb of Science
  118. ↵
    1. Kuhnt W.,
    2. Nederbragt A.,
    3. Leine L.
    , 1997, Cyclicity of Cenomanian-Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco): Cretaceous Research, v. 18, n. 4, p. 587–601, doi:https://doi.org/10.1006/cres.1997.0076
    OpenUrlCrossRefGeoRefWeb of Science
  119. ↵
    1. Kuhnt W.,
    2. Holbourn A. E.,
    3. Beil S.,
    4. Aquit M.,
    5. Krawczyk T.,
    6. Flögel S.,
    7. Chellai E. H.,
    8. Jabour H.
    , 2017, Unraveling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin, Morocco: Paleoceanography and Paleoclimatology, v. 32, n. 8, p. 923–946, doi:https://doi.org/10.1002/2017PA003146
    OpenUrlCrossRef
  120. ↵
    1. Kuroda J.,
    2. Ogawa N. O.,
    3. Tanimizu M.,
    4. Coffin M. F.,
    5. Tokuyama H.,
    6. Kitazato H.,
    7. Ohkouchi N.
    , 2007, Contemporaneous massive subaerial volcanism and late Cretaceous Oceanic Anoxic Event 2: Earth and Planetary Science Letters, v. 256, n. 1–2, p. 211–223, doi:https://doi.org/10.1016/j.epsl.2007.01.027
    OpenUrlCrossRefGeoRefWeb of Science
    1. Kuroda J.,
    2. Hori R. S.,
    3. Suzuki K.,
    4. Gröcke D. R.,
    5. Ohkouchi N.
    , 2010, Marine osmium isotope record across the Triassic-Jurassic boundary from a Pacific pelagic site: Geology, v. 38, n. 12, p. 1095–1098, doi:https://doi.org/10.1130/G31223.1
    OpenUrlAbstract/FREE Full Text
    1. Kuroda J.,
    2. Tanimizu M.,
    3. Hori R. S.,
    4. Suzuki K.,
    5. Ogawa N. O.,
    6. Tejada M. L.,
    7. Coffin M. F.,
    8. Coccioni R.,
    9. Erba E.,
    10. Ohkouchi N.
    , 2011, Lead isotopic record of Barremian–Aptian marine sediments: Implications for large igneous provinces and the Aptian climatic crisis: Earth and Planetary Science Letters, v. 307, n. 1–2, p. 126–134, doi:https://doi.org/10.1016/j.epsl.2011.04.021
    OpenUrlCrossRefGeoRefWeb of Science
  121. ↵
    1. Lamborg C. H.,
    2. Von Damm K. L.,
    3. Fitzgerald W. F.,
    4. Hammerschmidt C. R.,
    5. Zierenberg R.
    , 2006, Mercury and monomethylmercury in fluids from Sea Cliff submarine hydrothermal field, Gorda Ridge: Geophysical Research Letters, v. 33, n. 17, L17606, doi:https://doi.org/10.1029/2006GL026321
    OpenUrlCrossRef
  122. ↵
    1. Lanci L.,
    2. Muttoni G.,
    3. Erba E.
    , 2010, Astronomical tuning of the Cenomanian Scaglia Bianca Formation at Furlo, Italy: Earth and Planetary Science Letters, v. 292, n. 1–2, p. 231–237, doi:https://doi.org/10.1016/j.epsl.2010.01.041
    OpenUrlCrossRefGeoRef
    1. Larsen L. M.,
    2. Fitton J. G.,
    3. Pedersen A. K.
    , 2003, Paleogene volcanic ash layers in the Danish Basin: Compositions and source areas in the North Atlantic Igneous Province: Lithos, v. 71, n. 1, p. 47–80, doi:https://doi.org/10.1016/j.lithos.2003.07.001
    OpenUrlCrossRefGeoRefWeb of Science
  123. ↵
    1. Erskine M. C.,
    2. Faulds J. E.,
    3. Bartley J. M.,
    4. Rowley P. D.
    1. Laurin J.,
    2. Sageman B. B.
    , 2001, Tectono-sedimentary evolution of the western margin of the Colorado Plateau during the latest Cenomanian and Early Turonian in Erskine M. C., Faulds J. E., Bartley J. M., Rowley P. D., editors, The Geologic Transition, High Plateaus to Great Basin: A symposium and field guide: The Mackin Volume, American Association of Petroleum Geologists, p. 57–74.
  124. ↵
    1. Laurin J.,
    2. Sageman B. B.
    , 2007, Cenomanian–Turonian coastal record in SW Utah, USA: Orbital-scale transgressive–regressive events during Oceanic Anoxic Event II: Journal of Sedimentary Research, v. 77, n. 9, p. 731–756, doi:https://doi.org/10.2110/jsr.2007.076
    OpenUrlAbstract/FREE Full Text
  125. ↵
    1. LeCain R.,
    2. Clyde W. C.,
    3. Wilson G. P.,
    4. Riedel J.
    , 2014, Magnetostratigraphy of the Hell Creek and lower Fort Union Formations in northeastern Montana: Geological Society of America Special Papers, v. 503, p. 137–147, doi:https://doi.org/10.1130/2014.2503(04)
    OpenUrlAbstract/FREE Full Text
  126. ↵
    1. Li L.,
    2. Keller G.
    , 1998a, Diversification and extinction in Campanian-Maastrichtian planktic foraminifera of Northwestern Tunisia: Eclogae Geologicae Helvetiae, v. 91, n. 1, p. 75–102.
    OpenUrlGeoRefWeb of Science
  127. ↵
    1. Li L.,
    2. Keller G.
    , 1998b, Abrupt deep-sea warming at the end of the Cretaceous: Geology, v. 26, n. 11, p. 995–998, doi:https://doi.org/10.1130/0091-7613(1998)026<0995:ADSWAT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  128. ↵
    1. Liu S. A.,
    2. Wu H.,
    3. Shen S. Z.,
    4. Jiang G.,
    5. Zhang S.,
    6. Lv Y.,
    7. Zhang H.,
    8. Li S.
    , 2017, Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction: Geology, v. 45, n. 4, p. 343–346, doi:https://doi.org/10.1130/G38644.1
    OpenUrlAbstract/FREE Full Text
  129. ↵
    1. Liu X.,
    2. Xu L.,
    3. Chen Q.,
    4. Sun L.,
    5. Wang Y.,
    6. Yan H.,
    7. Liu Y.,
    8. Luo Y.,
    9. Huang J.
    , 2012, Historical change of mercury pollution in remote Yongle archipelago, South China Sea: Chemosphere, v. 87, n. 5, p. 549–556, doi:https://doi.org/10.1016/j.chemosphere.2011.12.065
    OpenUrlCrossRefPubMed
  130. ↵
    1. Feldmann R. M.,
    2. Woodburne M. O.
    1. Macellari C. E.
    , 1988, Stratigraphy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island, in Feldmann R. M., Woodburne M. O., editors, Geology and Paleontology of Seymour Island Antarctic Peninsula: Geological Society of America Memoirs, v. 169, p. 25–54, doi:https://doi.org/10.1130/MEM169-p25
    OpenUrlCrossRef
  131. ↵
    1. MacLeod K. G.,
    2. Martin E. E.,
    3. Blair S. W.
    , 2008, Nd isotopic excursion across Cretaceous oceanic anoxic event 2 (Cenomanian-Turonian) in the tropical North Atlantic: Geology, v. 36, n. 10, p. 811–814, doi:https://doi.org/10.1130/G24999A.1
    OpenUrlAbstract/FREE Full Text
  132. ↵
    1. Martin E. E.,
    2. MacLeod K. G.,
    3. Berrocoso A. J.,
    4. Bourbon E.
    , 2012, Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes: Earth and Planetary Science Letters, v. 327–328, p. 111–120, doi:https://doi.org/10.1016/j.epsl.2012.01.037
    OpenUrlCrossRef
    1. Marzoli A.,
    2. Bertrand H.,
    3. Knight K. B.,
    4. Cirilli S.,
    5. Buratti N.,
    6. Vérati C.,
    7. Nomade S.,
    8. Renne P. R.,
    9. Youbi N.,
    10. Martini R.,
    11. Allenbach K.,
    12. Neuwerth R.,
    13. Rapaille C.,
    14. Zaninetti L.,
    15. Bellieni G.
    , 2004, Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis: Geology, v. 32, n. 11, p. 973–976, doi:https://doi.org/10.1130/G20652.1
    OpenUrlAbstract/FREE Full Text
  133. ↵
    1. Mason R. P.,
    2. Laporte J.-M.,
    3. Andres S.
    , 2000, Factors controlling the Bioaccumulation of Mercury, Methylmercury, Arsenic, Selenium, and Cadmium by Freshwater Invertebrates and Fish: Archives of Environmental Contamination and Toxicology, v. 38, n. 3, p. 283–297, doi:https://doi.org/10.1007/s002449910038
    OpenUrlCrossRefPubMedWeb of Science
  134. ↵
    1. McClintock M.,
    2. White J. D.
    , 2006, Large phreatomagmatic vent complex at Coombs Hills, Antarctica: Wet, explosive initiation of flood basalt volcanism in the Ferrar-Karoo LIP: Bulletin of Volcanology, 68, n. 3, p. 215–239, doi:https://doi.org/10.1007/s00445-005-0001-1
    OpenUrlCrossRefGeoRefWeb of Science
  135. ↵
    1. McElwain J. C.,
    2. Wade-Murphy J.,
    3. Hesselbo S. P.
    , 2005, Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals: Nature, v. 435, p. 479–482, doi:https://doi.org/10.1038/nature03618
    OpenUrlCrossRefPubMedWeb of Science
  136. ↵
    1. Meyers P. A.,
    2. Yum J. G.,
    3. Wise S. W.
    , 2009, Origins and maturity of organic matter in mid-Cretaceous black shales from ODP Site 1138 on the Kerguelen Plateau: Marine and Petroleum Geology, v. 26, n. 6, p. 909–915, doi:https://doi.org/10.1016/j.marpetgeo.2008.09.003
    OpenUrlCrossRefGeoRef
  137. ↵
    1. Meyers S. R.,
    2. Sageman B. B.,
    3. Arthur M. A.
    , 2012a, Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2: Paleoceanography and Paleoclimatology, v. 27, n. 3, doi:https://doi.org/10.1029/2012PA002286
    OpenUrlCrossRef
  138. ↵
    1. Meyers S. R.,
    2. Siewert S. E.,
    3. Singer B. S.,
    4. Sageman B. B.,
    5. Condon D. J.,
    6. Obradovich J. D.,
    7. Jicha B. R.,
    8. Sawyer D. A.
    , 2012b, Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA: Geology, 40, n. 1, p. 7–10, doi:https://doi.org/10.1130/G32261.1
    OpenUrlAbstract/FREE Full Text
  139. ↵
    1. Miller K. G.,
    2. Sugarman P. J.,
    3. Browning J. V.
    1. Miller K. G.,
    2. Sugarman P. J.,
    3. Browning J. V.,
    4. Olsson R. K.,
    5. Pekar S. F.,
    6. Reilly T. J.,
    7. Cramer B. S.,
    8. Aubry M. P.,
    9. Lawrence R. P.,
    10. Curran J.,
    11. Stewart M.,
    12. Metzger J. M.,
    13. Uptegrove J.,
    14. Bukry D.,
    15. Burckle L. H.,
    16. Wright J. D.,
    17. Feigenson M. D.,
    18. Brenner G. J.,
    19. Dalton R. F.
    , 1998, Bass River Site, in Miller K. G., Sugarman P. J., Browning J. V., and others, editors, Proceedings of the Ocean Drilling Program, Initial Reports, 174AX: College Station, Texas (Ocean Drilling Program), p. 5–43, doi:https://doi.org/10.2973/odp.proc.ir.174ax.101.1998
  140. ↵
    1. Mohr B. A.,
    2. Wähnert V.,
    3. Lazarus D.
    , 2002, Mid-Cretaceous paleobotany and palynology of the central Kerguelen Plateau, Southern Indian Ocean (ODP leg 183, site 1138): Proceedings of the Ocean Drilling Program, Scientific Results, v. 183, p. 1–39, doi:https://doi.org/10.2973/odp.proc.sr.183.008.2002
    OpenUrlCrossRef
  141. ↵
    1. Molina E.,
    2. Alegret L.,
    3. Arenillas I.,
    4. Arz J. A.,
    5. Gallala N.,
    6. Grajales-Nishimura J. M.,
    7. Murillo-Munetón G.,
    8. Zaghbib-Turki D.
    , 2009, The Global Boundary Stratotype Section and Point for the base of the Danian Stage (Paleocene, Paleogene,“ Tertiary”, Cenozoic): Auxiliary sections and correlation: Episodes, v. 32, n. 2, p. 84–95.
    OpenUrlGeoRefWeb of Science
  142. ↵
    1. Moore T. C. Jr..,
    2. Rabinowitz P. D.,
    3. Boersma A.,
    4. Borella P. E.,
    5. Chave A. D.,
    6. Duee G.,
    7. Futterer D. K.,
    8. Jiang M. G.,
    9. Kleinert K.,
    10. Lever A.,
    11. Manivit H.,
    12. O'Connell S.,
    13. Richardson S. H.,
    14. Shackleton N. J.
    , 1983, The Walvis Ridge transect, Deep Sea Drilling Project Leg 74: The geologic evolution of an oceanic plateau in the south Atlantic Ocean: Geological Society of America Bulletin, v. 94, n. 7, p. 907–925, doi:https://doi.org/10.1130/0016-7606(1983)94<907:TWRTDS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Mort H. P.,
    2. Adatte T.,
    3. Föllmi K. B.,
    4. Keller G.,
    5. Steinmann P.,
    6. Matera V.,
    7. Berner Z.,
    8. Stüben D.
    , 2007, Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2: Geology, v. 35, n. 6, p. 483–486, doi:https://doi.org/10.1130/G23475A.1
    OpenUrlAbstract/FREE Full Text
  144. ↵
    1. Mort H. P.,
    2. Adatte T.,
    3. Keller G.,
    4. Bartels D.,
    5. Föllmi K. B.,
    6. Steinmann P.,
    7. Berner Z.,
    8. Chellai E. H.
    , 2008, Organic carbon deposition and phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya, Morocco: Cretaceous Research, v. 29, n. 5–6, p. 1008–1023, doi:https://doi.org/10.1016/j.cretres.2008.05.026
    OpenUrlCrossRefGeoRefWeb of Science
  145. ↵
    1. Munthe J.,
    2. Wängberg I.,
    3. Shang L.
    , 2009, The origin and fate of mercury species in the natural environment: Euro Chlor Science Dossier 14.
  146. ↵
    1. Mahoney J. J.,
    2. Coffin M. F.
    1. Neal C. R.,
    2. Mahoney J. J.,
    3. Kroenke L. W.,
    4. Duncan R. A.,
    5. Petterson M. G.
    , 1997, The Ontong–Java Plateau, in Mahoney J. J., Coffin M. F., editors, Large igneous provinces: Continental, oceanic and planetary flood volcanism: Geophysical Monograph Series, v. 100, p. 183–216, doi:https://doi.org/10.1029/GM100p0183
    OpenUrlCrossRef
  147. ↵
    1. Nerlich R.,
    2. Clark S. R.,
    3. Bunge H. P.
    , 2014, Reconstructing the link between the Galapagos hotspot and the Caribbean Plateau: GeoResJ, v. 1–2, p. 1–7, doi:https://doi.org/10.1016/j.grj.2014.02.001
    OpenUrlCrossRef
  148. ↵
    1. Obrist D.,
    2. Johnson D. W.,
    3. Edmonds R. L.
    , 2012, Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests: Journal of Plant Nutrition and Soil Science, v. 175, n. 1, p. 68–77, doi:https://doi.org/10.1002/jpln.201000415
    OpenUrlCrossRef
  149. ↵
    1. Ogg J. G.,
    2. Ogg G.,
    3. Gradstein F. M.
    , 2016, A Concise Geologic Time Scale: 2016: Amsterdam, Elsevier, 240 p.
  150. ↵
    1. Olsen P. E.,
    2. Kinney S. T.,
    3. Hemming S.,
    4. Jarett S. J.,
    5. Rasbury E. T.,
    6. Philpotts A. R.
    , 2017, CAMP Ashes and the ETE: 27th Goldschmidt Conference, abstract 2991.
  151. ↵
    1. Koeberly C.,
    2. MacLeod K. G.
    1. Olsson R. K.,
    2. Miller K. G.,
    3. Browning J. V.,
    4. Wright J. D.,
    5. Cramer B. S.
    , 2002, Sequence stratigraphy and sea-level change across the Cretaceous-Tertiary boundary on the New Jersey passive margin, in Koeberly C., MacLeod K. G., editors, Catastrophic events and mass extinctins: Impacts and Beyond: Geological Society of America, Special Papers, v. 356, p. 97–108, doi:https://doi.org/10.1130/0-8137-2356-6.97
    OpenUrlCrossRef
  152. ↵
    1. Orth C. J.,
    2. Attrep M. Jr..,
    3. Quintana L. R.,
    4. Elder W. P.,
    5. Kauffman,
    6. Diner R.,
    7. Villamil T.
    , 1993, Elemental abundance anomalies in the late Cenomanian extinction interval: A search for the source(s): Earth and Planetary Science Letters, v. 117, n. 1–2, p. 189–204, doi:https://doi.org/10.1016/0012-821X(93)90126-T
    OpenUrlCrossRefGeoRefWeb of Science
  153. ↵
    1. Outridge P. M.,
    2. Sanei H.,
    3. Stern G. A.,
    4. Hamilton P. B.,
    5. Goodarzi F.
    , 2007, Evidence for control of mercury accumulation rates in Canadian High Arctic lake in sediments by variations of aquatic primary productivity: Environmental Science & Technology, v. 41, n. 15, p. 5259–5265, doi:https://doi.org/10.1021/es070408x
    OpenUrlCrossRefPubMed
  154. ↵
    1. Owens J. D.,
    2. Lyons T. W.,
    3. Hardisty D. S.,
    4. Lowery C. M.,
    5. Lu Z.,
    6. Lee B.,
    7. Jenkyns H. C.
    , 2017, Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy: Sedimentology, v. 64, n. 1, p. 168–185, doi:https://doi.org/10.1111/sed.12352
    OpenUrlCrossRef
  155. ↵
    1. Pálfy J.,
    2. Zajzon N.
    , 2012, Environmental changes across the Triassic–Jurassic boundary and coeval volcanism inferred from elemental geochemistry and mineralogy in the Kendlbachgraben section (Northern Calcareous Alps, Austria): Earth and Planetary Science Letters, v. 335–336, p. 121–134, doi:https://doi.org/10.1016/j.epsl.2012.01.039
    OpenUrlCrossRef
  156. ↵
    1. Palmer M. R.,
    2. Edmund J. M.
    , 1989, The strontium isotope budget of the modern ocean: Earth and Planetary Science Letters, v. 92, n. 1, p. 11–26, doi:https://doi.org/10.1016/0012-821X(89)90017-4
    OpenUrlCrossRefGeoRefWeb of Science
  157. ↵
    1. Paul C. R. C.,
    2. Lamolda M. A.,
    3. Mitchell S. F.,
    4. Vaziri M. R.,
    5. Gorostidi A.,
    6. Marshall J. D.
    , 1999, The Cenomanian-Turonian boundary at Eastbourne (Sussex, UK): A proposed European reference section: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 150, n. 1–2, p. 83–121, doi:https://doi.org/10.1016/S0031-0182(99)00009-7
    OpenUrlCrossRefGeoRefWeb of Science
  158. ↵
    1. Pearce M. A.,
    2. Jarvis I.,
    3. Tocher B. A.
    , 2009, The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: New insights from the dinocyst and geochemical records: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 280, n. 1–2, p. 207–234, doi:https://doi.org/10.1016/j.palaeo.2009.06.012
    OpenUrlCrossRefGeoRefWeb of Science
  159. ↵
    1. Percival L. M. E.,
    2. Witt M. L. I.,
    3. Mather T. A.,
    4. Hermoso M.,
    5. Jenkyns H. C.,
    6. Hesselbo S. P.,
    7. Al-Suwaidi A. H.,
    8. Storm M. S.,
    9. Xu W.,
    10. Ruhl M.
    , 2015, Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province: Earth and Planetary Science Letters, v. 428, p. 267–280, doi:https://doi.org/10.1016/j.epsl.2015.06.064
    OpenUrlCrossRefGeoRef
  160. ↵
    1. Percival L. M. E.,
    2. Cohen A. S.,
    3. Davies M. K.,
    4. Dickson A. J.,
    5. Hesselbo S. P.,
    6. Jenkyns H. C.,
    7. Leng M. J.,
    8. Mather T. A.,
    9. Storm M. S.,
    10. Xu W.
    , 2016, Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change: Geology, v. 44, n. 9, p. 759–762, doi:https://doi.org/10.1130/G37997.1
    OpenUrlAbstract/FREE Full Text
  161. ↵
    1. Percival L. M. E.,
    2. Ruhl M.,
    3. Hesselbo S. P.,
    4. Jenkyns H. C.,
    5. Mather T. M.,
    6. Whiteside J. H.
    , 2017, Mercury evidence for pulsed volcanism during the end-Triassic mass extinction: Proceedings of the National Academy of Sciences of the United States of America, v. 114, n. 30, p. 7929–7934, doi:https://doi.org/10.1073/pnas.1705378114
    OpenUrlAbstract/FREE Full Text
  162. ↵
    1. Petersen S. V.,
    2. Dutton A.,
    3. Lohmann K. C.
    , 2016, End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change: Nature Communications, v. 7, doi:https://doi.org/10.1038/ncomms12079
    OpenUrlCrossRef
  163. ↵
    1. Peterson F.
    , 1969, Cretaceous sedimentation and tectonism in the southeastern Kaiparowits region, Utah: U.S. Geological Survey Open File Report 69-202, 259 p.
  164. ↵
    1. Peucker-Ehrenbrink B.,
    2. Jahn B. M.
    , 2001, Rhenium-osmium isotope systematics and platinum group element concentrations: Loess and the upper continental crust: Geochemistry, Geophysics, Geosystems, v. 2, n. 10, doi:https://doi.org/10.1029/2001GC000172
    OpenUrlCrossRef
  165. ↵
    1. Peucker-Ehrenbrink B.,
    2. Ravizza G.
    , 2000, The marine osmium isotope record: Terra Nova, v. 12, n. 5, p. 205–219, doi:https://doi.org/10.1046/j.1365-3121.2000.00295.x
    OpenUrlCrossRefGeoRefWeb of Science
  166. ↵
    1. Pinto V. M.,
    2. Hartmann L. A.,
    3. Santos J. O. S.,
    4. McNaughton N. J.,
    5. Wildner W.
    , 2011, Zircon U–Pb geochronology from the Paraná bimodal volcanic province support a brief eruptive cycle at ∼ 135 Ma: Chemical Geology, v. 281, n. 1–2, p. 93–102, doi:https://doi.org/10.1016/j.chemgeo.2010.11.031
    OpenUrlCrossRefGeoRefWeb of Science
  167. ↵
    1. Pogge von Strandmann P. A. E.,
    2. Jenkyns H. C.,
    3. Woodfine R. G.
    , 2013, Lithium isotope evidence for enhanced weathering during Ocean Anoxic Event 2: Nature Geoscience, v. 6, p. 668–672, doi:https://doi.org/10.1038/ngeo1875
    OpenUrlCrossRef
  168. ↵
    1. Polteau S.,
    2. Hendriks B. W. H.,
    3. Planke S.,
    4. Ganerød M.,
    5. Corfu F.,
    6. Faleide J. I.,
    7. Midtkandal I.,
    8. Svensen H. S.,
    9. Myklebust R.
    , 2016, The Early Cretaceous Barents Sea Sill Complex: Distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, Part 1, p. 83–95, doi:https://doi.org/10.1016/j.palaeo.2015.07.007
    OpenUrlCrossRefGeoRef
  169. ↵
    1. Poulton S. W.,
    2. Henkel S.,
    3. März C.,
    4. Urquhart H.,
    5. Flögel S.,
    6. Kasten S.,
    7. Damsté J. S. S.,
    8. Wagner T.
    , 2015, A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2: Geology, v. 43, n. 11, p. 963–966, doi:https://doi.org/10.1130/G36837.1
    OpenUrlAbstract/FREE Full Text
  170. ↵
    1. Pujalte V.,
    2. Baceta J. I.,
    3. Dinarès-Turell J.,
    4. Orue-etxebarria X.,
    5. Parés J. M.,
    6. Payros A.
    , 1995, Biostratigraphic and magnetostratigraphic intercalibration of latest Cretaceous and Paleocene depositional sequences from the deep-water Basque basin, western Pyrenees, Spain: Earth and Planetary Science Letters, v. 136, n. 1–2, p. 17–30, doi:https://doi.org/10.1016/0012-821X(95)00157-9
    OpenUrlCrossRefGeoRefWeb of Science
  171. ↵
    1. Pujol F.,
    2. Berner Z.,
    3. Stüben D.
    , 2006, Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections: Chemostratigraphic constraints: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, n. 1–2, p. 120–145, doi:https://doi.org/10.1016/j.palaeo.2006.03.055
    OpenUrlCrossRefGeoRefWeb of Science
  172. ↵
    1. Pyle D. M.,
    2. Mather T. A.
    , 2003, The importance of volcanic emissions for the global atmospheric mercury cycle: Atmospheric Environment, v. 37, n. 36, p. 5115–5124, doi:https://doi.org/10.1016/j.atmosenv.2003.07.011
    OpenUrlCrossRefWeb of Science
    1. Racki G.,
    2. Racka M.,
    3. Matyja H.,
    4. Devleeschouwer X.
    , 2002, The Frasnian/Famennian boundary interval in the South Polish–Moravian shelf basins: Integrated event-stratigraphical approach: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 181, n. 1–3, p. 251–297, doi:https://doi.org/10.1016/S0031-0182(01)00481-3
    OpenUrlCrossRefGeoRef
  173. ↵
    1. Racki G.,
    2. Rakociński M.,
    3. Marynowski L.,
    4. Wignall P. B.
    , 2018, Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?: Geology, v. 46, n. 6, p. 543–546, doi:https://doi.org/10.1130/G40233.1
    OpenUrlCrossRef
  174. ↵
    1. Rakociński M.,
    2. Zatoń M.,
    3. Marynowski L.,
    4. Gedl P.,
    5. Lehmann J.
    , 2018, Redox conditions, productivity, and volcanic input during deposition of uppermost Jurassic and Lower Cretaceous organic-rich siltstones in Spitsbergen, Norway: Cretaceous Research, v. 89, p. 126–147, doi:https://doi.org/10.1016/j.cretres.2018.02.014
    OpenUrlCrossRef
  175. ↵
    1. Ravichandran M.
    , 2004, Interactions between mercury and dissolved organic matter – a review: Chemosphere, v. 55, n. 3, p. 319–331, doi:https://doi.org/10.1016/j.chemosphere.2003.11.011
    OpenUrlCrossRefPubMedWeb of Science
  176. ↵
    1. Ravizza G.,
    2. Peucker-Ehrenbrink B.
    , 2003, Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record: Science, v. 302, n. 5649, p. 1392–1395, doi:https://doi.org/10.1126/science.1089209
    OpenUrlAbstract/FREE Full Text
  177. ↵
    1. Renne P. R.,
    2. Sprain C. J.,
    3. Richards M. A.,
    4. Self S.,
    5. Vanderkluysen L.,
    6. Pande K.
    , 2015, State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact: Science, v. 350, n. 6256, p. 76–78, doi:https://doi.org/10.1126/science.aac7549
    OpenUrlAbstract/FREE Full Text
  178. ↵
    1. Robertson A. H. F.
    , 2002, Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region: Lithos, v. 65, n. 1–2, p. 1–67, doi:https://doi.org/10.1016/S0024-4937(02)00160-3
    OpenUrlCrossRefGeoRefWeb of Science
  179. ↵
    1. Robinson N.,
    2. Ravizza G.,
    3. Coccioni R.,
    4. Peucker-Ehrenbrink B.,
    5. Norris R.
    , 2009, A high-resolution marine 187Os/188Os record for the late Maastrichtian: Distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event: Earth and Planetary Science Letters, v. 281, n. 3–4, p. 159–168, doi:https://doi.org/10.1016/j.epsl.2009.02.019
    OpenUrlCrossRefGeoRefWeb of Science
  180. ↵
    1. Ross P. S.,
    2. Peate I. U.,
    3. McClintock M. K.,
    4. Xu Y. G.,
    5. Skilling I. P.,
    6. White J. D. L.,
    7. Houghton B. F.
    , 2005, Mafic volcaniclastic deposits in flood basalt provinces: A review: Journal of Volcanology and Geothermal Research, v. 145, n. 3–4, p. 281–314, doi:https://doi.org/10.1016/j.jvolgeores.2005.02.003
    OpenUrlCrossRefGeoRefWeb of Science
  181. ↵
    1. Ruiz W. L. G.,
    2. Tomiyasu T.
    , 2015, Distribution of mercury in sediments from Kagoshima Bay, Japan, and its relationship with physical and chemical factors: Environmental Earth Sciences, v. 74, n. 2, p. 1175–1188, doi:https://doi.org/10.1007/s12665-015-4104-5
    OpenUrlCrossRef
    1. Sabatino N.,
    2. Ferraro S.,
    3. Coccioni R.,
    4. Bonsignore M.,
    5. Del Core M.,
    6. Tancredi V.,
    7. Sprovieri M.
    , 2018, Mercury anomalies in upper Aptian-lower Albian sediments from the Tethys realm: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 495, p. 163–170, doi:https://doi.org/10.1016/j.palaeo.2018.01.008
    OpenUrlCrossRef
  182. ↵
    1. Sanei H.,
    2. Grasby S.,
    3. Beauchamp B.
    , 2012, Latest Permian mercury anomalies: Geology, v. 40, n. 1, p. 63–66, doi:https://doi.org/10.1130/G32596.1
    OpenUrlAbstract/FREE Full Text
  183. ↵
    1. Saunders A. D.
    , 2016, Two LIPs and two Earth-system crises: The impact of the North Atlantic Igneous Province and the Siberian Traps on the Earth-surface carbon cycle: Geological Magazine, v. 153, n. 2, p. 201–222, doi:https://doi.org/10.1017/S0016756815000175
    OpenUrlAbstract/FREE Full Text
  184. ↵
    1. Scaife J. D.,
    2. Ruhl M.,
    3. Dickson A. J.,
    4. Mather T. A.,
    5. Jenkyns H. C.,
    6. Percival L. M. E.,
    7. Hesselbo S. P.,
    8. Cartwright J.,
    9. Eldrett J. S.,
    10. Bergman S. C.,
    11. Minisini D.
    , 2017, Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence from the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous): Geochemistry, Geophysics, Geosystems, v. 18, n. 12, p. 4253–4275, doi:https://doi.org/10.1002/2017GC007153
    OpenUrlCrossRef
  185. ↵
    1. Schlanger S. O.,
    2. Jenkyns H. C.
    , 1976, Cretaceous Oceanic Anoxic Events: Causes and Consequences: Geologie en Mijnbouw, v. 55, n. 3, p. 179–184.
    OpenUrlGeoRef
  186. ↵
    1. Schoene B.,
    2. Samperton K. M.,
    3. Eddy M. P.,
    4. Keller G.,
    5. Adatte T.,
    6. Bowring S. A.,
    7. Khadri S. F. R.,
    8. Gertsch B.
    , 2015, U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction: Science, v. 347, n 6218, p. 182–184, doi:https://doi.org/10.1126/science.aaa0118
    OpenUrlAbstract/FREE Full Text
  187. ↵
    1. Schoepfer S. D.,
    2. Henderson C. M.,
    3. Garrison G. H.,
    4. Foriel J.,
    5. Ward P. D.,
    6. Selby D.,
    7. Hower J. C.,
    8. Algeo T. J.,
    9. Shen Y.
    , 2013, Termination of a continent-margin upwelling system at the Permian–Triassic boundary (Opal Creek, Alberta, Canada): Global and Planetary Change, v. 105, p. 21–35, doi:https://doi.org/10.1016/j.gloplacha.2012.07.005
    OpenUrlCrossRefGeoRefWeb of Science
  188. ↵
    1. Schroeder W. H.,
    2. Munthe J.
    , 1998, Atmospheric mercury - An overview: Atmospheric Environment, v. 32, n. 5, p. 809–822, doi:https://doi.org/10.1016/S1352-2310(97)00293-8
    OpenUrlCrossRefWeb of Science
  189. ↵
    1. Schuster P. F.,
    2. Krabeenhoft D. P.,
    3. Naftz D. L.,
    4. Cecil L. D.,
    5. Olson M. L.,
    6. Dewild J. F.,
    7. Susong D. D.,
    8. Green J. R.,
    9. Abbott M. L.
    , 2002, Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources: Environmental Science & Technology, v. 36, n. 11, p. 2303–2310, doi:https://doi.org/10.1021/es0157503
    OpenUrlCrossRefPubMed
    1. Keller G.,
    2. Kerr A. C.
    1. Self S.,
    2. Schmidt A.,
    3. Mather T. A.
    , 2014, Emplacement characteristics, time scales, and volcanic gas release rates of continental flood basalt eruptions on Earth, in Keller G., Kerr A. C., editors, Volcanism, Impacts, and Mass Extinctions: Causes and Effects: Geological Society of America Special Papers, v. 505, doi:https://doi.org/10.1130/2014.2505(16)
    OpenUrlCrossRef
  190. ↵
    1. Selin N. E.
    , 2009, Global Biogeochemical Cycling of Mercury: A Review: Annual Review of Environment and Resources, v. 34, p. 43–63, doi:https://doi.org/10.1146/annurev.environ.051308.084314
    OpenUrlCrossRefGeoRefWeb of Science
    1. Sell B.,
    2. Ovtcharova M.,
    3. Guex J.,
    4. Bartolini A.,
    5. Jourdan F.,
    6. Spangenberg J. E.,
    7. Vicente J. C.,
    8. Schaltegger U.
    , 2014, Evaluating the temporal link between the Karoo LIP and climatic–biologic events of the Toarcian Stage with high-precision U–Pb geochronology: Earth and Planetary Science Letters, v. 408, p. 48–56, doi:https://doi.org/10.1016/j.epsl.2014.10.008
    OpenUrlCrossRefGeoRef
  191. ↵
    1. Seton M.,
    2. Müller R. D.,
    3. Zahirovic S.,
    4. Gaina C.,
    5. Torsvik T.,
    6. Shephard G.,
    7. Talsma A.,
    8. Gurnis M.,
    9. Turner M.,
    10. Maus S.,
    11. Chandler M.
    , 2012, Global continental and ocean basin reconstructions since 200 Ma: Earth-Science Reviews, v. 113, n. 3–4, p. 212–270, doi:https://doi.org/10.1016/j.earscirev.2012.03.002
    OpenUrlCrossRefGeoRef
  192. ↵
    1. Sial A. N.,
    2. Lacerda L. D.,
    3. Ferreira V. P.,
    4. Frei R.,
    5. Marquillas R. A.,
    6. Barbosa J. A.,
    7. Gaucher C.,
    8. Windmöller C. C.,
    9. Pereira N. S.
    , 2013, Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous–Paleogene transition: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 387, p. 153–164, doi:https://doi.org/10.1016/j.palaeo.2013.07.019
    OpenUrlCrossRefGeoRef
    1. Sial A. N.,
    2. Chen J.,
    3. Lacerda L. D.,
    4. Peralta S.,
    5. Gaucher C.,
    6. Frei R.,
    7. Cirilli S.,
    8. Ferreira V. P.,
    9. Marquillas R. A.,
    10. Barbosa J. A.,
    11. Pereira N. S.,
    12. Belmino I. K. C.
    , 2014, High-resolution Hg chemostratigraphy: A contribution to the distinction of chemical fingerprints of the Deccan volcanism and Cretaceous–Paleogene Boundary impact event: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 414, p. 98–115, doi:https://doi.org/10.1016/j.palaeo.2014.08.013
    OpenUrlCrossRefGeoRef
  193. ↵
    1. Sial A. N.,
    2. Chen J.,
    3. Lacerda L. D.,
    4. Frei R.,
    5. Tewari V. C.,
    6. Pandit M. K.,
    7. Gaucher C.,
    8. Ferreira V. P.,
    9. Cirilli S.,
    10. Peralta S.,
    11. Korte C.,
    12. Barbosa J. A.,
    13. Pereira N. S.
    , 2016, Mercury enrichment and Hg isotopes in Cretaceous–Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts: Cretaceous Research, v. 66, p. 60–81, doi:https://doi.org/10.1016/j.cretres.2016.05.006
    OpenUrlCrossRef
  194. ↵
    1. Slemr F.,
    2. Schuster G.,
    3. Seiler W.
    , 1985, Distribution, speciation, and budget of atmospheric mercury: Journal of Atmospheric Chemistry, v. 3, n. 4, p. 407–434, doi:https://doi.org/10.1007/BF00053870
    OpenUrlCrossRefWeb of Science
  195. ↵
    1. Smit J.
    , 1999, The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta: Annual Review of Earth and Planetary Sciences, v. 27, p. 75–113, doi:https://doi.org/10.1146/annurev.earth.27.1.75
    OpenUrlCrossRefWeb of Science
  196. ↵
    1. Smit J.,
    2. Van der Kaars S.
    , 1984, Terminal Cretaceous extinctions in the Hell Creek area, Montana: Compatible with catastrophic extinction: Science, v. 223, n. 4641, p. 1177–1180, doi:https://doi.org/10.1126/science.223.4641.1177
    OpenUrlAbstract/FREE Full Text
  197. ↵
    1. Snow L. J.,
    2. Duncan R. A.,
    3. Bralower T. J.
    , 2005, Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2: Paleoceanography and Paleoclimatology, v. 20, n. 3, PA3005, doi:https://doi.org/10.1029/2004PA001093
    OpenUrlCrossRef
  198. ↵
    1. Sprain C. J.,
    2. Renne P. R.,
    3. Wilson G. P.,
    4. Clemens W. A.
    , 2015, High-resolution chronostratigraphy of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana: Geological Society of America Bulletin, v. 127, n. 2–3, p. 393–409, doi:https://doi.org/10.1130/B31076.1
    OpenUrlAbstract/FREE Full Text
  199. ↵
    1. Sprain C. J.,
    2. Renne P. R.,
    3. Clemens W. A.,
    4. Wilson G. P.
    , 2018, Calibration of chron C29r: New high-precision geochronologic and paleomagnetic constraints from the Hell Creek region, Montana: Geological Society of America Bulletin, v. 130, n. 9–10, p. 1615–1644, doi:https://doi.org/10.1130/B31890.1
    OpenUrlCrossRef
  200. ↵
    1. Storey M.,
    2. Mahoney J. J.,
    3. Saunders A. D.,
    4. Duncan R. A.,
    5. Kelley S. P.,
    6. Coffin M. F.
    , 1995, Timing of hot spot-Related volcanism and the breakup of Madagascar and India: Science, v. 267, n. 5199, p. 852–855, doi:https://doi.org/10.1126/science.267.5199.852
    OpenUrlAbstract/FREE Full Text
  201. ↵
    1. Svensen H.,
    2. Planke S.,
    3. Malthe-Sørenssen A.,
    4. Jamtveit B.,
    5. Myklebust R.,
    6. Eidem T. R.,
    7. Rey S.S.
    , 2004, Release of methane from a volcanic basin as a mechanism for initial Eocene global warming: Nature, v. 429, p. 542–545, doi:https://doi.org/10.1038/nature02566
    OpenUrlCrossRefGeoRefPubMedWeb of Science
    1. Svensen H.,
    2. Planke S.,
    3. Chevalier L.,
    4. Malthe-Sørenssen A.,
    5. Corfu F.,
    6. Jamtveit B.
    , 2007, Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming: Earth and Planetary Science Letters, v. 256, n. 3–4, p. 554–566, doi:https://doi.org/10.1016/j.epsl.2007.02.013
    OpenUrlCrossRefGeoRefWeb of Science
  202. ↵
    1. Svensen H.,
    2. Planke S.,
    3. Polozov A. G.,
    4. Schmidbauer N.,
    5. Corfu F.,
    6. Podladchikov Y. Y.,
    7. Jamtveit B.
    , 2009, Siberian gas venting and the end-Permian environmental crisis: Earth and Planetary Science Letters, v. 277, p. 490–500, doi:https://doi.org/10.1016/j.epsl.2008.11.015
    OpenUrlCrossRefGeoRefWeb of Science
    1. Svensen H.,
    2. Corfu F.,
    3. Polteau S.,
    4. Hammer Ø.,
    5. Planke S.
    , 2012, Rapid magma emplacement in the Karoo large igneous province: Earth and Planetary Science Letters, v. 325–326, p. 1–9, doi:https://doi.org/10.1016/j.epsl.2012.01.015
    OpenUrlCrossRef
  203. ↵
    1. Sweere T. C.,
    2. Dickson A. J.,
    3. Jenkyns H. C.,
    4. Porcelli D.,
    5. Elrick M.,
    6. van den Boorn S. H.,
    7. Henderson G. M.
    , 2018, Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous): Geology, v. 46, n. 5, p. 463–466, doi:https://doi.org/10.1130/G40226.1
    OpenUrlCrossRef
  204. ↵
    1. Swisher C. C. III.,
    2. Dingus L.,
    3. Butler R. F.
    , 1993, 40Ar/39Ar dating and magnetostratigraphic correlation of the terrestrial Cretaceous-Paleogene boundary and Puercan Mammal Age, Hell Creek–Tullock formations, eastern Montana: Canadian Journal of Earth Sciences, v. 30, n. 9, p. 1981–1996, doi:https://doi.org/10.1139/e93-174
    OpenUrlAbstract
  205. ↵
    1. Tegner C.,
    2. Storey M.,
    3. Holm P. M.,
    4. Thorarinsson S. B.,
    5. Zhao X.,
    6. Lo C. H.,
    7. Knudsen M. F.
    , 2011, Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar-39Ar age of Kap Washington Group volcanics, North Greenland: Earth and Planetary Science Letters, v. 303, n. 3–4, p. 203–214, doi:https://doi.org/10.1016/j.epsl.2010.12.047
    OpenUrlCrossRefGeoRefWeb of Science
  206. ↵
    1. Tejada M. L. G.,
    2. Suzuki K.,
    3. Kuroda J.,
    4. Coccioni R.,
    5. Mahoney J. J.,
    6. Ohkouchi N.,
    7. Sakamoto T.,
    8. Tatsumi Y.
    , 2009, Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event: Geology, v. 37, n. 9, p. 855–858, doi:https://doi.org/10.1130/G25763A.1
    OpenUrlAbstract/FREE Full Text
  207. ↵
    1. Thibault N.,
    2. Husson D.,
    3. Harlou R.,
    4. Gardin S.,
    5. Galbrun B.,
    6. Huret E.,
    7. Minoletti F.
    , 2012, Astronomical calibration of upper Campanian–Maastrichtian carbon isotope events and calcareous plankton biostratigraphy in the Indian Ocean (ODP Hole 762C): Implication for the age of the Campanian–Maastrichtian boundary: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 337–338, p. 52–71, doi:https://doi.org/10.1016/j.palaeo.2012.03.027
    OpenUrlCrossRef
  208. ↵
    1. Thibodeau A. M.,
    2. Bergquist B. A.
    , 2017, Do mercury isotopes record the signature of massive volcanism in marine sedimentary records?: Geology, v. 45, n. 1, p. 95–96, doi:https://doi.org/10.1130/focus012017.1
    OpenUrlFREE Full Text
  209. ↵
    1. Thibodeau A. M.,
    2. Ritterbush K.,
    3. Yager J. A.,
    4. West J.,
    5. Ibarra Y.,
    6. Bottjer D. J.,
    7. Berelson W. M.,
    8. Bergquist B. A.,
    9. Corsetti F. A.
    , 2016, Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction: Nature Communications, v. 7, doi:https://doi.org/10.1038/ncomms11147
    OpenUrlCrossRef
  210. ↵
    1. Thiede D. S.,
    2. Vasconcelos P. M.
    , 2010, Paraná flood basalts: Rapid extrusion hypothesis confirmed by new 40Ar/39Ar results: Geology, v. 38, n. 8, p. 747–750, doi:https://doi.org/10.1130/G30919.1
    OpenUrlAbstract/FREE Full Text
  211. ↵
    1. Thompson P. M. E.,
    2. Kempton P. D.,
    3. White R. V.,
    4. Kerr A. C.,
    5. Tarney J.,
    6. Saunders A. D.,
    7. Fitton J. G.,
    8. McBirney A.
    , 2004, Hf–Nd isotope constraints on the origin of the Cretaceous Caribbean plateau and its relationship to the Galápagos plume: Earth and Planetary Science Letters, v. 217, n. 1–2, p. 59–75, doi:https://doi.org/10.1016/S0012-821X(03)00542-9
    OpenUrlCrossRefGeoRefWeb of Science
  212. ↵
    1. Fitton J. G.,
    2. Mahoney J. J.,
    3. Wallace P. J.,
    4. Saunders A. D.
    1. Thordarson T.
    , 2004, Accretionary-lapilli-bearing pyroclastic rocks at ODP Leg 192 Site 1184: A record of subaerial phreatomagmatic eruptions on the Ontong Java Plateau, in Fitton J. G., Mahoney J. J., Wallace P. J., Saunders A. D., editors, Origin and Evolution of the Ontong Java Plateau: Geological Society of London, Special Publications, v. 229, p. 275–306, doi:https://doi.org/10.1144/GSL.SP.2004.229.01.16
    OpenUrlCrossRef
  213. ↵
    1. Tobin T. S.,
    2. Ward P. D.,
    3. Steig E. J.,
    4. Olivero E. B.,
    5. Hilburn I. A.,
    6. Mitchell R. N.,
    7. Diamond M. R.,
    8. Raub T. D.,
    9. Kirschvink J. L.
    , 2012, Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 350–352, p. 180–188, doi:https://doi.org/10.1016/j.palaeo.2012.06.029
    OpenUrlCrossRef
  214. ↵
    1. Tsikos H.,
    2. Jenkyns H. C.,
    3. Walsworth-Bell B.,
    4. Petrizzo M. R.,
    5. Forster A.,
    6. Kolonic S.,
    7. Erba E.,
    8. Premoli-Silva I. P.,
    9. Baas M.,
    10. Wagner T.,
    11. Sinninghe Damsté J. S.
    , 2004, Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: Correlation and implications based on three key localities: Journal of the Geological Society, London, v. 161, p. 711–719, doi:https://doi.org/10.1144/0016-764903-077
    OpenUrlAbstract/FREE Full Text
  215. ↵
    1. Turgeon S.,
    2. Brumsack H. J.
    , 2006, Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche Basin of central Italy: Chemical Geology, v. 234, n. 3–4, p. 321–339, doi:https://doi.org/10.1016/j.chemgeo.2006.05.008
    OpenUrlCrossRefGeoRefWeb of Science
  216. ↵
    1. Turgeon S. C.,
    2. Creaser R. A.
    , 2008, Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode: Nature, v. 454, p. 323–326, doi:https://doi.org/10.1038/nature07076
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  217. ↵
    1. Voigt S.,
    2. Gale A. S.,
    3. Flögel S.
    , 2004, Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: Temperature evolution and North Atlantic circulation: Paleoceanography and Paleoclimatology, v. 19, n. 4, PA4020, doi:https://doi.org/10.1029/2004PA001015
    OpenUrlCrossRef
  218. ↵
    1. Voigt S.,
    2. Gale A.S.,
    3. Voigt T.
    , 2006, Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis: Cretaceous Research, v. 27, n. 6, p. 836–858, doi:https://doi.org/10.1016/j.cretres.2006.04.005
    OpenUrlCrossRefGeoRefWeb of Science
  219. ↵
    1. Wang X.,
    2. Cawood P. A.,
    3. Zhao H.,
    4. Zhao L.,
    5. Grasby S. E.,
    6. Chen Z. Q.,
    7. Wignall P. B.,
    8. Lv Z.,
    9. Han C.
    , 2018, Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments: Earth and Planetary Science Letters, v. 496, p. 159–167, doi:https://doi.org/10.1016/j.epsl.2018.05.044
    OpenUrlCrossRef
  220. ↵
    1. Wellman P.,
    2. McElhinny M. W.
    , 1970, K–Ar age of the Deccan traps, India: Nature, v. 227, p. 595–596, doi:https://doi.org/10.1038/227595a0
    OpenUrlCrossRefGeoRefPubMed
  221. ↵
    1. Westermann S.,
    2. Vance D.,
    3. Cameron V.,
    4. Archer C.,
    5. Robinson S. A.
    , 2014, Heterogeneous oxygenation states in the Atlantic and Tethys oceans during Oceanic Anoxic Event 2: Earth and Planetary Science Letters, v. 404, p. 178–189, doi:https://doi.org/10.1016/j.epsl.2014.07.018
    OpenUrlCrossRefGeoRef
    1. Wieczorek R.,
    2. Fantle M. S.,
    3. Kump L. R.,
    4. Ravizza G.
    , 2013, Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum: Geochimica et Cosmochimica Acta, v. 119, p. 391–410, doi:https://doi.org/10.1016/j.gca.2013.06.005
    OpenUrlCrossRef
  222. ↵
    1. Witts J. D.,
    2. Bowman V. C.,
    3. Wignall P. B.,
    4. Crame J. A.,
    5. Francis J. E.,
    6. Newton R. J.
    , 2015, Evolution and extinction of Maastrichtian (Late Cretaceous) cephalopods from the López de Bertodano Formation, Seymour Island, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 418, p. 193–212, doi:https://doi.org/10.1016/j.palaeo.2014.11.002
    OpenUrlCrossRefGeoRef
  223. ↵
    1. Witts J. D.,
    2. Whittle R. J.,
    3. Wignall P. B.,
    4. Crame J. A.,
    5. Francis J. E.,
    6. Newton R. J.,
    7. Bowman V. C.
    , 2016, Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica: Nature Communications, v. 7, doi:https://doi.org/10.1038/ncomms11738
    OpenUrlCrossRef
  224. ↵
    1. Woelders L.,
    2. Vellekoop J.,
    3. Kroon D.,
    4. Smit J.,
    5. Casadío S.,
    6. Prámparo M. B.,
    7. Dinarès-Turell J.,
    8. Peterse F.,
    9. Sluijs A.,
    10. Lenaerts J. T. M.,
    11. Speijer R. P.
    , 2017, Latest Cretaceous climatic and environmental change in the South Atlantic region. Paleoceanography and Paleoclimatology, v. 32, n. 5, p. 466–483, doi:https://doi.org/10.1002/2016PA003007
    OpenUrlCrossRef
  225. ↵
    1. Xu W.,
    2. Mac Niocaill C.,
    3. Ruhl M.,
    4. Jenkyns H. C.,
    5. Riding J. B.,
    6. Hesselbo S. P.
    , 2018, Magnetostratigraphy of the Toarcian Stage (Lower Jurassic) of the Llanbedr (Mochras Farm) Borehole, Wales: Basis for a global standard and implications for volcanic forcing of palaeoenvironmental change: Journal of the Geological Society, v. 174, n. 4, p. 594–604, doi:https://doi.org/10.1144/jgs2017-120
    OpenUrlCrossRef
  226. ↵
    1. Zheng X.-Y.,
    2. Jenkyns H. C.,
    3. Gale A. S.,
    4. Ward D. J.,
    5. Henderson G. M.
    , 2013, Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian–Turonian): Evidence from Nd-isotopes in the European shelf sea: Earth and Planetary Science Letters, v. 375, p. 338–348, doi:https://doi.org/10.1016/j.epsl.2013.05.053
    OpenUrlCrossRefGeoRef
PreviousNext
Back to top

In this issue

American Journal of Science: 318 (8)
American Journal of Science
Vol. 318, Issue 8
1 Oct 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events
Lawrence M.E. Percival, Hugh C. Jenkyns, Tamsin A. Mather, Alexander J. Dickson, Sietske J. Batenburg, Micha Ruhl, Stephen P. Hesselbo, Richard Barclay, Ian Jarvis, Stuart A. Robinson, Lineke Woelders
American Journal of Science Oct 2018, 318 (8) 799-860; DOI: 10.2475/08.2018.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events
Lawrence M.E. Percival, Hugh C. Jenkyns, Tamsin A. Mather, Alexander J. Dickson, Sietske J. Batenburg, Micha Ruhl, Stephen P. Hesselbo, Richard Barclay, Ian Jarvis, Stuart A. Robinson, Lineke Woelders
American Journal of Science Oct 2018, 318 (8) 799-860; DOI: 10.2475/08.2018.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • STUDIED EVENTS AND RECORDS
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Appendix
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Volcanic controls on seawater sulfate over the past 120 million years
  • UV-B radiation was the Devonian-Carboniferous boundary terrestrial extinction kill mechanism
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • mercury
  • Cenomanian–Turonian OAE
  • end-Cretaceous
  • Large Igneous Province
  • volcanic style
  • depositional environment

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire