Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

The influence of environmental gradients on molluscan diversity, community structure, body size, and predation in a carbonate tidal creek, San Salvador (The Bahamas)

Tara Selly, Kelly Elizabeth Hale, James D. Schiffbauer, Daniel A. Clapp and John Warren Huntley
American Journal of Science February 2018, 318 (2) 246-273; DOI: https://doi.org/10.2475/02.2018.03
Tara Selly
* Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA
** X-ray Microanalysis Core Facility, University of Missouri, Columbia, Missouri 65211, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kelly Elizabeth Hale
* Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James D. Schiffbauer
* Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA
** X-ray Microanalysis Core Facility, University of Missouri, Columbia, Missouri 65211, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel A. Clapp
* Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Warren Huntley
* Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: huntleyj@missouri.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Ayoub-Hannaa W.,
    2. Huntley J. W.,
    3. Fürsich F. T.
    , 2013, Significance of Detrended Correspondence Analysis (DCA) in palaeoecology and biostratigraphy: A case study from the upper Cretaceous of Egypt: Journal of African Earth Sciences, v. 80, p. 48–59, doi:https://doi.org/10.1016/j.jafrearsci.2012.11.012
    OpenUrlCrossRefGeoRef
  2. ↵
    1. Bennington J. B.
    , 2003, Transcending patchiness in the comparative analysis of paleocommunities: A test case from the Upper Cretaceous of New Jersey: Palaios, v. 18, n. 1, p. 22–33, doi:https://doi.org/10.1669/0883-1351(2003)018<0022:TPITCA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Brown J. J.
    , 1995, Macroecology: Chicago, University of Chicago Press, 284 p.
  4. ↵
    1. Curran H. A.,
    2. Martin A. J.
    , 2003, Complex decapod burrows and ecological relationships in modern and Pleistocene intertidal carbonate environments, San Salvador, Bahamas: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 192, n. 1–4, p. 229–245, doi:https://doi.org/10.1016/S0031-0182(02)00687-9
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Carew J. L.
    1. Curran H. A.,
    2. Williams A. B.
    , 1997, Ichnology of an intertidal carbonate sand flat: Pigeon Creek, San Salvador Island, Bahamas, in Carew J. L., editor, Proceedings of the Eighth Symposium on the Geology of the Bahamas and Other Carbonate Regions: Bahamian Field Station, San Salvador, Bahamas, p. 33–46.
  6. ↵
    1. Hammer Ø.,
    2. Harper D. A. T.,
    3. Ryan P. D.
    , 2001, PAST. Paleontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4, n. 1, 9 p., doi:http://palaeo-electronica.org/2001_1/past/issue1_01.htm
    OpenUrlCrossRef
  7. ↵
    1. Heino J.
    , 2001, Regional gradient analysis of freshwater biota: Do similar biogeographic patterns exist among multiple taxonomic groups?: Journal of Biogeography, v. 28, n. 1, p. 69–76, doi:https://doi.org/10.1046/j.1365-2699.2001.00538.x
    OpenUrlCrossRef
  8. ↵
    1. Holland S. M.
    , 2005, The signatures of patches and gradients in ecological ordinations: Palaios, v. 20, n. 6, p. 573–580, doi:https://doi.org/10.2110/palo.2004.p04-28
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Holland S. M.,
    2. Patzkowsky M. E.
    , 2004, Ecosystem structure and stability: Middle upper Ordovician of central Kentucky, USA: Palaios, v. 19, n. 4, p. 316–331, doi:https://doi.org/10.1669/0883-1351(2004)019<0316:ESASMU>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Holland S. M.,
    2. Patzkowsky M. E.
    2009, The stratigraphic distribution of fossils in a tropical carbonate succession: Ordovician Bighorn Dolomite, Wyoming, USA: Palaios, v. 24, n. 5, p. 303–317, doi:https://doi.org/10.2110/palo.2008.p08-095r
    OpenUrlCrossRef
  11. ↵
    1. Holland S. M.,
    2. Miller A. I.,
    3. Meyer D. L.,
    4. Dattilo B. F.
    , 2001, The detection and importance of subtle biofacies within a single lithofacies: The upper Ordovician Kope Formation of the Cincinnati, Ohio Region: Palaios, v. 16, n. 3, p. 205–217, doi:https://doi.org/10.1669/0883-1351(2001)016<0205:TDAIOS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Huelsken T.,
    2. Marek C.,
    3. Schreiber S.,
    4. Schmidt I.,
    5. Hollmann M.
    , 2008, The Naticidae (Mollusca: Gastropoda) of Giglio Island (Tuscany, Italy): Shell characters, live animals, and a molecular analysis of egg masses: Zootaxa, v. 1770, p. 1–40.
    OpenUrl
  13. ↵
    1. Huntley J. W.,
    2. Scarponi D.
    , 2012, Evolutionary and ecological implications of trematode parasitism of modern and fossil northern Adriatic bivalves: Paleobiology, v. 38, n. 1, p. 40–51, doi:https://doi.org/10.1017/S0094837300000397
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Huntley J. W.,
    2. Scarponi D.
    2015, Geographic variation of parasitic and predatory traces on mollusks in the northern Adriatic Sea, Italy: Implications for the stratigraphic paleobiology of biotic interactions: Paleobiology, v. 41, n. 1, p. 134–153, doi:https://doi.org/10.1017/pab.2014.9
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Huntley J. W.,
    2. Fürsich F. T.,
    3. Alberti M.,
    4. Hethke M.,
    5. Liu C.
    , 2014, A complete Holocene record of trematode–bivalve infection and implications for the response of parasitism to climate change: Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 51, p. 18150–18155. doi:https://doi.org/10.1073/pnas.1416747111
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Jarochowska E.
    , 2012, High-resolution microtaphofacies analysis of a carbonate tidal channel and tidally influenced lagoon, Pigeon Creek, San Salvador Island, Bahamas: Palaios, v. 27, n. 3, p. 151–170, doi:https://doi.org/10.2110/palo.2011.p11-063r
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Kidwell S. M.,
    2. Tomašových A.
    , 2013, Implications of time-averaged death assemblages for ecology and conservation biology: Annual Review of Ecology, Evolution, and Systematics, v. 44, p. 539–563, doi:https://doi.org/10.1146/annurev-ecolsys-110512-135838
    OpenUrlCrossRefWeb of Science
  18. ↵
    1. Kitchell J. A.,
    2. Boggs C. H.,
    3. Kitchell J. F.,
    4. Rice J. A.
    , 1981, Prey selection by naticid gastropods: Experimental tests and application to the fossil record: Paleobiology, v. 7, n. 4, p. 533–552, doi:https://doi.org/10.1017/S0094837300025574
    OpenUrlAbstract
  19. ↵
    1. Dietl G. P.,
    2. Flessa K. W.
    1. Kowalewski M.
    , 2009, The youngest fossil record and conservation biology: Holocene shells as eco-environmental recorders, in Dietl G. P., Flessa K. W., editors, Conservation Paleobiology: Using the Past to Manage the Future: New Haven, Connecticut, Yale University Printing and Publishing Services, p. 1–23.
  20. ↵
    1. Kowalewski M.,
    2. Wittmer J. M.,
    3. Dexter T. A.,
    4. Amorosi A.,
    5. Scarponi D.
    , 2015, Differential responses of marine communities to natural and anthropogenic changes: Proceedings of the Royal Society B (Biological Sciences), v. 282, p. 2014–2990, doi:https://doi.org/10.1098/rspb.2014.2990
    OpenUrlCrossRefPubMed
  21. ↵
    1. Miller A. I.,
    2. Holland S. M.,
    3. Meyer D. L.,
    4. Dattilo B. F.
    , 2001, The use of faunal gradient analysis for intraregional correlation and assessment of changes in sea-floor topography in the type Cincinnatian: The Journal of Geology, v. 109, n. 5, p. 603–613, doi:https://doi.org/10.1086/321965
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Curran H. A.,
    2. Gerace D. T.
    1. Mitchell S. W.
    , 1987, Sedimentology of Pigeon Creek, San Salvador Island, Bahamas, in Curran H. A., Gerace D. T., editors, Proceedings of the third symposium on the Geology of the Bahamas: Ft. Lauderdale, Florida, CCFL Bahamian Field Station, p. 215–230.
  23. ↵
    1. Olszewski T. D.,
    2. Patzkowsky M. E.
    , 2001, Measuring recurrence of marine biotic gradients: A case study from the Pennsylvanian-Permian Midcontinent: Palaios, v. 16, n. 5, p. 444–460, doi:https://doi.org/10.1669/0883-1351(2001)016<0444:MROMBG>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Patzkowsky M. E.,
    2. Holland S. M.
    , 2012, Stratigraphic paleobiology: Understanding the distribution of fossil taxa in time and space: Chicago, Chicago University Press, 274 p., doi:https://doi.org/10.7208/chicago/9780226649399.001.0001
  25. ↵
    1. Przeslawski R.
    , 2004, A review of the effects of environmental stress on embryonic development within intertidal gastropod egg masses: Molluscan Research v. 24, n. 1, p. 43–63, doi:https://doi.org/10.1071/MR04001
    OpenUrlCrossRef
  26. ↵
    R Core Team, 2015, R: A language and environment for statistical computing, R Foundation for Statistical Computing: Vienna, Austria, doi:https://www.R-project.org/
  27. ↵
    1. Redfern C.
    , 2013, Bahamian seashells: 1161 species from Abaco, Bahamas: Bahamianseashells.com, Incorporated, 501 p.
  28. ↵
    SAS Institute, 1985, SAS user's guide: Statistics, v. 2: Cary, North Carolina, SAS Institute.
  29. ↵
    1. Scarponi D.,
    2. Kowalewski M.
    , 2004, Stratigraphic paleoecology: Bathymetric signatures and sequence overprint of mollusk associations from upper Quaternary sequences of the Po Plain, Italy: Geology, v. 32, n. 11, p. 989–992, doi:https://doi.org/10.1130/G20808.1
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Scarponi D.,
    2. Kaufman D.,
    3. Amorosi A.,
    4. Kowalewski M.
    , 2013, Sequence stratigraphy and the resolution of the fossil record: Geology, v. 41, n. 2, p. 239–242, doi:https://doi.org/10.1130/G33849.1
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Scarponi D.,
    2. Huntley J. W.,
    3. Capraro L.,
    4. Raffi S.
    , 2014, Stratigraphic paleoecology of the Valle di Manche Section (Crotone Basin, Italy): A Candidate GSSP of the Middle Pleistocene: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 402, p. 30–43, doi:https://doi.org/10.1016/j.palaeo.2014.02.032
    OpenUrlCrossRefGeoRef
  32. ↵
    1. Kennedy V. S.,
    2. Newell R. I. E.,
    3. Eble A. F.
    1. Shumway S. E.
    , 1996, Natural environmental factors, in Kennedy V. S., Newell R. I. E., Eble A. F., editors, The Easter Oyster: Crassostrea virginica: College Park, Maryland, Maryland Sea Grant College, p. 467–513.
  33. ↵
    1. Smrecak T. A.,
    2. Brett C. E.
    , 2014, Establishing patterns in sclerobiont distribution in a Late Ordovician (Cincinnatian) depth gradient: Toward a sclerobiofacies model: Palaios, v. 29, n. 2, p. 74–85, doi:https://doi.org/10.2110/palo.2012.128
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Springer D. A.,
    2. Bambach R. K.
    , 1985, Gradient versus cluster analysis of fossil assemblages: A comparison from the Ordovician of southwestern Virginia: Lethaia, v. 18, n. 3, p. 181–198, doi:https://doi.org/10.1111/j.1502-3931.1985.tb00697.x
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Tomašových A.,
    2. Kidwell S. M.
    , 2009a, Fidelity of variation in species composition and diversity partitioning by death assemblages: Time-averaging transfers diversity from beta to alpha levels: Paleobiology, v. 35, n. 1, p. 94–118, doi:https://doi.org/10.1666/08024.1
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Tomašových A.,
    2. Kidwell S. M.
    2009b, Preservation of spatial and environmental gradients by death assemblages: Paleobiology, v. 35, n. 1, p. 119–145, doi:https://doi.org/10.1666/07081.1
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Webber A. J.
    , 2002, High-resolution faunal gradient analysis and an assessment of the causes of meter-scale cyclicity in the type Cincinnatian Series (Upper Ordovician): Palaios, v. 17, n. 6, p. 545–555, doi:https://doi.org/10.1669/0883-1351(2002)017<0545:HRFGAA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Webber A. J.
    2005, The effects of spatial patchiness on the stratigraphic signal of biotic composition (type Cincinnatian Series; Upper Ordovician): Palaios, v. 20, n. 1, p. 37–50, doi:https://doi.org/10.2110/palo.2004.p04-15
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Whittaker R. H.
    , 1956, Vegetation of the Great Smoky Mountains: Ecological Monographs, v. 26, n. 1, p. 1–80, doi:https://doi.org/10.2307/1943577
    OpenUrlCrossRefWeb of Science
  40. ↵
    1. Wittmer J. M.,
    2. Dexter T. A.,
    3. Scarponi D.,
    4. Amorosi A.,
    5. Kowalewski M.
    , 2014, Quantitative bathymetric models for Late Quaternary transgressive-regressive cycles of the Po Plain, Italy: The Journal of Geology, v. 122, n. 6, p. 649–670, doi:https://doi.org/10.1086/677901
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 318 (2)
American Journal of Science
Vol. 318, Issue 2
1 Feb 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The influence of environmental gradients on molluscan diversity, community structure, body size, and predation in a carbonate tidal creek, San Salvador (The Bahamas)
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The influence of environmental gradients on molluscan diversity, community structure, body size, and predation in a carbonate tidal creek, San Salvador (The Bahamas)
Tara Selly, Kelly Elizabeth Hale, James D. Schiffbauer, Daniel A. Clapp, John Warren Huntley
American Journal of Science Feb 2018, 318 (2) 246-273; DOI: 10.2475/02.2018.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The influence of environmental gradients on molluscan diversity, community structure, body size, and predation in a carbonate tidal creek, San Salvador (The Bahamas)
Tara Selly, Kelly Elizabeth Hale, James D. Schiffbauer, Daniel A. Clapp, John Warren Huntley
American Journal of Science Feb 2018, 318 (2) 246-273; DOI: 10.2475/02.2018.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Caribbean
  • community analysis
  • predator-prey interactions
  • substrate
  • salinity

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire